

The information in this manual is subject to change without prior notice and does not represent a commitment on the part of MSE.

MSE makes no representations or warranties with respect to the contents hereof and specifically disclaims any implied warranties of merchantability
or fitness for any particular purpose.

The software described in this document is furnished under a license agreement. The software may be used or copied only in accordance with the
terms and conditions of the license agreement. It is against the law to copy the software on any medium except as specifically allowed in the license
agreement.

No part of this manual and/or databases may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photo-
copying, recording or information recording and retrieval systems, for any purpose other than the purchaser’s personal use, without the prior express
written permission of MSE.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes software developed by Computing Services at Carnegie Mellon University (http://www.cmu.edu/computing/).

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

All references made to third party trademarks are for informational purposes only regarding compatibility with the products of Magic Software
Enterprises Ltd.

Unless otherwise noted, all names of companies, products, street addresses, and persons contained herein are part of a completely fictitious scenario
or scenarios and are designed solely to document the use of Magic.

Magic®, Magic PC™, Magic II™, and MagicGate™ are trademarks of Magic Software Enterprises Ltd.
Btrieve® is a registered trademark of Pervasive Software, Inc.
Pervasive.SQL™ is registered trademark of Pervasive Software, Inc.
Novell NetWare LAN® are registered trademarks of Novell.
Informix™ and C-ISAM™ are trademarks of INFORMIX.
Clipper® is a registered trademark of Computer Associates International, Inc.
dBASE®, dBASE III® and dBASE IV® are registered trademarks of Borland International, Inc.
FTP® and PC/TCP® Network Software are registered trademarks of FTP Software Inc.
IBM®, Topview™, iSeries™, pSeries™, xSeries™, and RISC System/6000™ are trademarks of International Business Machines Corporation.
Microsoft®, FoxPro®, Windows™, WindowsNT™ , and ActiveX™ are trademarks of Microsoft Corp.
Oracle® is a registered trademark of the Oracle Corporation.
SCO® is a registered trademark of The Santa Cruz Operation, Inc.
Sybase® is a registered trademark of Sybase, Inc.
UNIX® is a registered trademark of UNIX System Laboratories.
VAX, VMS, VAX/VMS, OpenVMS, VT, Rdb, RMS, ULTRIX Connection, and DECnet are trademarks of Digital Equipment Corporation.
All company and product names are the trademarks or registered trademarks of their respective companies.

Revised February 2004

04 2 1 12 11 10 9 8 7 6 5

4190-07000

Copyright � 2004 by Magic Software Enterprises Ltd. All rights reserved.

Contents

 Introduction
 1 Configuring the eDeveloper Environment

Starting a New eDeveloper Session... 22
Creating a New Application .. 22
Defining Application Properties.. 22

Changing eDeveloper Settings for Each Session... 23
Defining an SQL Database .. 24

Configuring an Open Client Environment .. 24
Setting up eDeveloper to Work with an SQL Database 25
Setting the eDeveloper Environment to Work with SQL Databases 25
Checking for Connectivity Between eDeveloper and the SQL Database ... 26

Changing the Application Default File Name ... 26
Setting up eDeveloper Language Support ... 26

Building an eDeveloper Language File... 27
Setting a Starting Language .. 27

Creating Color Combinations .. 28
Changing Color Combinations.. 28
Changing Foreground and Background Colors... 29

Creating Font Definitions .. 30
Changing the Name and Look of a Font ... 30

Displaying the eDeveloper Executable File Version ... 31
Defining Reusable Application Objects .. 31

Defining Model Properties .. 31
Using and Breaking Inheritance .. 33
 eDeveloper V9 - How To iii

Defining an Object .. 33
Breaking and Returning an Inheritance... 33

Defining Logical Names.. 34
Using Logical Names .. 34

Defining Default Date Values and NULL Display Strings 35
Defining Application Default Values and Null Definitions 36
Defining an External Configuration File for a Specific Application..................... 37

 2 Creating Data Objects
Defining a Model ... 39
Forcing Row Uniqueness in a Data Table ... 39

Creating a Unique Index for a Table ... 40
Defining Segments in an Index ... 40
Defining Index Properties (for SQL Databases) ... 41

Retrieving Records from the Database in a Specific Order................................... 41
Defining Table Indexes and Position .. 42
Choosing an Index Within a Task ... 43
Setting the Task Sort Order ... 43
Using the ORDER BY Clause Within eDeveloper 44

Automatic Linking Between Data Tables.. 44
Defining a Foreign Key... 45
Generating Programs Containing Referenced Tables 45

Preventing Changes in the Data Structure ... 46
Regulating Changes in Toolkit Mode ... 47
Setting the Check Existence Setting.. 47
Setting the DBMS Default Value .. 47
Setting the Database Default Values ... 47
Setting the Table Default Values... 48
Defining the Owner of a Table.. 48
 eDeveloper V9 - How To iv

Modifying eDeveloper Field Attributes... 49
Default Mapping Using the Table Repository .. 49
Mapping a Table Column Using the Get Definition Utility........................ 50
Mapping a Table Column Using the SQL Type Option 50
SQL Type Options for an SQL Database.. 51

Converting a Data Table’s Physical Definition ... 51
Accessing Existing Tables Using the Get Definition .. 52
Restoring the Structure of a Converted Data Table ... 54
Accessing Database Views .. 54
Adding a Virtual Unique Key .. 55
Using the APG to Manipulate Table Data ... 55
Printing Table Data Directly from the Table Repository 56
Automatically Generating Basic Programs.. 57

 3 Creating the Task Dataview
Defining a Program or Task Dataview .. 59

Defining a Main Table for the Program or Task ... 59
Defining Different Linking Options to Additional Data Tables 60
Selecting Virtual Variables ... 60
Direct SQL SELECT Statement.. 61

Determining the Result Set of a Program .. 61
Selecting an Index from the Main Table ... 62
Defining the Requested Range .. 62
Defining Locate Expressions... 63
Defining the Magic SQL Where Clause for an SQL Database 64
Defining the DB SQL Where Clause for an SQL Database........................ 65

Executing the Same Program with Different Data Tables..................................... 66
Accessing the Database Table Repository .. 67

Dynamically Changing the Program Record Order Display 67
 eDeveloper V9 - How To v

Changing the Display Order of Records ... 67
Using the Expression Index Parameter ... 68

Adding a Record Sort Order to a Program .. 68
Selecting the Database for Sort/Temporary .. 69
Using a Virtual Key to Re-use a Sort .. 69

Preventing Modification of Opening of a Data Table ... 70
Using Access Mode... 70
Using Share Mode ... 71
Defining Table Modes... 71
Table Sharing Interaction .. 71

Caching the Dataview .. 72
Defining a Main Table Cache ... 72
Defining a Linked Table Cache... 73
Defining the Cache Strategy Parameter .. 73

Minimizing Unnecessary Links in a Program ... 74
Defining the Dataview ... 75

Defining Direct SQL Select Statements .. 76
Defining a Direct SQL DML Operation.. 76
Executing a Stored Procedure with Input and Output 77

 4 Using Basic Programming Techniques
Automatically Generating a Simple Program .. 79

Generating Programs from the Table Repository.. 79
Generating Programs from the Program Repository................................... 81

Defining Global Variables for an Application... 81
Controlling Execution of the Main Program ... 82
Defining Application Level Events ... 83

Defining a Handler .. 84
Conditionally Terminating the Program .. 84
 eDeveloper V9 - How To vi

Terminating a Program.. 84
Using the Raise Event ... 85

Preventing a User from Manipulating Program Data .. 87
Selecting Task Property Attributes.. 88
Controlling Use of the Options Menu ... 88
Disabling the Options Menu.. 89
Controlling User Positioning of the Cursor... 89
Preventing Data Manipulation... 89

Displaying Information after the Task is Closed ... 90
Using the Task Properties Dialog.. 90

Removing the Need to Confirm Record Deletion ... 91

 5 Building an Online Task
Evaluating a Program’s Initial Starting Mode ... 94

Selecting the Initial Mode Expression... 94
Using an Expression in the Initial Mode ... 94

Creating a Selection List Program ... 95
Creating a Selection List Program by Calling a Program 95
Defining a Selection Table Program ... 97
Associating a Selection Table Program to a Column.................................. 97
Executing a Selection Table Program ... 99

Defining a Context Menu for a Program ... 100
Defining an Additional Context Menu .. 100
Defining the Context Menu in a Program or a Task 101

Automatically Saving Changes to the Dataview ... 101
Using the Task Control Property: Force record Suffix 102
Defining a User Event with Force Exit=Record ... 102
Updating an Operation with Undo=No ... 102

Reconfirming User Steps in a Program ... 103
 eDeveloper V9 - How To vii

 6 Building an Interactive Web Task
Defining the Interactive Web Application Developing Environment 106

Installation ... 107
Setting Up the Web Server .. 107
Setting Up the Internet Requester ... 108
Running the eDeveloper Broker.. 108
Setting up the eDeveloper Engine ... 108

Creating a Simple Interactive Web Application Program 110
Building an Interactive Web Application Task... 110
Defining the Properties for the Interactive Web Application Task............. 111
Defining HTML Controls.. 112

Preparing an HTML Template... 112
Creating the HTML Template ... 113
Using the HTML Template File .. 114

Handling HTML Controls ... 115
Defining HTML Controls.. 115
Creating Controls with the APG ... 116
Dragging and Dropping Variables .. 116
Adding an HTML Control... 116
Assigning Data to HTML Controls ... 117
Defining HTML Control Properties .. 117

Defining an HTML Table Control in a Browser Task... 117
Creating the HTML Table Control.. 118
Setting the Table’s Details Line # Property .. 119

Increase Record Scrolling Performance .. 119
Defining the Chunk Size Number ... 120
Resetting the Cache ... 120

Creating a Browser One-to-Many Relationship of Tasks...................................... 121
 eDeveloper V9 - How To viii

Creating Parent and Extended View Tasks ... 121
Defining Subform Controls and Properties ... 122
Recomputing the Subform... 122

Working with a Third Party HTML Authoring Tool... 123
Defining Your HTML Authoring Tool ... 123
Editing the Browser Task Interface HTML File ... 123
Editing the HTML File.. 124
Editing the HTML File Externally .. 125

Opening a Browser Task in a Specific Frame ... 125
Changing the Task Mode in a Browser Client... 126
Defining and Using the eDeveloper VCR ... 126
Setting eDeveloper to Work with the Persistent Client Mode............................... 128
Defining a Subform ... 129
Opening Two Browser Programs in the Same Frame ... 129

 7 Using Transaction and Recovery Techniques
Working with Deffered Transactions .. 133

Defining the Transaction Begin Property as Before Record Prefix 134
Defining the Transaction Begin Property as Before Task Prefix 134
Defining the Transaction Begin Property as Group 135
Handling Deferred Transaction Errors .. 136

Continuing a Program When the Transaction Fails ... 136
Defining eDeveloper’s Pre-Defined Error Behavior Strategies 137
Defining an Error Handler... 137
Defining the Engine Directive... 138
Defining the Error Result .. 138
Overwriting Database Errors... 139
Using eDeveloper Functions to Retrieve Error Information 139
Defining the Any Error Handler.. 140
 eDeveloper V9 - How To ix

Defining the Propagate Property ... 140
Dynamically Logging into a Database... 141
Handling a Violation of the Database Constraint by a User.................................. 141
Sending Nulls by Expression ... 143
Working with MS-SQL Temporary Tables ... 143

Local Temporary Tables ... 143
Global Temporary Tables.. 144

Committing a Transaction Every nn Records.. 145

 8 Securing Your Application
Creating a User in the eDeveloper Environment ... 147

Logging on as Supervisor.. 147
Creating a New Group... 147
Creating and Defining New Users and User IDs .. 148
Retrieving User Information ... 149

Changing the Logged-On User in eDeveloper Runtime Mode 150
Logging onto the System... 150
Using the Logon Function... 150

Assigning Rights to a User Group ... 151
Creating a Right... 151
Assigning Rights to a User Group... 152
Assigning Rights to a User .. 152

Using the Authorization System in eDeveloper Toolkit Mode 153
Assigning Rights ... 153
Assigning Global Rights to eDeveloper Repositories 154

 9 Using Advanced Programming Techniques
Creating a Dynamic List or Combo Box ... 157

Combo Box Properties .. 157
Using the Items List Property.. 158
 eDeveloper V9 - How To x

Merging Database Information into an Existing Document 158
Using HTML Tags .. 159
Selecting the HTML Merge Option .. 159
Defining the Tag Values.. 160
Defining the HTML Merge Task Controls.. 160

Developing a One-to-Many Relationship Program ... 161
Building a One-to-Many Program... 162
Preserving Data Integrity in the One-to-Many Relationship....................... 163

Saving and Re-Using a Form Display ... 164
Form Templates... 164
Saving a Form Template ... 165
Loading a Form Template ... 165

Defining Automatic Currency Conversion .. 165
Creating a Euro Conversion Text File... 165
Setting eDeveloper to Use the Currency Conversion File 166

Modifying the EURO Text File ... 166
Using the OS Text Editor .. 167
Modifying the EURO Text File Using eDeveloper Functions.................... 167

Currency Conversion ... 168
Converting Currencies Using Different Display Types 168
Converting Currencies Using the Euro Functions....................................... 169

Fetching the Full Translation of an eDeveloper Logical Name............................. 169
Designing and Displaying an Image Push Button ... 170

Designing the Image Button.. 170
Displaying the Image Button in an eDeveloper Program............................ 170

Changing the Image and Title Bar Text of the eDeveloper Window 171
Changing the Main Window Title... 171
Changing the eDeveloper Icon .. 172

Making an eDeveloper Online Task Window Modal .. 173
 eDeveloper V9 - How To xi

Exiting a Program from a Subtask Level ... 173
Using the KbPut Function with the Fill Function 174
Using Events in eDeveloper .. 174

Playing WAV Files from eDeveloper.. 175
Calculating the Sum of Several Records in a Table .. 175
Changing the Caption of the eDeveloper Title .. 176
Changing the Windows Cursor.. 177
Sending E-mail from Within eDeveloper .. 178
Avoiding the Control Verification ... 179

 10 Printing With eDeveloper
Automatically Generating a Printing Program .. 181

Generating a Printing Program.. 181
Creating a Simple Printing Program.. 182

Defining the Task and I/O Properties.. 182
Preparing a Report’s Dataview.. 182
Designing a Report’s Appearance ... 183
Using the Output Form Operation... 183

Defining a Standard Header and Footer .. 184
Printing to the Same I/O File from Several Subtasks .. 184

Using the Same I/O Among Subtasks ... 185
Printing to the Same I/O from Several Programs .. 185

Using the Same I/O Among Programs .. 186
Changing the Printing I/O Media... 186

Windows Print Dialog ... 187
Media Expression in the I/O File Properties ... 187

Changing the Default Printer from Within eDeveloper... 187
The Printer Dialog ... 188

Allowing Print Preview ... 188
 eDeveloper V9 - How To xii

Creating More Than One Report Set in a Program ... 188
Creating a Report in PDF Format .. 189

Creating the Report Outside eDeveloper... 189
Creating the Report Inside eDeveloper ... 190

Printing Different Length Multi-Line Texts .. 190
Controlling the Number of Lines Displayed in a Table... 191
Printing a Table Within a Subtask ... 191

 11 Defining Application Menus
Defining a Pull-down Menu for an Application .. 193
Changing Options Displayed in the Runtime Toolbar... 193

Defining Options Using the Menu Repository.. 193
Defining Options Using the MNUENABL and MNUSHOW functions 194

Assigning Help Screens ... 195
Assigning Help Prompts .. 195
Defining an Application Default Menu ... 196
Defining an Entry Image on the Runtime Context Menu 196
Defining a Context Menu for a Specific Program ... 197
Executing a Program from the Menu with Arguments .. 198
Creating Additional Context Menus .. 198
Defining a Shortcut Key for Menu and Separator Entry Types 199
Defining a Shortcut Key for Program, OS Command, and Event Entry Types 199

 12 Creating Application Helps
Creating Internal, Prompt and Tooltip Helps... 201
Designing WinHelp Help Topics... 201

 13 Using eDeveloper Toolkit Utilities
Porting Your eDeveloper Application ... 204

In the Development Environment ... 204
 eDeveloper V9 - How To xiii

In the Runtime Environment ... 204
Creating an eDeveloper Application Documentation File..................................... 205

Running the Export Utility in Documentation Mode.................................. 205
Cross-Referencing an Object ... 206

Selecting Entries to Cross-Reference .. 207
Deleting or Searching for a Cross-Reference.. 207
Saving or Printing Cross-Referenced Information 208
Changing the Maximum Number of Cross-Referenced Results 208

Organizing Your Application .. 208
Creating eDeveloper Folders... 209
Bookmarking a Location ... 209
Using Comments ... 210

 14 Using eDeveloper Components
Creating a Component ... 212
Loading a Component.. 213
Integrating Components into Your Application .. 213

Selecting a Component for Integration ... 214
Sharing an Event Among Applications ... 214
Maintaining the Loaded Component Application ... 215

Adding Settings to a Component... 215

 15 Partitioning eDeveloper
Setting Up an eDeveloper Partitioned Application.. 217

Partitioning the eDeveloper Application... 217
Knowing How a Partitioned Application Works .. 217
Setting the eDeveloper Application .. 218
Setting Up the Server .. 218
Setting Up the Client ... 219
Using eDeveloper Partitioning .. 219
 eDeveloper V9 - How To xiv

Retrieving Broker Information From the Command Line..................................... 220
Running a Remote Program From the Command Line ... 221

 16 Connecting to External Applications
Calling eDeveloper from an External Application .. 223
Calling an External Application Using the Exit Operation 223

Using the Exit Operation in a Client/Server Environment.......................... 223
The Wait Property ... 224
The Show Property.. 224
The Ret Property ... 224
Troubleshooting... 224

 17 Improving Performance
Influencing the DBMS Optimizer.. 226

Prioritizing the Hints ... 226
Examples of Hints ... 227

Using RDBMS Features .. 228
Improving Performance Using DBMS Features ... 229

Repeatedly Calling a Task ... 231
Accessing a Heavily Used Table ... 232

 18 Deploying eDeveloper
Creating and Using a Magic Flat File .. 234

Creating a Magic Flat File... 234
Running an eDeveloper Application Using a Magic Flat File 234

Setting Up a Multi-Threaded Environment ... 235
Limiting the Number of Concurrent Threads.. 235

Managing a Multi-Threaded Environment .. 236
Monitoring eDeveloper Threads ... 237
Starting or Closing an eDeveloper Enterpise Server................................... 238
 eDeveloper V9 - How To xv

Setting a Single Context Environment... 238
Runtime Context.. 238
The Magic.ini and the INIPut Function... 239
Resources Shared by Threads.. 239
Using External Programs (UDF/UDP).. 239
CTX Functions .. 239

 19 Building a Batch Task
Creating a Simple Batch Program ... 241
Manipulating the Execution of a Batch Task... 241

Using the Confirm Execution Pop-Up Window.. 242
End Task Condition... 242
Allow Events ... 243

Batch Task Event Handling ... 244
Defining the Event Handler... 244
Defining the Handler ... 245

Defining an Endless Executed Program .. 246
Batch Task without a Main Table ... 247
End Task Condition... 247
Allow Events ... 248
Updating the Fetching Index ... 248

Defining a Chunk of Records from a Data Table .. 248
Init. Status = Delete ... 249
Force Record Delete = True .. 249
Direct SQL Statements .. 250

Creating an Import/Export Program .. 250
Defining an I/O Form’s Style.. 251

 20 Integrating With the J2EE Environment
J2EE Server Installation... 253
 eDeveloper V9 - How To xvi

WebSphere .. 253
BEA WebLogic 6 .. 254
BEA WebLogic 5.1 ... 254
Sun Reference Implementation ... 255
jBoss 2.4.4 ... 255

Enabling eDeveloper with EJB Support .. 256
Generating EJBs Using eDeveloper .. 257
EJB Deployment Using eDeveloper .. 257

Setting Up URL Resources for a J2EE Server .. 258
Starting the J2EE Server.. 259
Starting the Deployment Tool ... 260
Deploying the EJB... 260
Running the Client... 262
Stopping the J2EE Server.. 262
Advanced Configuration of eDeveloper AppServers.................................. 263

Setting Up a Java Environment ... 263
Required Java Software... 263
System-wide Settings .. 264
Setting the Java Classpath ... 264
Setting JVM Arguments .. 265

Learning About the Content of a Java Class.. 265
What is a Java Class? .. 265
Using the JExplore Functions.. 266
Using the Javap Utility .. 266
Examples ... 266

Creating a New Instance of a Java Class ... 270
Reading Values of Java Variables ... 273

Reading Values of Java Object Variable Members..................................... 273
Reading Values of Java Class Variable Members (static variables) 275
 eDeveloper V9 - How To xvii

Calling a Java Method ... 276
Calling Java Object Methods (non-static) ... 276
Calling Java Class Methods (static) .. 279

 21 Using COM Support
Defining an ActiveX Control... 281

Creating an ActiveX control for the Web browser...................................... 281
Creating an ActiveX control for the Progress bar 284

Setting a COM Object Property... 286
Calling a COM Object Method.. 288

 22 Sending and Receiving Data
Sending Data to the Clipboard from eDeveloper... 289

 23 Sending and Receiving Messages
Installing eDeveloper’s Messaging Capability .. 292
Sending a Message from eDeveloper to MSMQ ... 293
Sending a Transacted Message from eDeveloper to MSMQ 295
Sending a Message from eDeveloper to JMS .. 297
Receiving the Messaging Error.. 300
Changing the Location of the Messaging Component... 301

 24 Using Drag-and-Drop Functionality
Dragging Data from eDeveloper to External Applications 304
Dragging Data from External Applications to eDeveloper 304

Using a Simple Edit Control ... 305
Using an RTF Edit Control Connected to a BLOB Variable 305

Determining Drag-and-Drop Mouse Pointer Appearance 306
Defining an Internal Drag Begin Handler Event... 306
Using the Evaluate operation with the DragSet Crsr Function 306

Dragging Several Controls Together ... 307
 eDeveloper V9 - How To xviii

Dragging and Dropping User-defined Formats ... 308
Dragging Multiple Records From One Table to Another...................................... 309

Creating the User Interface.. 309
Defining Two Handlers ... 310
Defining Two Link Operations ... 311

 25 Using the Block Loop Operation
Running a Set of Operations Continuously ... 312
Monitoring the Number of Iterations... 313

 26 Using the List Box
Enabling Selection of More Than One List Box Item ... 314

Checking the Multiple Selection List .. 315
Entering the Values While Remaining on the Selection List 315

Allowing Retrieval of Non-string Attributes from a List Box............................... 315

 27 Handling Buffers
Creating a Structure ... 316
Sending a Buffer from eDeveloper .. 319

Index..322
 eDeveloper V9 - How To xix

 eDeveloper V9 - How To 20

Introduction

his How To . . . book is a list of answers to questions that might arise during a
developer’s programming cycle and during the deployment phase.

The book covers all aspects of writing code with eDeveloper, starting from
configuration, continuing on to infrastructure issues, and relating to all types of available
programs. It mainly deals with application dilemmas, questions, and needs raised by
programmers.

The How To .. . book is intended mainly for programmers, new and veteran alike. No prior
knowledge of previous versions is assumed. To understand the topics in this guide, you
must have some basic knowledge of how to use eDeveloper as a development tool.

The guide gives answers to specific questions raised by the programmer and application
deployer. The book makes no attempt to deal with development standards, such as how to
divide your application into components, and does not supply code examples.

The How To .. . book is not limited to any one version, or to features that belong to a
specific version. It tackles questions that one might have arisen in previous versions as
well. The answers, however, are based on the current capabilities of eDeveloper.

The questions raised in this guide will be continually updated based on input from
programmers in the field. Programmers who know of questions that are left unanswered
are more than welcome to direct these questions to MSE, at How2@magicsoftware.com.

T

Configuring the eDeveloper
Environment 1

ou can tell eDeveloper to change default settings for the Toolkit and Runtime
environments using options on the Settings menu or directly in eDeveloper’s
configuration files. You can change the names of most of the configuration files in

the Environment dialog, and you can also use other settings to directly edit the content of
the configuration files.

This chapter covers the topics listed below:

• Starting a New eDeveloper Session

• Changing eDeveloper Settings for Each Session

• Defining an SQL Database

• Changing the Application Default File Name

• Setting up eDeveloper Language Support

• Creating Color Combinations

• Creating Font Definitions

• Displaying the eDeveloper Executable File Version

• Defining Reusable Application Objects

• Using and Breaking Inheritance

• Defining Logical Names

• Defining Default Date Values and NULL Display Strings

• Defining an External Configuration File for a Specific Application

Y

eDeveloper V9 - How To 21

Starting a New eDeveloper Session
After installing eDeveloper, there are two executable files in the eDeveloper directory.
The first file, Mgrntw.exe, is for the deployment environment, and the second,
Mggenw.exe, is for the development environment. Double-click Mggenw.exe to open the
eDeveloper toolkit environment.

This section includes the topics listed below:

• Creating a New Application

• Defining Application Properties

Creating a New Application
To create a new application:

1. On the Settings menu, click Applications. The Application repository opens.

2. Enter the application’s name. The name can be up to 30 characters.

3. You must enter a two-letter prefix for the application. You can add a path before
the prefix to save the application file in a specific directory.

4. In the Application File column, you select a specific path and control file name.
Zoom from this column to select a specific file or path. This property is optional.

5. Zoom from the Database column to open a selection window that shows all the
databases defined in the Database repository. Select the database where you
want to store your application control file. Click OK.

6. From the File menu, click Open to access your application.

Defining Application Properties
To define application properties in Startup mode, place the cursor on an application line
in the Application repository and press CTRL+P.
eDeveloper V9 - How To 22

To define application properties in Toolkit mode, select Application Properties on the
File menu to open the Application Properties dialog box and define the properties.

Changing eDeveloper Settings for Each Session
To change the eDeveloper settings of a single session, you can use:

• eDeveloper command line options - When starting eDeveloper from a command line or
a Windows shortcut, you can override settings in the Magic.ini file that only affect the
current eDeveloper session.

• The INIPut function - The INIPut command modifies environment settings at runtime,
and enables you to modify eDeveloper settings from a running application.

• Authorization functions - The eDeveloper authorization system can be modified at
runtime. You can modify the security settings (usr_std) from an application that is
running. The authorization functions that modify security settings are:

• UserAdd (adds a user)

• GroupAdd (adds a user to a group)

• RightAdd (assigns a right to a user).
eDeveloper V9 - How To 23

Defining an SQL Database
To define an SQL database:

1. eDeveloper works with many SQL databases. eDeveloper can work with an SQL
database on an open client or client server.

2. Working with different SQL databases is similar. For an example of how to
define open client connectivity using Oracle Version 8i, follow the steps listed
below:

This section includes the topics listed below:

• Configuring an Open Client Environment

• Setting up eDeveloper to Work with an SQL Database

• Setting the eDeveloper Environment to Work with SQL Databases

• Checking for Connectivity Between eDeveloper and the SQL Database

Configuring an Open Client Environment
To configure an open client environment, you need:

• eDeveloper

• A Magic SQL gateway for a specific database. For example, you need the Mgora8.dll
file for an Oracle database.

• Database. For example, when you use Oracle you need to install the Oracle open client
software on the client computer.

• Database server
eDeveloper V9 - How To 24

Setting up eDeveloper to Work with an SQL Database
To set up eDeveloper to work with an SQL database:

1. Check that the Mgora8.dll file is in your eDeveloper directory.

2. Edit the Magic.ini file. In the [MAGIC_GATEWAYS] section,
remove the semicolon before MGDB13.

3. Run eDeveloper.

4. On the Help menu click About Magic and under Loaded modules check that
the Oracle gateway appears. If not, check that the line you edited in the
Magic.ini file points to the Mgora8.dll file.

Setting the eDeveloper Environment to Work with SQL
Databases

To set the eDeveloper environment for SQL databases:

1. On the Settings menu, click Databases to open the Databases repository.

2. Create a new line.

3. Enter a name for the entry.

4. Zoom from the DBMS column, and select a DBMS system from the DBMS list.
For example, select Oracle.

5. Press CTRL+P to open the Database Properties sheet.

6. On the Login tab, enter the database server. This is your Oracle alias.
Enter your user name and password.

7. Click OK.
eDeveloper V9 - How To 25

Checking for Connectivity Between eDeveloper and the SQL
Database

To check the connectivity between eDeveloper and the SQL database:

1. From the Table repository, park the cursor on the header line.

2. From the Options menu, click Get Definition. If eDeveloper cannot work with
the database, an error message appears.

Changing the Application Default File Name
When creating a new application, eDeveloper assigns a name to the control file. The
default file name is <prefix>CTL.MCF. To change the application default file name,
you first need to select a name for the application file:

To change the application default file name:

1. From the Settings menu, click Applications to open the Application repository.

2. Enter the file name in the Application File column. Specify a full path name
-OR-
zoom to select a specific file.

Setting up eDeveloper Language Support
eDeveloper’s multi-lingual support (MLS) allows you to develop an eDeveloper
application in one language and deploy it in another language without the need to modify
the application file for each language. For example, you can write an application that
displays text strings in English and also deploy it in French and German. eDeveloper
multi-lingual support translates text strings based on a language-specific translation file
that you created.

This feature works only for left-to-right languages.
eDeveloper V9 - How To 26

This section includes the topics listed below:

• Building an eDeveloper Language File

• Setting a Starting Language

Building an eDeveloper Language File
eDeveloper needs a translation file that includes the original string, that is the string as
entered when developing the application, and the translated string. For each language, you
need a separate translation file.

The format of the translation file, a text file, is:

OriginalString1
TranslatedString1
OriginalString2
TranslatedString2
OriginalString3
TranslatedString3

Each text string must be on a separate line. A blank line must be left at the end of the file.

The translation file must be converted to an eDeveloper language file using the
MLS_BLD.EXE utility (on Windows platform from a DOS windows).

The two parameters to this utility are the translation file (input) and the language file
(output): MLS_BLD <translation file> <language file>

Setting a Starting Language
To set a starting language:

1. On the Settings menu, click Languages to open the Language repository.

2. Enter a name and full path location of the eDeveloper language file.
eDeveloper V9 - How To 27

3. On the Settings menu, click Environment to open the Environment dialog box,
and click the External tab.

4. Zoom from the Starting language setting and select the required language. If no
language is selected, the default language is used. This setting determines the
language display in Runtime and Toolkit modes.

5. To set the language dynamically, use the SetLang function. Use the GetLang
function at runtime to check which language is selected.

MLS only affects the display of text strings. The actual data value used to set the
active selection remains as defined in the application, regardless of the displayed
translation string.

Creating Color Combinations
The Color repository specifies the foreground and background colors for 114 entries that
represent pre-set and user-defined, or reserved, color assignments and Operation
repository colors.

In the Color repository, you can change and save both foreground and background colors.

This section includes the topics listed below:

• Changing Color Combinations

• Changing Foreground and Background Colors

Changing Color Combinations
The Color repository assigns a foreground (FG) color and a background (BG) color for
each display entity, one per row.

Rows 1- 79 are for user- defined colors.

Rows 80- 99 are used for system definitions and for reserved uses.
eDeveloper V9 - How To 28

Rows 100 to 111 are used for Operation Repository colors.

Rows 80- 111 should not be changed. The names of colors 100- 111 cannot be modified,
but the FG and BG colors can be changed. The Color repository can store an unlimited
number of color values.

Changing Foreground and Background Colors
To change foreground or background colors:

1. Place the cursor on the Foreground (FG) or Background (BG) column, and
zoom to the Color Assignment palette to select a color.

2. The name of the current row of the Color repository appears on the Title Bar of
the Color Assignment palette. Select a color. The selected color displays a
border. A color can also be selected or modified by changing the numeric values
for Red, Green, and Blue, and for Hue, Saturation, and Luminescence (Hue, Sat,
Lum). You can specify background and foreground colors for different system
items using the System list on the Color Assignment Palette.

3. Click OK to accept the new color assignment and close the Color Assignment
palette.

4. Click Cancel to cancel all color assignment changes in the current entry, and
close the Color Assignment Palette.

5. From the Color repository, click OK to accept the changes and end the color
editing session. The color settings are saved in a special file that eDeveloper uses
in the Environment settings. The default name for this file is Clr_ std.eng, but
you can also create and use other color files.

Notes:

When you end an editing session in the Color repository, eDeveloper prompts you to save
the changes. The changes will take effect the next time you load eDeveloper, unless you
specify Yes for Effective Immediately.

Avoid choosing the same values for both the foreground and background of a display item.
eDeveloper V9 - How To 29

You can save changes in the Color repository to a different file than the one currently used
by eDeveloper by specifying a different name in the Save As prompt.

Within a particular application, you can replace the Environment default color file with an
application-specific file.

Creating Font Definitions
The Font repository associates specific fonts to each kind of available output. The bulk of
the entries in the Font repository are for user-defined font assignments. The Font
repository can store an unlimited number of font values.

The data in the Font repository is stored in the file specified in the Environment.

Changing the Name and Look of a Font
To change the name and look of a font:

1. In the Font repository, double-click a specific font to open the Font
Assignment window.

2. Select the typeface, size, font style (such as Bold or Italic), orientation, and
effects (such as Strikeout or Underline).

3. Click OK to accept your changes.

Notes:

The font settings are saved in a special font file that eDeveloper uses in the Environment
settings.

You can create and use other font files.

When you finish an editing session in the Font repository, eDeveloper prompts you to save
the changes.
eDeveloper V9 - How To 30

Displaying the eDeveloper Executable File Version
To display the eDeveloper executable version on a Windows platform:

1. Start eDeveloper from the command line selecting the version option.
For Toolkit use: mggenw version
For Runtime use: mgrntw version

2. A window opens indicating the eDeveloper version.

Defining Reusable Application Objects
In eDeveloper, you can define models that act as objects throughout the application.

Changes made to the model are inherited by all the objects that use this model, except for
those attributes that have had the inheritance broken.

Models can consist of many object types: Helps, Properties, Browser, and different types
of forms.

For some types of Models, such as GUI Display and Browser forms, you can use elements
in that Model type to define a model, such as Edit, Buttons, Combo Boxes, and Lists
Controls.

Defining Model Properties
To define model properties:

1. Select Models from the Navigator to open the Model repository.

2. Enter the name of the model.

3. Select the Model class. The options are: Help, Field, Browser, GUI Display,
GUI Output, HTML, Frame Set, HTML Merge.

4. Select the attribute related to the class you choose (for example, Alpha for the
Field class).

5. You can choose this model to be the default model when creating an object of
eDeveloper V9 - How To 31

that class.

6. From the Context menu, choose Properties to view and change the property
sheet of the model you are creating.

Notes:

Using models helps maintain consistency throughout the application, and allows for better
maintenance.

You may create models based on other models to inherit another model’s properties.
eDeveloper V9 - How To 32

Using and Breaking Inheritance
For each class type, property defaults have been defined. A default property value is
displayed in italics. You can break the inheritance of a property to an object model by
clicking the Break Inheritance button that appears to the left of the value. A broken
property value does not appear in italics.

When defining an object you can choose to inherit all the attributes of a model of that
same class. You can overwrite some attributes, breaks the chain of inheritance. You can
also return the inheritance of that attribute.

Defining an Object
To define an object:

1. Open the Properties sheet.

2. In the Model column, you can choose one of the models of the same class as the
object you created. Choosing a model creates an inheritance chain between the
new object you defined and the model to which you connected it.

Breaking and Returning an Inheritance
To break the inheritance, change the value of that attribute.

To return the inheritance:

1. Position the cursor on the attribute that you want to re-inherit.

2. Click the button so that the + sign will change to x.

Notes:

Inherited attributes appear in italics, and when you select them you can see the button with
the x sign.

Changing an attribute means breaking the inheritance. The button next to the attribute
shows a +.

For better maintenance of your application, creating different models is preferable to
breaking inheritances.
eDeveloper V9 - How To 33

Defining Logical Names
Logical names can be considered as application constants. These constants are stored
outside the application in the Magic.ini file and can be shared among applications.

Logical names let you make User-specific or Installation-specific customizations to the
application. Logical names are also used to simplify the deployment method, and they let
you place external files in any location.

Logical names can also be used as the index name for Tables in SQL databases.

To define Logical names:

1. On the Settings menu, select Logical Names.

2. In the Name column, type a name to use for the logical name, for example
MyPath.

3. In the Value column enter the value that the logical name should store. For
example: C:\Program Files\eDeveloper\

To define Logical names using the INIPut function, set any logical name by defining an
Evaluate operation with an expression using INIPut. An example of an INIPut expression
is: INIPut(‘[MAGIC_LOGICAL_NAMES]MyPath=C:\Program
Files\eDeveloper\’)

Using Logical Names
Using Logical names for external files allows deployment of external files in different
locations in the environment, and permits easy switching between them using the INIPut
function.

To use Logical Names, enter the expression %MyPath%
For example, you can point to the Mgconstw.eng file by inserting the following
expression: %MyPath%SUPPORT\MGCONSTW.ENG.

You can also use the expression:
INIGet(‘[MAGIC_LOGICAL_NAMES]MyPath’)
instead of %MyPath%
eDeveloper V9 - How To 34

Note: Logical names can be nested within another Logical name, for example:

MyAppPath = %MyPath%MyAppDir\
This makes the logical name MyAppPath point to:

C:\Program Files\eDeveloper\MyAppDir\

Defining Default Date Values and NULL Display Strings
You can define default NULL display strings and a default date value for the entire
application in the Magic.ini file under [MAGIC_DEFAULTS.]

You can only define these settings by editing the Magic.ini file. The settings are not
available in eDeveloper's Environment dialog box. These settings are regarded as the
system default values for the default value of a date field definition and the NULL display
string for all other field attributes. If these settings do not exist in the Magic.ini file,
eDeveloper uses its own already defined defaults.

An example of the section and its available entries in the Magic.ini file is shown below:

[MAGIC_DEFAULTS]
DefaultDate = [date value]
NullAlphaDisplay = [string value]
NullNumericDisplay = [string value]
NullLogicalDisplay = [string value]
NullDateDisplay = [string value]
NullTimeDisplay = [string value]
NullMemoDisplay = [string value]
NullBlobDisplay = [string value]

Note that the date format should adhere to the defined date mode.

Any modification to these settings during the execution of an application is effective upon
the next session of eDeveloper.
eDeveloper V9 - How To 35

Defining Application Default Values and Null Definitions
There are some cases when the user needs to define a variable to hold a specific value.
Once you create a record, the fields hold the default values set in the application. This also
applies to real fields from database tables.

You can set the way eDeveloper computes expressions when one of the objects in it is
holding the value Null.

1. In the File menu, select Appl. Properties.

2. In the Application Properties dialog box, click on the StartUp tab and select
one of the following Null Arithmetic property values:

• Nullify – eDeveloper computes the entire expression as Null, once one of the
objects in the expression is Null.

• As Default – eDeveloper computes the expression as if the object holding Null
is holding the Default Value.

Example:

If two variable are defined as follows:

A (Numeric) = 5

B (Numeric with default value 0) = Null()

If Null Arithmetic is set to Nullify, the expression: A+B will be computed to Null.

If Null Arithmetic is set to As Default the expression: A+B will result in the value 5.
eDeveloper V9 - How To 36

Defining an External Configuration File for a Specific
Application

eDeveloper supplies default external configuration files, defined in the Magic.ini file and
in the Environment Settings dialog, that affect application behavior, such as Color
Definitions, Font Definitions, and HTML Styles Definitions.

You can, however, change the external files for a specific application. You may want to
ensure that your application uses a specific external definition file so that it always
behaves the in the same way. For example, you might want to use a specific color
definition, even if the end-user has specified a different color definition in the Color Table.

To define a specific external configuration file in Toolkit mode:

1. On the File menu, click Application Properties or press SHIFT+F9.

2. Select the External Files tab.

3. Specify the locations (path) of the external files to each of the external files in
eDeveloper that can be related to this specific application.

Notes:

Zooming in any field except the Internet Development File Root and the European
Currency Conversion file will cause eDeveloper to open the external file and display its
definitions.

You can use Logical names to specify the external file locations.
eDeveloper V9 - How To 37

Creating Data Objects 2
Developer has adaptable properties for enhancing or modifying the environment
of a specific application. These properties can override the overall eDeveloper
environment settings. They are relevant to a specific Magic application file

(MCF), unlike the system-wide parameters specified in the Settings menus, which apply
to all eDeveloper applications in the system.

This chapter covers the topics listed below:

• Defining a Model

• Forcing Row Uniqueness in a Data Table

• Retrieving Records from the Database in a Specific Order

• Automatic Linking Between Data Tables

• Preventing Changes in the Data Structure

• Modifying eDeveloper Field Attributes

• Converting a Data Table’s Physical Definition

• Accessing Existing Tables Using the Get Definition

• Restoring the Structure of a Converted Data Table

• Accessing Database Views

• Adding a Virtual Unique Key

• Using the APG to Manipulate Table Data

• Printing Table Data Directly from the Table Repository

• Automatically Generating Basic Programs

e

 eDeveloper V9 - How To 38

Defining a Model
To define a model:

1. Enter the Model repository by pressing SHIFT+F1.
Select the following:
From the Name column, enter the model name.
From the Class column, select the required class type.
From the Attribute column, select the required attribute type.

2. Press CTRL+P to view or change the properties of the model that you are creating.

Forcing Row Uniqueness in a Data Table
You use a unique index to enforce the uniqueness of rows in a data table. A unique index
ensures that duplicate rows do not exist in the table.

Usually one or more segments are defined for an index. The order of the rows in the index
is determined by selecting whether each segment is sorted in ascending or descending
order.

If an index is defined as unique, duplicate values for the segments of the index are not
allowed.

In eDeveloper, an index can be defined as real or virtual.

• Real - If an index is defined as real, the index is created in the database. The database
index can help improve performance by allowing the database optimizer to access the
data more efficiently.

• Virtual - If the index is defined as virtual when created, it is not defined in the
database. A virtual unique index does not prevent duplicate rows from being added in
the database.
 eDeveloper V9 - How To 39

In certain SQL databases such as MSSQL, Sybase, or Informix, a unique index can be
defined as clustered when creating a table. This means that the physical data is stored in
the order of the index, and the access to the data is faster using that index. Only one index
can be clustered.

This section includes the topics listed below:

• Creating a Unique Index for a Table

• Defining Segments in an Index

• Defining Index Properties (for SQL Databases)

Creating a Unique Index for a Table
The following procedure is based on the assumption that the number of columns has
already been selected for the table.

To create a unique index for a table:

1. In the Table repository, select the Indexes column.
The index details appear in the bottom half of the screen.

2. Move the cursor to the Indexes section and press F4 to create an index. An empty
line appears.

3. Type a name for the new index.

4. Select the Index type as Unique (default).

Defining Segments in an Index
To define segments in an index:

1. Move the cursor down to Segments and press F4 to add a segment to the index.

2. Zoom to the list of columns in the table that appears on the right side of the
screen.
 eDeveloper V9 - How To 40

3. Choose the column from the list and click OK.

4. Tab to the Size column if the segment is an Alpha field model. You can shorten
the size of the segment to improve performance.

5. Tab to the Order column and select Ascending (default) or Descending for the
sort order of each segment.

Defining Index Properties (for SQL Databases)
To define Index properties:

1. Press CTRL+P to define index properties, and click the SQL tab.

2. In the DB Index Name column, enter the name of the index as it is identified in
the SQL database.

3. Specify the Index type as Real or Virtual. Select Real if the index is stored in an
SQL database.

4. In the Clustered field, select No (default) or Yes. If you select Yes, the unique
index will be created in the SQL database as clustered when the table is created.

Retrieving Records from the Database in a Specific Order
The order of retrieved data has a crucial part in navigating, understanding, and analyzing
the result. eDeveloper lets you define the order by using:

• Table keys

• An eDeveloper sort task

• The SQL ORDER BY clause
 eDeveloper V9 - How To 41

Notes:

The SQL ORDER BY clause is only available for embedded SQL tasks.

The ORDER BY procedure is first built according to the task index segments. Position
segments are also added to the ORDER BY clause if it is a non-unique index.

When using sort, in addition to the task key, the ORDER BY procedure will be built only
from the sort segments. If the sort is not unique, eDeveloper adds the position segments to
the sort segments.

This section includes the topics listed below:

• Defining Table Indexes and Position

• Choosing an Index Within a TaskSetting the Task Sort Order

• Using the ORDER BY Clause Within eDeveloper

Defining Table Indexes and Position
To define Table indexes and position:

1. Define table indexes (see).

2. On the SQL tab in the Table properties, define the position as one of the
following:
Default - for the eDeveloper default position
Unique Index - for a specific index to be the position
Row ID – for a Row ID position (only in a database that has Row ID for records)

3. From the Index parameter, zoom to the Unique Index list to select a unique
index. Click OK to confirm.
 eDeveloper V9 - How To 42

Choosing an Index Within a Task
To choose an index within a task:

1. Zoom from the Program repository to the Task window.

2. From the Task menu, select Task Properties or press CTRL+P.

3. On the Properties tab select a table.

4. Enter the index number or zoom to the Table Indexes list.

5. Select the index and click OK.

Setting the Task Sort Order
To set the task sort order:

1. From the Program repository, zoom to the Task window.

2. From the Task menu, select Sort or press CTRL+S.

3. Press F4 to create a new line in the Sort segment table.

4. Enter the variable alias in the Var column
-OR-
Zoom to the Variable list and double-click the variable.

5. Select According to Index to let eDeveloper determine if the sort is unique.

6. Select Unique to define the sort as unique, regardless of the table’s key
definition.
 eDeveloper V9 - How To 43

Using the ORDER BY Clause Within eDeveloper
To use the ORDER BY clause within eDeveloper:

1. On the Task menu, select the SQL Command option, or press CTRL+Q.

2. Place the cursor in the source Database field and zoom to the Database list.
Select the database, and click OK.

3. From the Result Database field, select Optional. Follow step 2 above to select
the database.

4. Write a valid SQL command with an ORDER BY clause.

5. Click APG to generate the program. The Program Generator window opens.

6. Click OK to create the program.

Notes:

eDeveloper keys can be defined without a real index in the database.

Define keys as Unique in Order to prevent adding the position to the Order by Clause.

Avoid Task Sort, which includes virtual fields or fields from linked tables (except join
links).

The SQL Command option is available only if there is no main table.

Automatic Linking Between Data Tables
Data model relationships are maintained by integrity constraints such as foreign keys.

A connection between table segments and their referenced table is defined as a foreign
key.

eDeveloper has foreign keys on two levels:

• Data level - eDeveloper lets you define foreign keys that may also be created in the
database.
 eDeveloper V9 - How To 44

• Application level - eDeveloper can generate a program that consists of query links to
the referential tables.

When you use the Get Definition utility, eDeveloper retrieves the foreign keys defined in
the database. When using Get Definition, it is best to first perform the operation on the
referenced table.

This section includes the topics listed below:

• Defining a Foreign Key

• Generating Programs Containing Referenced Tables

Defining a Foreign Key
To define a Foreign Key:

1. On the Workspace menu, select Tables, or press SHIFT + F2.

2. Zoom from the Foreign Key column.

3. Create a new line in the Foreign Keys list.

4. Zoom from the Referenced Table column to the Table List.

5. Zoom from the Primary Key column to the Index list, and select the relevant
key (the key resembling the connection). Lines for each segment open in the
Columns list, according to the key’s segments.

6. Select the Create in DB option to create the foreign key in the database.

7. Zoom from the Current Table column to open the Variable list.

8. From the Variable list, select the required column.

9. Repeat the same procedure for all Key segments.

Generating Programs Containing Referenced Tables
To generate programs containing referenced tables:
 eDeveloper V9 - How To 45

1. On the Workspace menu, click Tables, or select SHIFT + F2.

2. Select the required table.

3. On the Options menu, click Generate Program.

4. Zoom from the Links field to the Foreign Key selection list.

5. Select the foreign keys individually, or select the Select All Foreign Keys check
box for all referenced tables.

Preventing Changes in the Data Structure
eDeveloper maintains its own Table repository while providing access to data stored in
various DBMSs that maintain their own data dictionaries. The data structure can be
modified both by eDeveloper and external DBMS utilities.

The following parameters help control data structure:

• Change Tables in Toolkit - Determines if eDeveloper can alter the table structure of the
underlying database

• Check Existence - Determines if eDeveloper will check the existence of every table
accessed

• Owner - The owner of the table or view

This section includes the topics listed below:

• Regulating Changes in Toolkit Mode

• Setting the Check Existence Setting

• Setting the DBMS Default Value

• Setting the Database Default Values

• Setting the Table Default Values

• Defining the Owner of a Table
 eDeveloper V9 - How To 46

Regulating Changes in Toolkit Mode
To regulate changes in Toolkit mode:

1. On the Settings menu, click Databases.

2. Select your database.

3. Press CTRL+P to open the Properties dialog box and click the Options tab.

4. Clear the Change Tables in Toolkit check box.

Setting the Check Existence Setting
When you set Check Existence to No, eDeveloper behaves as if the tables already exist in
the database. Therefore the user will not be able to create the tables using eDeveloper.

Setting the DBMS Default Value
To set the DBMS default value:

1. On the Settings menu, click DBMS. The DBMS list opens.

2. Select your DBMS.

3. Press CTRL+P to open the DBMS Properties dialog box.

4. In the DBMS Settings section, leave the Check Existence check box blank.

5. The DBMS Check Existence setting provides a default value for all databases
for that DBMS.

Setting the Database Default Values
To set the database default values:

1. On the Settings menu, click Databases.

2. Select your database.
 eDeveloper V9 - How To 47

3. Press CTRL+P to open the Database Properties dialog box, and click the Options
tab.

4. Clear the Check Definition check box.

Setting the Table Default Values
To set the table’s default values:

1. After opening your application, open the Table Repository.

2. Select the table you are working with, and open the Table Properties dialog box.

3. Click the SQL tab. From the Check Existence parameter, select No.

Defining the Owner of a Table
Every object in the database is a combination of a database, owner, and table. Users can
only access objects for which they have access rights.

You can define owners for specific tables to restrict access.

To define the owner of a table:

1. From your application, open the Table Repository.

2. Select the table and open the Table Properties dialog box.

3. Click the SQL Tab.

4. In the Owner field enter a name for the required owner.
 eDeveloper V9 - How To 48

Modifying eDeveloper Field Attributes
You can modify the way eDeveloper field attributes are stored in the SQL database using
the Model or Table repositories in the Column Properties screen. Some of the Column
properties only apply to columns in SQL tables.

eDeveloper’s default mapping for field attributes assigns a specific SQL data type when it
is added to the SQL database. For a particular column attribute, there may be several
default SQL types. eDeveloper assigns the default SQL type according to the column
attribute, picture, storage, and the specific RDBMS selected.

If the table already exists in the SQL database, the Get Definition option is used and the
table definition is retrieved from the database. eDeveloper assigns the column properties
according to the data type defined in the SQL database.

There may be situations where you do not want to use the default mapping, and, you can
therefore also specify a different SQL type. When you use the Get Definition option,
eDeveloper may not define a column attribute as you expected. When that happens, you
can modify the column attribute.

This section includes the topics listed below:

• Default Mapping Using the Table Repository

• Mapping a Table Column Using the Get Definition Utility

• Mapping a Table Column Using the SQL Type Option

• SQL Type Options for an SQL Database

Default Mapping Using the Table Repository
To map a table’s column:

1. From the Table repository, select the table and zoom from the Columns field.

2. Select the column you wish to modify.

3. On the Workspace menu, click the property sheet to display the Column
properties.

4. Modify the column attributes.
 eDeveloper V9 - How To 49

Mapping a Table Column Using the Get Definition Utility
Sometimes the table already exists in the SQL database and you want to use this table
definition in eDeveloper. The Get Definition utility is used to retrieve the table definition
from the RDBMS to the eDeveloper Table Repository.

eDeveloper creates the column attribute, picture, and storage properties from the column
definition in the database. eDeveloper determines the default mapping of a table column
according to the SQL data type and size. The default mapping may vary among different
SQL databases.

After performing a Get Definition utility, the Type field contains the column’s SQL data
type.

However, in some cases the information in the database is not sufficient, and programmer
intervention is required. Some examples:

• LONG RAW, Image, and Text data types have no length, so the picture column is left
empty to be filled in by the programmer.

• LONG RAW, Image, and Text may be used in eDeveloper for both Memo and Blob
variables. After performing a Get Definition operation, you may want to change the
attribute that eDeveloper assigned as the default.

• In Sybase and MS-SQL, binary data types may be used for several attributes. After
performing the Get Definition operation, you may want to override the default attribute
that eDeveloper assigned.

After performing a Get Definition operation on an Oracle table, eDeveloper defines the
storage type of a numeric column as Float. You may want to change the storage to Integer.

Mapping a Table Column Using the SQL Type Option
To map different data types:

1. On the Column Properties sheet, place the cursor on the SQL Type option for
the property.

2. If this field is empty, eDeveloper uses the SQL data type that is the default for the
 eDeveloper V9 - How To 50

particular SQL database.

3. Enter a different data type to override the default mapping.
For example, an Alpha column (size 1) is stored as VARCHAR(1) by default.
If you enter CHAR(1) in this field, the column will be defined as CHAR(1) in the
SQL database.

SQL Type Options for an SQL Database
Examples of when you may want to override default mapping are listed in the table below:

Converting a Data Table’s Physical Definition
Sometimes you may need to make modifications to a table’s structure or to move the
tables to a different database. eDeveloper provides automatic data and structure
conversion utilities.

Example Solution

The eDeveloper date attribute is
mapped by default to SQL type DATE.

In order to allow dates with a zero value, store the date
as a string field by specifying CHAR(8) in the Type
field.

You want to define an identity column
in MSSQL.

Enter “INTEGER IDENTITY” in the Type field. The
database automatically assigns a value for the column
when a row is inserted.

You want to include a logical column in
an index in MSSQL.

Change the Stored as field. The default storage for a
logical column is Integer Logical, and eDeveloper
assigns the bit data type. However, MSSQL does not
allow bit fields in an index. Therefore, select String
Logical in the Stored as field, and eDeveloper will
map the column to the binary data type in MSSQL.

With MSSQL, you want to display date
and time in one column.

Define an alpha column of size 23 with DATETIME in
the Type field, or an alpha column of size 16 with
SMALLDATETIME in the Type field.
 eDeveloper V9 - How To 51

To convert a table’s physical definition:

1. From the Table repository select the relevant table and make any changes to the
table structure or database location.

2. Exit the table. eDeveloper prompts you to confirm conversion. Click Yes to save
your changes.

3. A Confirm Backup window opens. Select Yes to back up the table’s old records
and structure. This lets you undo the changes later. The table will be backed up as
a table named “??BCK###” where ?? is the application prefix and ### is the
table’s number.

4. Select an index key that eDeveloper implements when converting the data.
eDeveloper now converts the table.

5. It is best to confirm the backup process. To recover the table later you can rename
??BCK### to the real table’s name.

Accessing Existing Tables Using the Get Definition
In many cases where the application data resides on SQL database servers, a Database
Administrator (DBA) defines the tables, and eDeveloper reads and uses the definitions
defined by the DBA.

To execute the Get Definition operation for a single table:

This option is only relevant when you know the exact name of the table.
This option is enabled for tables of a DBMS that support the Load Table Defintion utility,
provided that the table does not have columns defined.

1. Open the Table repository.

2. Create an entry in the Table repository.

3. Select the database where the table will be fetched.

4. From the DB Table column, enter the name of the table.
 eDeveloper V9 - How To 52

5. On the Options menu, select Get Definition. The Load Table Definition dialog
box opens, and then closes automatically. The table now has appropriate fields,
keys, and foreign keys.

To execute the Get Definition operation for two or more tables:

1. Open the Table repository and place the cursor on the title line (#).

2. From the Options menu, select Get Definition. The Load Table Definition
dialog opens.

3. Park on the Database field and zoom to select the database where the definitions
will be fetched.

4. Park on the Tag Tables field and select an option.
The choices are:
All
Several - If you select Several, the Table Selection list opens.
None

5. In the Table Selection list, park on the desired table and press the spacebar. A
check appears in the Select column to indicate that the table has been selected for
loading.

6. Press the spacebar on each table that you want to load. In the Load Definition
dialog box, the Table field reflects the number of selected tables.

7. Click Select to close the window.

8. Press OK to execute the Get Definition operation. The selected tables appear in
the Table repository.
 eDeveloper V9 - How To 53

Restoring the Structure of a Converted Data Table
After modifying and converting a physical data table, you may need to recover the
changes from the backup table you made during the conversion process.

To restore the structure of a converted data table:

1. Create a new entry in the Table repository.

2. In the Database column define the database as the one to be recovered.

3. In the DB Table column, enter the name of the backup table in that database, in
the ??BCK### format.

4. On the Options menu, select Get Definition.

5. Park on the existing structure you want to overwrite. On the Edit menu, select
Replace or press CTRL+W. Choose the entry just fetched from the database.

6. Confirm the overwriting of the table entry where you are positioned.
If you want to recover the data as well as the definition, you should use the DB
Manager to copy the contents of the backup table you created before the
modifications were made. The format of the table name is ??BCK###, where:
?? is the Application Prefix, and
is the number of the table in the Table repository.

7. Renaming the backup table or copying it to the active table recovers the data.

8. You can delete the entry created at step 2.

Accessing Database Views
eDeveloper lets you access views in a way similar to the way you access table definitions.

A view is defined as a virtual database object that lets you view the data of one or more
tables. A view does not contain a real index. You must define a virtual unique index.

To access the View definition:

1. In the Table repository create a new line.
 eDeveloper V9 - How To 54

2. Select the database.

3. Write the name of the view to be loaded.

4. On the Options menu, select Get Definition.

5. Press CTRL+P to open the properties dialog box. Click the SQL tab, and in the
Table Type field select View. Click OK.

Adding a Virtual Unique Key
To add a Virtual unique key:

1. In the Table repository select the required table and zoom from Indexes.

2. Create a new line and enter an index name.

3. Zoom to Segments and create a new line.

4. Select the required index segments and exit the Segments section.

5. Press CTRL+P to open the properties dialog box and click the SQL tab.

6. Change the Index type to Virtual and save the changes.

Using the APG to Manipulate Table Data
You can use the Automatic Program Generator (APG) to manipulate the data of a table in
eDeveloper and to either view or edit a table’s contents immediately.

To manipulate data using the APG:

1. From the Table repository select the required table.

2. Press CTRL+G, and on the APG tab select Execute Mode and the Browse option.

3. Zoom from the Columns field to open the Column Selection list.

4. Select the columns and order you want. To remove columns from the execution,
set the order for each column to 0.
 eDeveloper V9 - How To 55

5. Click on the Style tab and select the Line or Screen Display mode. You can also
select either 3D or 2D Style display.

6. Click OK.

Printing Table Data Directly from the Table Repository
You can send the contents of a table directly to a printer, ASCII text file, or console.

To select table content, I/O media, and screen display:

1. In the Table repository, select a table you want to print and press CTRL+G to open
the Automatic Program Generator (APG).

2. In the Option field select Print.

3. Give the selected columns numbers higher than 0 to define which columns will
be printed and the order in which they will be printed. Use 0 to disable a column
from being displayed.

4. In the File Name field select the print destination:

5. Text file - Enter the location of the file and its name. Only specifying the file
name will cause eDeveloper to place the file in eDeveloper’s starting directory.

6. Console - Enter console in this field.

7. To Printer - Enter the name of a printer. From the Settings menu, click Printers
list.

8. Click the Style tab and select a screen style, Line or Screen, and then click OK.

Notes:

In the Style tab you can choose appearance parameters, such as 3D or 2D, and tell
eDeveloper to print out captions that will be used as headers on a printout.

You can select a form style model.

You can execute the APG from the Table repository to print your tables.
 eDeveloper V9 - How To 56

Automatically Generating Basic Programs
You can automatically generate a basic program.

To generate a program for a single table:

1. In the Table repository select a table that you want to print and press CTRL+G to
open the APG.

2. Select Generate and select any of the following options: Browse, Export/
Import, Print, Internet or Browser Client. Then enter your information in the
relevant fields.

3. Click OK to generate a program in the Program repository.

To generate a program for more than one table:

1. From the Tag Tables field, select All or Several.

2. Zoom on the selected field, and select or deselect a table from the APG process.
 eDeveloper V9 - How To 57

Creating the Task Dataview 3
his chapter discusses some issues related to the task dataview. An eDeveloper task
is a set of rules that guide the database engine to perform a predefined function.
Each eDeveloper task works with a set of records and their fields that you select

from the application database. The set of logical records selected from the main file and
linked-files determines the task’s dataview.

This chapter covers the topics listed below:

• Defining a Program or Task Dataview

• Determining the Result Set of a Program

• Executing the Same Program with Different Data Tables

• Dynamically Changing the Program Record Order Display

• Adding a Record Sort Order to a Program

• Preventing Modification of Opening of a Data Table

• Caching the Dataview

• Minimizing Unnecessary Links in a Program

• Defining the Dataview

T

eDeveloper V9 - How To 58

Defining a Program or Task Dataview
Each eDeveloper task works with a set of records and their variables that you select from
the application database. These variables, whether selected from the main table or from a
linked table, are the task’s real variables.

In addition, you may define computed variables that exist for the duration of the task’s
execution. These are the task’s virtual variables. Real and Virtual variables together
constitute the task’s logical record. The set of logical records selected from the main table
and linked tables in accordance with the task’s range rules constitutes the task’s dataview.

This section includes the topics listed below:

• Defining a Main Table for the Program or Task

• Defining Different Linking Options to Additional Data Tables

• Selecting Virtual Variables

• Direct SQL SELECT Statement

Defining a Main Table for the Program or Task
To select the main table of a program:

1. In the Program repository, zoom from the Main program to the Task window.

2. Open the Program Properties dialog box (CTRL+P).

3. On the Properties tab, zoom from the Main Table field to select a table.
After choosing the main table, eDeveloper automatically chooses the first
defined index of the table. eDeveloper uses this index for sorting purposes.
eDeveloper V9 - How To 59

4. If the table has more than one index, you can change this index by zooming from
the Index field.

5. After choosing the main table, you can select the referenced object index by
using the Select Real command and zooming to the Variable list.
Note: This command is available only in the Record Main level.

Defining Different Linking Options to Additional Data Tables
eDeveloper’s Link operation establishes one-to-one relationships between related
database tables. The current record of the task main file is correlated, or linked, to a
specific single record of another database table, the linked file, whose index segments
contain values that match the Link criteria.

Links can be established to:

• Perform validity checks in order to verify that a particular record exists in the linked
table.

• Extend the record dataview by selecting variables from linked files, or view, modify, or
create records in the linked table.

Since the Link is part of the dataview definition, the link operations are included in the
Record Main level definition of the task only.

There are five link types: Query, Create, Write, Inner Join and Left Outer Join. The last
two are for SQL databases only.

Selecting Virtual Variables
Almost all tasks need to store certain information for the duration of the task execution.
For this purpose, you can define Virtual variables that are selected from a temporary
scratch file called a Virtual file. The Virtual file may be edited by selecting Variables from
the Task menu. All Selected Virtual Variables appear as entries within a task’s Virtual
Variable repository.
eDeveloper V9 - How To 60

The Virtual Variable repository behaves just like the Column repository of a table. The
Virtual Variable repository is different from the Table’s Column repository in that you
cannot create or delete a line using the normal table editor. A line is created or deleted in
this repository automatically when you create or delete a Select Virtual operation in the
Record Main Execution repository.

Direct SQL SELECT Statement
With eDeveloper’s embedded SQL support, the developer can provide the SQL statements
explicitly and have them transferred to the underlying DBMS for processing. eDeveloper
then manipulates the results of these SQL statements.

The SELECT statement retrieves data from a database and returns it to you as a table. The
columns specified in the SELECT statement are the names of the database columns that
contain the data you want to retrieve.

Determining the Result Set of a Program
The result set comprises the data selected according to the criteria specified in the program
or task. The dataview is sorted by default according to the Task Properties Main Table
Index. You define the selection criteria of the result set in the Record Main or in the Task’s
Range/Locate dialog box.

• You can define a Range or locate expression in the Range/Locate dialog box. You can
access the Range/Locate dialog box from the Record Main.

• With SQL databases, you can use the eDeveloper SQL expression and DB SQL clause
in the Range/Locate repository:

• eDeveloper SQL expression - When working with an SQL database and deferred
transactions, you can write an eDeveloper expression that eDeveloper translates in
Runtime to SQL syntax.

• Database SQL clause - When working with an SQL database and physical transactions,
you can use SQL table columns and virtual columns in SQL syntax to specify a range.
eDeveloper V9 - How To 61

This section includes the topics listed below:

• Selecting an Index from the Main Table

• Defining the Requested Range

• Defining Locate Expressions

• Defining the Magic SQL Where Clause for an SQL Database

• Defining the DB SQL Where Clause for an SQL Database

Selecting an Index from the Main Table
To select an index from the main table:

1. Select an index from the Main table’s index list to determine the order in which
the records are displayed.

2. Zoom from the Index column to select an index.

Defining the Requested Range
Range is one of the ways of defining a task’s dataview. There are two ways to specify the
range values:

• On Record Main - Range expression in the Range or Locate property sheet
accessed from the task menu (CTRL+H).

• Record Main - The rows are initially included in a dataview based on the lower
and upper limit expressions of the Range, as specified in the task’s Select
operations.

Range and Locate Property Sheet
The Range Expression allows you to refine the Range criteria further, and base these
criteria on more complex and dynamic conditions:

• If the Range expression evaluates to True, the row is included in the dataview.
eDeveloper V9 - How To 62

• If the Range expression evaluates to False, the row is skipped.

• If a Range expression is not specified, that is, its number is zero, it evaluates to
True.

A Range expression is required when:

• The criteria depend on values contained in variables not available at task
initialization.

• The Range criteria are not definable by the lower and upper limit expressions
of the Select operations.

Defining Locate Expressions
Locate is used to position the dataview to start from a specific row when a task starts
running.

When a task begins, eDeveloper scans the dataview from its initial point until the Locate
expression evaluates to True for a row.

That row is fetched and the cursor is positioned on it. The user may then freely travel back
and forth within the dataview using the direction keys.

There are two ways to specify the Locate values:

• On Record Main - In the Locate expression field on the Range and Locate
property sheet

• Record Main - To use the Locate expression, you must specify the value of the
record you want the cursor to park on.

Range and Locate Property Sheet
The Locate Expression allows you to refine the Locate criteria further, and base these
criteria on more complex and dynamic conditions:

If the Locate expression evaluates to True, the cursor parks on the first row that meets the
criteria of the expression.

If the Locate expression evaluates to False, eDeveloper looks for another row to park on.
eDeveloper V9 - How To 63

If a Locate expression is not specified, that is, its number is zero, it evaluates to True.

A Locate expression is required when the criteria depend on values contained in variables
not available at task initialization.

Note: The Locate Expression parameter is relevant for Online tasks only. All variables
included in the Locate expression are evaluated at the task’s initialization. As such,
they may contain only parameter variables or variables of ancestor tasks. If the
starting row cannot be found when an Online task starts execution, an appropriate
warning message is displayed and the cursor is positioned on the first row of the
dataview or on the next closest value, if one exists.

Defining the Magic SQL Where Clause for an SQL Database
To define the Magic SQL Where Clause, for the SQL DB:

1. Open the Task’s Range/Locate dialog box.

2. Click the SQL Where tab.
The Magic SQL expression allows SQL Where range functionality for deferred
transactions. It includes expressions that the eDeveloper engine can translate to
SQL.

3. Zoom from the Expression field to the Expression Rules repository.
The expanded expression is appended to the Full Where Clause.
eDeveloper translates the expression in runtime to the appropriate syntax for
each SQL database. For example, the eDeveloper SQL expression G<DATE(),
for a Customer Contact Date field, will appear in Runtime as:

MSSQL:

CAST (CONVERT (CHAR, Customer_Contract_Date, 112) AS
DATETIME) < CAST (CONVERT (CHAR, GETDATE(), 112) AS
DATETIME)

Oracle:

TO_DATE(Customer_Contract_Date, ‘DD-MON-YY’) <
eDeveloper V9 - How To 64

TO_DATE(SYSDATE, ‘DD-MON YY’)

Defining the DB SQL Where Clause for an SQL Database
To define the DB SQL Where Clause for SQL DB:

1. Open the Task’s Range/Locate dialog box.

2. Click the SQL Where tab.
The DB SQL field is available only for tasks in Physical Transaction mode
with an SQL main table. (In Deferred/Nested Deferred transaction mode tasks,
this field is disabled, and the eDeveloper SQL expression should be used
instead.) You can specify a range based on SQL syntax. The Range is added to
the eDeveloper Where clause and is displayed in the Full Where Clause.

3. Zoom from the DB SQL field to display the list of variables available.
Real columns from main and joined tables will be replaced with their DB column
name. Virtual and other real columns will be replaced with their values.

Specify selected variables as follows:

• A column # (for example, A) prefixed by the ‘:’ sign.

• A column # prefixed by the ‘@:’ sign. The @ character prevents eDeveloper
adding quotes to an alpha column.
In the above example, D is a main table column, A and B are virtual columns
with Runtime values LIKE and Jones respectively.

Variable List

Name From table

A v_Operation Virtual

B v_Customer_Name Virtual

------ ------------------------------- ----------------------

C Customer_No Customers

D Customer_Name Customers
eDeveloper V9 - How To 65

:D @:A:B is displayed as
Customer_Name [v_Operation] [“v_Customer_Name”]
and will translate in Runtime to
Customer_Name LIKE ‘Jones’
The column values are evaluated when entering the task. Therefore, virtual
columns must receive their values from the calling task. The init expression
cannot be used because it is calculated afterwards.

• Click Show to display the Full SQL Where clause. It appears as follows:
The Where clause expression from the Record Main AND (The eDeveloper
SQL Where clause) AND (The DB SQL Where clause)

Note: Blobs and Memo fields cannot be used in the SQL range.
eDeveloper does not check the syntax of the SQL range. If the SQL syntax is
invalid, a message from the RDBMS will occur in Runtime.

Executing the Same Program with Different Data Tables
You use the DB Tables repository to view and edit the parameters of the database tables
associated with the task, as well as to add other tables to be opened when the task starts.

Note:
A non-zero value in the Expression column identifies an expression that will be evaluated
to a physical database table name at runtime.

You can also include its logical name or explicit location (server/ driver/directory) in the
name. The evaluated table name is then used to redirect the table from the default table
name specified for it in the Table Repository, for example:

c:\temp\table.dat
%temp%table.dat where the translation of %temp% is
c:\temp\
eDeveloper V9 - How To 66

Accessing the Database Table Repository
To access the database Table repository and Table list:

1. On the Task menu, click DB Tables.

2. Zoom from the Table column.

Dynamically Changing the Program Record Order Display
The default index for a Main table is the first index in the Index repository.

By choosing a specific index, you can determine the fetching sequence of the dataview
records for this task. You can also use an expression for the index, making it more flexible.

This section includes the topics listed below:

• Changing the Display Order of Records

• Using the Expression Index Parameter

Changing the Display Order of Records
To change the display order of records:

1. Open the Program repository and zoom to the Task window.

2. From the Edit menu, select Properties, or press CTRL+P, and then click the
Properties tab.

3. Leave the Main Table Index field as zero, enabling you to use the Index
Expression parameter. The expression number you enter in the Expression
parameter of the Main Table points to an expression in the Expression Rules
repository that is evaluated at runtime.
eDeveloper V9 - How To 67

Using the Expression Index Parameter
When using an Index expression:

• The result of the evaluation of the expression must be a valid index number for the
selected Main Table. At runtime, if no legal value is found for the expression used for
the dynamic definition of an index, or if no expression is specified, eDeveloper uses the
zero index (physical order) as the default option.

• The Index expression is evaluated as soon as the task starts executing and before any of
the task’s variables are available. Therefore, an index expression based on variables,
rather than constant values, must either use virtual variables that receive parameters, or
use the variables of a parent task. Any Index expression based on variables that are not
available will yield zero.

Note: When you use an index number inside any expression and you want eDeveloper to
update it automatically, you must qualify it explicitly using the KEY literal. For
example, to specify the index number nn you would enter: nn KEY

Adding a Record Sort Order to a Program
You set the default sort order by specifying the main table and index in the task properties.
You might want to change this order and not depend on an existing key in the table
definition.

eDeveloper helps you by using the Sort repository (in each program).

The Sort repository is a compound window that includes a:

• Segment area on the left-hand side of the window

• Variable list on the right-hand side of the window

This section includes the topics listed below:

• Selecting the Database for Sort/Temporary

• Using a Virtual Key to Re-use a Sort
eDeveloper V9 - How To 68

Selecting the Database for Sort/Temporary
Sort files are created using the Database for Sort/Temporary as defined in the
Environment dialog box.

To select the Database for Sort/Temporary:

1. On the Settings menu select the Environment option.

2. Select the Preferences tab.

3. Place the cursor on the Database for Sort/Temporary row in the Parameter
column.

4. Zoom to the Database list and select the database name to be used by
eDeveloper for creating Sort tables or other temporary database tables needed as
temporary storage, such as the embedded SQL result table.
For example, a fast ISAM database that uses memory for storage on a RAM disk
may be used to provide good performance for sorts when the original tables are
stored in a traditional disk-based database.

Notes: The location of a sort table’s database is always used if the location has been
specified in the Location parameter of the Databases repository option on the
Setting menu.

The path specified in the Database for Sort/Temporary parameter is used only if the
Location parameter in the Databases repository, accessed on the Settings menu, is
blank.

Using a Virtual Key to Re-use a Sort
eDeveloper helps you define a sort index without the need to define this index in the
database table. You can define a new index on the SQL tab of the Index Properties dialog.
The definition looks exactly like that of a regular index except you set the Index type field
to Virtual instead of Real.

This setting tells eDeveloper that the index is defined only in eDeveloper.
eDeveloper V9 - How To 69

Preventing Modification of Opening of a Data Table
The sharing of data among many workstations or instances demands a process of
synchronization so that access to a table by more than one process is restricted or
controlled.

The operations a process can perform on a table are:

• Read (denoted as R): The process does not intend to update the table.

• Write (denoted as W): The process might update the table. Write also implies Read.

This section includes the topics listed below:

• Using Access Mode

• Using Share Mode

• Defining Table Modes

• Table Sharing Interaction

Using Access Mode
Access mode is the intended operation a process requests to perform on a table.

eDeveloper facilitates controlled access to tables by requiring each process to declare its
intended access mode on the table before the process can access the table. The built-in
automated system manager then decides whether to grant that access.

However, the system manager cannot know in advance whether the access modes of two
parallel processes are conflicting. This is the reason for the second column, the Share
Mode.
eDeveloper V9 - How To 70

Using Share Mode
Share mode is relevant in a multi-user environment only. It determines how other
concurrent tasks can access the table.

In addition to declaring the database access mode, you must declare its share mode. The
share mode specifies which access modes may be granted to other processes.

The share mode is set to None for no shared access (Table locking). This means that no
other process can be granted access to the table.

Defining Table Modes
You define the access and share modes of a task in its DB Table repository.

The DB Table repository of a task includes the two columns labeled as:

• Access, whose value can be W for read/write (the default) and R for read only.

• Share, which can have the value of W for read/write (the default), R for read, and N
for None. None means the table is not shared in any mode.

Table Sharing Interaction
The following examples describe the sharing interaction between two tasks that open the
same table.

• If process A opens a table in R/R mode (that is, Access=R and Share=R), process B can
open the same table with modes R/R and R/W.

• If process A opens the table in R/W mode, process B can open the table in R/R, R/W,
W/R, or W/W modes.

• If process A opens the table in R/N mode, process B cannot open the table in any
modes.
eDeveloper V9 - How To 71

Caching the Dataview
The Magic cache can be used for main and linked tables. The cache is used mainly when
you need to access the same data more than once. The cache reduces disk I/O, thus
enhancing overall performance. Caching of a main table can be implemented at two
levels:

• Table Properties (the default value for Linked and Main table)

• Task Properties

Cache can be implemented by selecting DB Tables from the Task menu.

Note: Using the Magic cache may cause inconsistencies in the data.

This section includes the topics listed below:

• Defining a Main Table Cache

• Defining a Linked Table Cache

• Defining the Cache Strategy Parameter

Defining a Main Table Cache
To define the cache for a main table:

1. Open the Table repository.

2. Choose the table you want to cache.

3. Open the Table Properties dialog box.

4. In the Cache Strategy field, select Position and Data or Position (for Rows
position only).

To override the Table property default by changing the cache default in the Task
Properties dialog box:

1. Open the Program repository.

2. Click the Enhanced tab of the Task Properties dialog box.
eDeveloper V9 - How To 72

3. In the Cache Strategy field of the Data Management Options section, you can
overwrite the table’s task properties default and choose one of the following
cache strategies: Position and Data, Position, or None.

Defining a Linked Table Cache
To define the cache for a Linked Table:

You can define the cache for a linked table in a task using the DB Tables option.

1. Open a program from the Program repository.

2. Select the DB Tables option from the Task menu. The DB Table repository
opens.

3. Select the linked table you want to enable or disable the cache.

4. In the Cache column choose Yes or No. The default value is inherited from the
Table Properties dialog box (Position and data = Yes).

Defining the Cache Strategy Parameter
The Cache Strategy parameter can have one of three possible values: Position, Position
and Data, or None.

• Position - The cache holds information about the position of the fetched rows. This is
relevant only when the table is used as the main table. In this case, when the user scrolls
backwards, the data will be re-fetched by reading the rows by their physical position.

• Position and Data - In addition to the position, eDeveloper stores the actual row data.
If you refetch that row you will get the old values stored in the cache.

• None - No caching.
eDeveloper V9 - How To 73

Minimizing Unnecessary Links in a Program
The Cnd column of the Flow table of a task lets you define the new Link Condition. This
column enables the user to define a link condition using the values of a Yes/No/
Expression. The expression should be evaluated to a logical value. The Link Condition
determines whether eDeveloper will try to fetch a record or not. Link Condition behaviors
are:

• False Link Condition

If a Link operation is evaluated to a false condition, it behaves as a failed link, a link for
which the requested record was not found, as follows:

• All values of the selected columns of the Link operation return their default
values.

• The return value of the link is false.

• Update operations do not take effect until the condition evaluates to True.

• If the Link condition is false at the end of a Record Suffix, any modification of
linked records that might have been fetched since the Record Prefix of the
current logical record are disregarded.

• Link Create - In a Link Create there is no case of a failed link. However, a Link Create
that is evaluated to a false condition acts as follows:

• The link does not create any new records.

• Any Init setting or Update operation on this link is not updated in the database
until the condition evaluates to True, and is kept as true until the Record Suffix
is completed.

• Any Init setting or Update operation on this link is reflected in the Dataview
regardless of the link condition.

• If the link condition is false at the end of a Record Suffix, any modification of
the supposedly new record is disregarded and no new record is created.
eDeveloper V9 - How To 74

• Computation

• The link condition is evaluated for every record during the creation of the
dataview.

• The link is also evaluated before the Record Prefix of every browsed record.

• Re-computation - The link condition is re-computed by any changed value that is part
of the condition expression from the start of Record Prefix phase until the end of the
Record Suffix phase.

Defining the Dataview
When SELECT statements are complicated, it is faster to let the RDBMS server join and
constrain the rows, bringing only the specified rows into the eDeveloper task’s Dataview.
This is especially helpful in a client/server environment, where decreasing network traffic
improves overall system performance.

The Direct SQL command can be used to perform different DML (Insert, Update, Delete)
operations.

The RDBMS can perform vertical updates and deletes with one SQL statement within a
simple transaction.

You can use explicit SQL where DDL (Create Index) operations are specific to Runtime.
For example, you may also want to create a temporary table in the RDBMS.

The Direct SQL Command can also be used to execute the Database Stored procedure.

This section includes the topics listed below:

• Defining Direct SQL Select Statements

• Defining a Direct SQL DML Operation

• Executing a Stored Procedure with Input and Output
eDeveloper V9 - How To 75

Defining Direct SQL Select Statements
To define Direct SQL Select statements:

1. Open the Program repository.

2. Create a new program and enter the program name.

3. Zoom to Task Properties on Online defaults.

4. From the Task menu, select the SQL Command option.

5. In the Database field, select the relevant SQL database. This example is for the
Oracle database using the Scott schema.
The Result Database should be the same database. This means that you either
select it or leave it blank.

6. Enter the SQL Command. Note that you can use eDeveloper’s Assist button to
help you build the query and the APG button when return values are expected.

Example: SELECT ENAME, JOB,SAL FROM SCOTT.EMP GROUP BY
JOB, ENAME,SAL HAVING SAL > 1000

Defining a Direct SQL DML Operation
To define a Direct SQL DML operation:

1. Open the Program repository.

2. Create a new program and enter the program name.

3. Ensure that the Task properties are set to Batch defaults.

4. From the Task menu, select the SQL Command option.

5. On the Database field, select the relevant SQL database (this example is for the
Oracle database using the Scott schema.

6. Enter the DML statement.
In this example we perform vertical updates.
UPDATE SCOTT.EMP SET COMM=1000
eDeveloper V9 - How To 76

Executing a Stored Procedure with Input and Output
To execute a Stored Procedure with Input and Output Parameters:

1. Create a Stored Procedure in your database using the RDBMS tool, for example
Oracle’s SQL*Plus.

2. In eDeveloper, open the Program repository.

3. Create a new program and enter the program name.

4. Zoom to ensure that the Task properties are set to Batch defaults.

5. From the Task menu, click the SQL Command option.

6. In the Database field, select the relevant SQL database (this example is for the
Oracle database using the Scott schema.

7. In the SQL Command field, enter the EXEC command, as follows:
exec procedure_name (parameter)

8. You must separate the placeholder for the parameters with a comma, as the
example that follows:
EXECUPD_EMP(:1,’:2’)

Note: eDeveloper executes the SQL command before it executes the Task Prefix level.
eDeveloper V9 - How To 77

Using Basic Programming
Techniques 4

his chapter describes Basic Programming techniques that you can use for creating
and modifying eDeveloper programs and tasks.

This chapter covers the topics listed below:

• Automatically Generating a Simple Program

• Defining Global Variables for an Application

• Controlling Execution of the Main Program

• Defining Application Level Events

• Conditionally Terminating the Program

• Preventing a User from Manipulating Program Data

• Displaying Information after the Task is Closed

• Removing the Need to Confirm Record Deletion

T

 eDeveloper V9 - How To 78

Automatically Generating a Simple Program
A program can be generated from within the Table repository or from an entry in the
Program repository.

eDeveloper’s Automatic Program Generator (APG) is designed to create programs
automatically.

The Program Generator generates programs for:

• Online data entry and maintenance.

• Exporting data from the database file to an operating system text file.

• Importing data from a text file to a database file.

• Printing programs.

• General Web programs (HTML report and an HTML query screen).

The Program Generator dialog is defined by:

• �PG

• Style

• Internet

This section includes the topics listed below:

• Generating Programs from the Table Repository

• Generating Programs from the Program Repository

Generating Programs from the Table Repository
To generate a program from the Table repository:

1. Park on a table in the Table repository.

2. From the Options menu, click Generate Program or press CTRL+G.
The Program generator dialog box opens.
 eDeveloper V9 - How To 79

3. Choose the mode and type of program.

4. Enter information in the fields on all three tabs as explained in the following
sections:

Generating Programs for Multiple Tables
To execute or generate programs for more than one table in one run:

1. In the Table repository, move the insertion point above the first entry.

2. On the Options menu, select Generate Program to open the Automatic
Program Generator dialog box.

You can run the generator immediately with the default values, or you can make any
appropriate changes to the option settings before you run the Automatic Program
Generator. The APG tab has the fields and parameters shown in the table below:

Note: The Web tasks are not available when generating multiple programs.

Selecting Several Tables
To select the tables:

1. From the Tag Tables field, select Several. The Table list opens.

Field Options Purpose

Tag tables All If chosen, the Selected field displays the total number of
tables on the Table List.

Several If chosen, the Table List opens automatically. See the
procedure for selecting the tables below.

None Specifies that the Program Generator is disabled for this
session and will not create any programs

Selected Displays the number of tables selected

Mode Execute Executes the program

Generate Generates the program

Options Browse, Export,
Import, and print
 eDeveloper V9 - How To 80

2. Press the space bar to mark the tables you want to select in the right-hand
column, and click Select to confirm the selection. The field displays the number
of tables selected.

3. eDeveloper creates a program for each table in the Table repository.

Generating Programs from the Program Repository
To generate a program from the Program repository:

1. Open the Program repository and press CTRL+G to open the Automatic
Program Generator dialog.

2. Choose the type of program you wish to generate by selecting an option.
Note: The Execute option is not available when generating a program from the
Program repository.

3. Place the cursor on the Main Table field and zoom to the Table list to select a
table.

Defining Global Variables for an Application
Opening an application in runtime automatically executes the Main program. The
variables defined in that program are global, and shared by future executed programs.

Closing an application that is in Runtime mode causes the Main program to end, and
executes the operations defined in its task suffix.

Changing from Toolkit to Runtime mode, and vice versa, re-executes the Main program.

You can define global variables in one of the following ways:

• Select virtual variables.

• Link to a table and selecting that table’s real variables.

• Use the SetParam and GetParam functions.
 eDeveloper V9 - How To 81

• Use INIPut and INIGet functions. In this case, you can use the option of sharing the
Magic.ini in the server for the different instances.

When defining Global variables, updating of any Real variables are ignored since no
locking nor transactions are allowed at this point.

Re-computing of variables from the parent task, which are used in sub-tasks are controlled
by a flag in the eDeveloper environment. Thus, changing a Main program’s variable
causes eDeveloper to re-compute all the affected programs, in which this variable is used,
in Initial or Link operations.

Controlling Execution of the Main Program
The Main program is executed automatically when moving into Runtime mode.
eDeveloper Runtime mode is defined as one of the following:

• Runtime engine - foreground runtime, background runtime, and generator engines.

• When a program is run under the toolkit engine and the application initially is opened
in Runtime mode.

• When a program is run under the toolkit engine and the application was switched to
Runtime mode (CTRL+T).

• When a program is run under the toolkit engine and the program was run from the
Toolkit mode (F7).

• You can control the execution of the Main program by using the RunMode function.

• Define the operations in the Main program to be executed conditionally using the
RunMode function.

Each operation or block of operations should have the requested execution condition. The
condition for each eDeveloper Runtime mode above is:

• Runtime engine, ()=0

• Initial Runtime mode, ()=1

• Switch to Runtime mode (CTRL+T), RunMode()=2

• Toolkit mode (F7), ()=3
 eDeveloper V9 - How To 82

Note: The condition of the RunMode function can be used in all the places in the MCF
where expressions are evaluated.

Defining Application Level Events
In eDeveloper V9, you specify an application event in the Main Program event. The
Application Event repository (SHIFT+F8), from previous versions, has been removed.

To define an application event:

1. Define the event in the Program Event repository (CTRL+K).

2. Define a handler for this event.

To define an application handler level:

1. Zoom from the Program repository to the Task screen.

2. From the Task menu, select the User Events, or press CTRL+K to open the Event
repository.

To open a new line and enter a description:

1. Select the handler type. System is the default.

2. Zoom from the Trigger column to the Key Definition screen and enter the
shortcut key.

3. Select the Force Exit option, and click OK.

4. From the Events screen, click OK to return to the Task screen.

5. The event definition is similar to a regular event in the program’s Event
repository.
 eDeveloper V9 - How To 83

Defining a Handler
The Handler definition looks like the regular Handler level in a program. However, there
are differences, which are listed below:

• There is no Object in the Main program handler definition.

• There is no Global scope in a regular program handler definition.

The Scope parameter on the Task screen has three values:

Conditionally Terminating the Program
When you send an exit action, such as pressing ESC, you terminate online programs, by
default.

• Batch Programs with a Main Table terminate once all records in the range are
processed.

• Batch Programs without a Main Table are infinite loops unless you use the ending
condition discussed in this document.

Terminating a Program
To terminate a program:

1. Press CTRL+P in the task dataview to open the Task Properties dialog box.

2. Select an option in the End Task Condition field:

Option Purpose

Task The handler executes the event in that task. It is not relevant for application events.

Subtree The handler executes the event in that task and all of its subtasks. This is an
Application event, and only for this application.

Global Once you define an event in the Main program it appears in every program, as if it
were part of that program. In spite of this, you cannot modify or delete it from the
program itself.
 eDeveloper V9 - How To 84

No (default)
Yes, or
F5 to select an expression.
This is the condition that must apply for the task to end.

3. Select the attribute in the Evaluate Condition field.
The attributes are:

• Before entering record: the condition is checked before Record prefix.

• After updating record: the condition is checked after record suffix operations.

• Immediately when condition is changed: the condition is checked before each
operation.

Notes:

When the condition is evaluated to Yes (True), the task closes. Without an End Task
condition, an Online program will only close when Close, Exit or Esc are sent.

If there is no Main Table in a Batch task, it is important to enter an End Task condition. If
this is not done, eDeveloper views the task as an endless loop. If there is a Main Table,
once all records in the range are processed the Task finishes.

A common usage for conditionally terminating a task is in One-To-Many tasks. When
browsing, the Header File should show the Detail Range, and both tasks should be Online.
You do this by placing a condition for the Detail Task to end when the Header Task has
called it from a specific task-level (such as Record Prefix).

Another way to terminate a program according to a condition is to send the Exit action
manually from within the task, with some specific condition or action.

Using the Raise Event
The Raise Event, new to eDeveloper V9, can raise an event from any execution level in
the task. Using this operation to Raise an internal event such as Exit allows for the
termination of the task, or handling of such an event from the task itself.
 eDeveloper V9 - How To 85

This operation has the Wait attribute that indicates whether eDeveloper will pause all other
executions of the task until this event is handled, or continue other operations while the
event is Raised.

Another added powerful attribute, is the ability to send Arguments with the event itself,
using the Arg attribute. Zooming allows you to define the parameters.

To use the Raise Event:

1. From the Program repository, select a program.

2. Zoom to the task's Record Main and park the cursor at the beginning of the first
field.

3. Zoom to open the Operation list, and select Raise Event.

4. Move the cursor to the Name field and zoom to the Event dialog.

5. Select one of the Event type options: System, Internal, or User. The selection of
the type determines the Event Name options.

• System - Key Definition dialog box

• Internal - Action list

• User - Event list

In versions prior to eDeveloper V9, to send such an action to eDeveloper, as though made
by a user you would use the functions:

KbPut(Exit Act) or KbPut(Esc KBD).

Placing an evaluate expression with such KbPut() causes the Task to end.

Triggering such an operation can be done in many ways:

• Placing an Evaluate operation in some Task level. Once this operation is
executed, it will close the task.

• Triggering this Operation by zooming from a field.

• Placing a button on the Main Form with the return action Exit.
 eDeveloper V9 - How To 86

Note: eDeveloper recommends avoiding the KbPut operation as much as possible because
it is affected by Keyboard Idle time and might cause unwanted behavior. Instead,
eDeveloper recommends using the Raise Event Operation since it allows better
control of the execution using the Wait and Arg attributes. You can also use a
Virtual Field acting as a flag to indicate when to close the task, and to use this flag
in the End Task Condition, as explained above.

Preventing a User from Manipulating Program Data
There are situations, when designing an Online task with intended user interaction, where
you want to design a display for the end user but limit the ability of the user to make
changes to that display. The following are some examples:

• Preventing modifications to data through the basic eDeveloper methods.

• Preventing changes to elements that are displayed on the screen.

• Preventing modifications of the display itself.

• Disregarding a user’s attempts to change the data through non-specific programmed
screens.

This section includes the topics listed below:

• Selecting Task Property Attributes

• Controlling Use of the Options Menu

• Disabling the Options Menu

• Controlling User Positioning of the Cursor

• Preventing Data Manipulation
 eDeveloper V9 - How To 87

Selecting Task Property Attributes
To select the Initial mode:

1. From the Task Properties dialog box, click the Properties tab to indicate the
mode of action the program or task starts with. The Initial mode field default is
Modify.
Any selected mode determines the starting attribute when the user runs the
program.

2. Select the By Exp option if you want to define the initial task mode with an
expression.
You use By Exp when you want flexibility in selecting the initial mode due to
specific circumstances. For example: IF (TDEPTH()>1,’Q’MODE,’M’MODE)

3. The task should be in Modify mode when it’s launched by itself, but if another
program calls this task, it should start in Query mode.

Controlling Use of the Options Menu
Even when a task is set to an initial mode, the end user may change the mode from the
Options menu. Using this menu the end-user can change to Modify Mode or Create Mode
even if the initial mode is Query. Using Options the user is able to:

• Locate records

• Range record

• Change the Key used to access the Main Table of the task

• Sort records according to user defined conditions.

If allowed, the end-user can delete records form the Database using the Edit menu.

In many cases, a developer may want to prevent the user from using the Options menu
actions that may change the display or database. The Task Control Properties dialog helps
you deal with this.
 eDeveloper V9 - How To 88

Disabling the Options Menu
To prevent the user from having access to the Options menu, you must either specify No in
the Allow Options, or zoom to the Expression rules window and specify a Boolean
condition for limiting the user’s options. Selecting No or a limiting expression rule
prevents the user from performing specific actions such as Modify, Create, Delete, Query,
Locate, Range, Index change, or Sort.

Controlling User Positioning of the Cursor
To control user positioning of the cursor:

1. In Record Main, you use the Condition column for the Select operation of the
task.
This allows the user to position on some variables, permitting modifications.

2. You can set this condition to Yes, No, or zoom to the Expression Rules
repository. If set to No, or the Boolean condition is evaluated to No, eDeveloper
does not allow the user to position the cursor on the selected field.

3. Another method for allowing the user to position the cursor is by using CTRL+U to
open the Main form. You can edit the Main form and use control properties to
allow the user to position the cursor on the selected field but prevent
modification of its contents.

Preventing Data Manipulation
On the Control Properties screen, if you set the Modifiable attribute to No or specify an
expression that will be evaluated to False, eDeveloper prevents the end user from
modifying the selected field, and treats it as if in Query Mode.

Another option for preventing data manipulation is:

1. Press CTRL+D to open the DB Tables screen.

2. Select Read for the Access parameter. This prevents any Write actions to the
table. Any changes sent to a Read table, are disregarded.
 eDeveloper V9 - How To 89

Displaying Information after the Task is Closed
Many application designs require task data to continue to be presented even when the task
has ended.

To force a task or program to keep the last displayed screen in view:

1. Press CTRL+C to open the Task Control dialog box.

2. Select No in the Close Task Window field.
This keeps the last program display viewable after the program or task ends.
If you select Yes as the attribute, and exit the parent task or program, the display
is cleared.

Using the Task Properties Dialog
Another way to keep a task or program display viewable is to control the end condition of
the task or program. You can do this in the Task Properties dialog.

To force a task or program to keep the last displayed screen in view:

1. Press CTRL+P to open the Task Properties dialog box.

2. From the End Task Condition field, select Yes
-Or-
Zoom to Expression Rules repository and select or create an expression.
Setting a condition for ending the task in the End Task Condition field indicates
that a condition must apply for the task to end.

3. Select a condition in the Evaluate Condition field.
This attribute has the following values:

• Before entering record: the condition is checked before the Record Prefix
operations.

• After updating record: the condition is checked after Record Suffix
operations.

• Immediately when condition is changed: the condition is checked before each
operation.
 eDeveloper V9 - How To 90

4. The task closes once the condition is evaluated as Yes (True).Without an End
Task Condition, an Online program closes only when the Close, Exit or Esc is
sent.

5. In a Batch task without a Main table, the absence of an End Task Condition
creates an infinite loop. If there is a Main table, once all records in the range are
processed, the Task finishes.

Removing the Need to Confirm Record Deletion
When developing your application you can set up a mechanism that lets end-users delete a
record without confirming the action.

To avoid the need to confirm deletion of a record, do the following:

1. In the Task Execution repository, create a Handler level for the task.

2. From the Event column, zoom to open the Event dialog box.

3. From the Event Type list, select System. From the Event field zoom to open the
Key Definition dialog box and press F3 to assign the F3 key to the event.

4. Create a subtask. In the Task Properties dialog box, set the following:
From the Task Type list select Batch.
From the Initial Mode list select Delete.
Make the End Task Condition as Yes.
From the Evaluate Condition list select After updating record.
Select a Main table.
Then click OK.

5. In the subtask’s Record Main, create a Select Real operation and zoom to select
the variable that appears in the Index property in the Task Properties dialog
box.

6. From both sections of the Range column, zoom to the Expression Rules
repository and select the same variable that you selected for the Select Real
operation.
 eDeveloper V9 - How To 91

7. Return to the main task.

8. In the Operation repository press F4 to create a new line and from the Operation
list select the Call Task operation. From the space next to the words “Call Task”,
zoom to open the Subtask List and select the subtask that you created in step 4.

9. Press F4 again to create another line, and from the Operation list select the Raise
Event operation.

10. From the Name column zoom, to open the Event dialog box and from the
Event list select Internal. From the Event field zoom to open the Action List.
Select Previous Row from the Action Name list and then click Select to return
to the Event dialog. Click OK. Set the Wait property to No.

11. Press F4 again to create another line and from the Operation list select the Raise
Event operation.

12. From the Name column zoom to open the Event dialog box and from the Event
list select Internal. From the Event field zoom to open the Action List. Select
View Refresh from the Action Name list and then click Select to return to the
Event dialog box. Click OK. Set the Wait property to No.
 eDeveloper V9 - How To 92

Building an Online Task 5
his chapter discusses online tasks and how to create them.

This chapter covers the topics listed below:

• Evaluating a Program’s Initial Starting Mode

• Creating a Selection List Program

• Defining a Context Menu for a Program

• Automatically Saving Changes to the Dataview

• Reconfirming User Steps in a Program

T

 eDeveloper V9 - How To 93

Evaluating a Program’s Initial Starting Mode
Most tasks have specific Initial modes. You can also specify an Initial mode, by using an
expression. An expression would be used in instances where you want only one program
to show a screen, instead of two programs showing the same screen with the same logic.
An example of this would be the same Online screen used to query a record and to modify
or add a record.

This section includes the topics listed below:

• Selecting the Initial Mode Expression

• Using an Expression in the Initial Mode

Selecting the Initial Mode Expression
To select the Initial mode expression:

1. Open the Task Properties dialog box.

2. On the Properties tab, in the Initial Mode field, select the By Exp option.

3. Enter the expression number in the Exp field, or zoom (F5) to select from the
available options.
The expression will be evaluated at runtime to determine the Initial mode.

Using an Expression in the Initial Mode
The Initial mode is evaluated as soon as the task execution starts. Variables of the current
task are not yet available during the evaluation of Initial Mode expressions. Therefore, if
the expression uses variables, these variables must be parameters or variables of a parent
task.

If a legal value is not found at runtime for the expression used for dynamic definition of
the initial mode of operation, a message box appears informing the user and prompts the
user to terminate the task.
 eDeveloper V9 - How To 94

By using the MODE literal in the Initial Mode expression, you instruct eDeveloper to
check the string content for valid task modes. Any character in that string which is not a
valid task mode will be cleared automatically. The values represented by the characters in
the string are stored in an internal representation. If the application is used with a non-
English language version of eDeveloper, the values in the string will automatically be
changed to the corresponding values of the relevant language.

Creating a Selection List Program
User-friendly online data-entry applications often provide lists that enable the end-user to
zoom from a specific field to select values from a related list.

You can incorporate this type of list in your application by utilizing the Call Program or
Call Task operation, passing parameters from the calling program or task to the called
program or task.

An alternative, easier method is to define Selection Table programs and associate them,
using Select Program specifications, to automatically zoomable fields. This also lets the
end-user select values from tables during the Locate and Range operations, which
simplifies the process.

This section includes the topics listed below:

• Creating a Selection List Program by Calling a Program

• Defining a Selection Table Program

• Associating a Selection Table Program to a Column

• Executing a Selection Table Program

Creating a Selection List Program by Calling a Program
Selection List programs have a built-in mechanism that enables them to return the selected
value to the calling program, only when the user explicitly selects it and ignores the
selection in any other instance.
 eDeveloper V9 - How To 95

The program accepts a parameter and returns the value selected, or the previous value if
no selection was made, to the variable in the calling program.

To create a Selection List program:

1. In the Program repository create a new line and enter a name for the new
program.

2. Zoom to open the Task Execution repository and press CTRL+P to open the Task
Properties dialog box.

3. Set the Task type as Online, and from the Main table field zoom to select the
table you want to be available for selection.

4. Click the Advanced tab and set the Selection table property to Yes. You can also
set an expression evaluating to true in runtime. Then click OK.

5. In the Record Main task set the Operation as Select and choose Parameter.
The parameter should match the value that should be returned to the calling
program, both in type and in picture. Usually, this value is also the unique key of
the table.

6. Select the corresponding real variable, which is usually the code, and any other
relevant variables from the Main table for display purposes.

7. From the Task menu choose Forms to open the Form repository. Zoom to open
the Form Editor.

8. On the form add a Push Button from the Control palette. In the button’s
property sheet zoom from the Raise Event property to define an Internal event
type and Select event for the button. On the form add another button and in this
button’s property sheet zoom to select an Internal event type and Exit event for
the button. You can also define a virtual variable in the program or use the built-
in mechanism of enter=select and escape=exit.

9. In the Record Suffix level, update the parameter with the value of the respective
real field.

When you call the program, ensure that you pass the variable for which the value is
supposed to be returned as a parameter.
 eDeveloper V9 - How To 96

Defining a Selection Table Program
A Selection Table program includes as its root task a regular online task, which browses
the Main table containing the values to be selected by the end-user.

1. Open the Task Properties dialog box and click the Advanced tab.

2. Select Yes or a logical expression that evaluates to True for the Selection Table
field.

3. Define a Parameter that will return the selected value.

4. Insert an Update Var operation in the Record Suffix to update the parameter
with the relevant column value.

Associating a Selection Table Program to a Column
eDeveloper lets you associate a Selection Table program to a column. To do this, specify
the Select Program and the Select Program Call parameters at these locations:

• Model Repository

• Column Repository

• Program Field Properties

• Form Control Properties

If you associate a Selection Table program with a Class type, eDeveloper automatically
associates it to all the columns using that type and to their Control properties on the screen
forms. You can override this setting in the Column Properties dialog box or in the Control
Properties dialog box of the relevant columns.

If you associate a Selection Table program to a column in the Column Properties dialog
box, eDeveloper automatically associates it to all the occurrences of that column in screen
Edit controls. You can disable a program associated to a column, by setting Select
Program to No in the Control Properties dialog box.
 eDeveloper V9 - How To 97

Model Repository
1. Open the Model repository.

2. Press CTRL+P to open the Model Properties sheet.

3. Open the Input section on the Categorized tab and park the cursor on Selection
program.

4. Zoom to the Program List and select a program.

5. For the Select mode, specify how the program will be called, depending on the
column type you want to associate it with.

Column Repository
1. Zoom from a column in a Table repository and press CTRL+P to open the Column

Properties sheet.

2. Follow steps 3-5 above.

Program Field Properties
1. Zoom from the Select Virtual operation and press CTRL+P to open the properties

sheet.

2. Follow steps 3-5 above.

Form Control Properties
1. Zoom from the Form List to display the Control palette.

2. Select any control, place it on the form, and press CTRL+P to open the properties
sheet for that control.

3. Follow steps 3-5 above.
 eDeveloper V9 - How To 98

Executing a Selection Table Program
To use a Selection Table program, you normally associate it with a column.

When a Selection Table program is associated with a column, it automatically becomes a
zoomable column.

If the Select type is set to Prompt, the select program is activated automatically on
entering the column. After the program is terminated, it is still accessible by pressing F5.

At runtime, when the end-user zooms while parked on this column, or when the insertion
point first enters the column if the Select type is set to Prompt, the following happens:

• The Selection Table program associated with the column is activated, and the value of
the zoomable column is passed as a parameter to it.

• The engine executes the Selection Table root task as a regular online task, but its
termination rules are different:

If the end-user presses Select, the engine:

1. Terminates the Record Main.

2. Executes the Record Suffix executing the Update Var operation.

3. Exits the task, displaying the picked value in the calling task’s zoomed column.

If the end-user selects Exit, the engine terminates the task without picking a value.

The positioning of the insertion point, when the Selection Table program ends, depends on
the setting for the Select Program Call property associated with the Select Program
property of the zoomable column:

• If the Select type is set to Before or Prompt, the engine leaves the insertion point on the
zoom column.

• If the Select type is set to After, the engine moves the insertion point to the column that
follows the zoom column in the Operations repository, regardless of its position on the
screen.
 eDeveloper V9 - How To 99

Defining a Context Menu for a Program
eDeveloper provides you with two standard menus. In the Menu repository you can define
additional context menu structures for your application. You can attach the additional
context menus to a program in the Task properties setting of a program.

Note: The Attached context property is only relevant for online tasks.

This section includes the topics listed below:

• Defining an Additional Context Menu

• Defining the Context Menu in a Program or a Task

Defining an Additional Context Menu
To define additional context menus:

1. In the Menu repository create a new line and enter a name for your new menu.

2. Zoom to open the Menu Definition screen and create a new line.

3. In the Entry Type column select an entry from the Entry Type list.

• For a Program type, zoom from the Menu Params column to select the pro-
gram to associate with the menu.

• For an OS Command, zoom from the Menu Params column to select the
required OS command.

• For an Event, zoom from the Menu Params column to select the required
System, Internal or User Event.

• For a Separator, you only need to select Separator from the Entry Type list.

• For a Menu, zoom from the Menu Params column to create the required sub-
menu.
 eDeveloper V9 - How To 100

Defining the Context Menu in a Program or a Task
To define the context menu in a program or task:

1. Zoom from the program to which you wish to connect the new menu.

2. Press CTRL+P to open the Task Properties dialog box and click the Advanced
tab.

3. From the Attached context field, zoom to open the Menu List.

4. Select the desired menu and click OK. The number of the menu entry appears in
the Attached context field.

At runtime, when the end-user invokes a context menu while the particular task is running,
the menu defined for this task is the one that will be displayed, rather than the default
context menus for the application.

Automatically Saving Changes to the Dataview
In eDeveloper, a record is only written to the database, modified, created or deleted, when
the engine goes through the Record Suffix.

With batch tasks, every record automatically goes through the Record Suffix. In online
tasks the engine only reaches this level automatically if the user has modified one or more
real fields. If the user does not modify, there is no need to update the record and go to the
Record Suffix.

You can however set the engine to go through the Record Suffix level, even if the user has
not modified any fields.

This section includes the topics listed below:

• Using the Task Control Property: Force record Suffix

• Defining a User Event with Force Exit=Record

• Defining a User Event with Force Exit=Record
 eDeveloper V9 - How To 101

Using the Task Control Property: Force record Suffix
One way to get the engine to go through the Record Suffix level, even if the user has not
modified any fields, is to:

1. Zoom from the relevant program to open the Task Execution repository.

2. From the Task menu choose Task Control to open the Task Control dialog box.

3. Click the Behavior tab and set the Force record suffix property to Yes. You can
also zoom to enter an expression that evaluates to a logical ‘True’.

Defining a User Event with Force Exit=Record
Sometimes you need a record to be written before the handler is activated. Therefore, the
engine should go to the Record Suffix and modify the record in the database before
handling the operations in the handler.

By defining a user event with Force Exit=Record the engine is forced to go to the Record
Suffix as soon as the event is triggered.

1. Zoom from the relevant program to open the Task Execution repository.

2. From the Task menu choose User Events to open the User Events repository.

3. Create a new line and enter a name for the event in the Description column.

4. Set the Force Exit column to Record.

Updating an Operation with Undo=No
The Undo property determines whether the Edit/Cancel (F2) command is available to the
end-user after the execution of the Update operation.

1. Zoom from the relevant program to open the Task Execution repository.

2. Create a new line in the Operations repository and choose the Update operation.

3. When Undo is set to Yes, the default, the end-user can use Edit/Cancel, after an
Update operation has been executed, to reset the current record dataview to its
 eDeveloper V9 - How To 102

original state without saving the changes of the update.

4. When Undo is set to No, Edit/Cancel is disabled after the Update operation. The
end-user will not be able to undo changes made to the record dataview at the task
level of the updated variable.

You would generally use this "hard update" in the Record Suffix level, when resetting the
updated variable to its original value could damage data integrity. For example, if the
operation is intended to change data in the Record dataview of a parent task. If you set
Undo to No, the user will not be allowed to cancel the parent record after the subtask's
records have already been accepted.

Only one Update operation with Undo set to No in any one of the subtasks that is updating
the parent record’s dataview variable, is sufficient to prevent the user from undoing the
update.

Reconfirming User Steps in a Program
Usually the only built-in confirmation screen in eDeveloper is the Confirm Delete
message.

The following two confirmation messages can also be set using the Task Control dialog
box:

• Confirm Update

• Confirm Cancel

To use these confirmation messages with a program do the following:

1. Zoom from the relevant program to open the Task Execution repository.

2. From the Task menu choose Task Control to open the Task Control dialog box.

3. Click the Behavior tab.

4. Confirm Update
If you set this property to Yes, or zoom to enter an expression evaluating to True,
eDeveloper confirms the Create and Modify operations.
 eDeveloper V9 - How To 103

You can also use an expression to override this behavior. For example, the
following, which will confirm Create operations only:
STAT(0,’C'MODE)

5. Confirm Cancel
If you set this property to Yes, or zoom to enter an expression evaluating to True,
eDeveloper prompts the user on cancellation of updates in the current record.
Confirming the cancellation cancels the changes and the record reverts to its
original values. Declining the cancellation saves the new values in the records.
 eDeveloper V9 - How To 104

Building an Interactive
Web Task 6

his chapter discusses questions relating to some of the new interactive Web
application features of eDeveloper Version 9.

This chapter covers the topics listed below:

• Defining the Interactive Web Application Developing Environment

• Creating a Simple Interactive Web Application Program

• Preparing an HTML Template

• Handling HTML Controls

• Defining an HTML Table Control in a Browser Task

• Increase Record Scrolling Performance

• Creating a Browser One-to-Many Relationship of Tasks

• Working with a Third Party HTML Authoring Tool

• Opening a Browser Task in a Specific Frame

• Changing the Task Mode in a Browser Client

• Defining and Using the eDeveloper VCR

• Setting eDeveloper to Work with the Persistent Client Mode

• Defining a Subform

• Opening Two Browser Programs in the Same Frame

T

 eDeveloper V9 - How To 105

Defining the Interactive Web Application Developing
Environment

Several elements are important to this configuration, mainly the eDeveloper engine, a
browser, a Web server, Internet requesters, and the eDeveloper Broker.

The procedures below explain how to construct a working environment on a single
machine. In general the modules that take part in this configuration may reside on
different machines.

The interactive Web application paradigm requires an installed browser. You use the
browser to connect to the eDeveloper application server. It serves as the interface for the
browser tasks.

You must install a Web server in order to permit the browser to contact the eDeveloper
application.

Configure this Web server with eDeveloper Internet modules.

A TCP\IP protocol is required on your machine. The prerequisites are:

• Installation

• Setting up the Web server

• Setting up the Internet requesters

• Running the eDeveloper Broker

• Setting up the eDeveloper engine

• Testing the configuration

This section includes the topics listed below:

• Installation

• Setting Up the Web Server

• Setting Up the Internet Requester

• Running the eDeveloper Broker

• Setting up the eDeveloper Engine
 eDeveloper V9 - How To 106

Installation
In the typical eDeveloper installation, eDeveloper automatically configures your
environment to enable an interactive Web application to run.

In order to customize your installation you need to install the following modules:

• The eDeveloper Engine

• The eDeveloper Broker

• The Internet requesters

Setting Up the Web Server
To set up the Web server:

1. Define a virtual directory in your Web server.
This directory’s path leads you to a directory in which the following files exist:

Mgrqgnrc94.dll

Mgrqhttp94.dll

Mgrqispi94.dll (if you are using a Microsoft Web server)

Mgrqcgi94.exe (if you are using a different Web server)

MGBC940_02.js

MGBC940_02.cab

MGBC940_02S.cab

Mgreq.ini

In the typical eDeveloper installation, all of the required Internet modules are in
the working directory. The virtual directory points to the working directory of
eDeveloper.

2. Give this virtual directory an appropriate name (alias).

3. The typical eDeveloper installation calls this directory magic9scripts.

4. Enable this virtual directory for Read and Execute.
 eDeveloper V9 - How To 107

Setting Up the Internet Requester
To set up the Internet requester:

1. Direct the Internet requester to the eDeveloper broker you are using.

2. Indicate the broker address and port in the MessagingServer setting in the
Mgreq.ini file.
The default value for this setting is 3001, meaning port 3001of the same
machine.

3. If your eDeveloper Broker is loaded on a different machine you should define
this setting with the machine name and port number.
For example, MessagingServer=Machine_name\3001.

4. The value of the BrokerPort setting in the Mgrb.ini file in the working directory
of the broker indicates which port your broker listens to.

Running the eDeveloper Broker
Run the eDeveloper Broker prior to running the eDeveloper engine. You can use the
default setting of the eDeveloper Broker.

Setting up the eDeveloper Engine
To set up the eDeveloper engine:

You must define the eDeveloper engine before it is loaded as an application server, as
described below.

1. Run the Magic.exe file.

2. Define the setting of the eDeveloper Broker with the Server option on the
Settings menu.
You may use the default setting provided by the typical installation of the server
entry name Default Broker.

3. Define the following settings on the Enterprise Server tab of the Environment
 eDeveloper V9 - How To 108

option on the Settings menu:

• Set the Activate as Enterprise server to Yes. (The default is Yes.)

• Zoom from Messaging Server to select the server definition for your
eDeveloper Broker. (The default is Default Broker.)

• In the HTTP Requester setting define the location and the name of the
requester you are using relative to the Web server. This is set to magic9scripts/
Mgrqispsi.dll, if a Microsoft Web server was detected on your machine.

• In the Web Document Alias setting, define the path where the browser client
module files (Mgbrowserclient.jar, Mgbrowserclient.js) relate to the Web
server. This is set to magic9scripts/, if a Microsoft Web server was detected on
your machine.

• In the Web Authoring Tool setting, zoom to select your HTML file editor.

4. Run the eDeveloper engine with the above settings and make sure that the status
bar indicates App Server.

To run browser tasks:

1. Create a browser task from the APG on an existing table.

2. Select the Generate mode and the Browser Client options. Return to the
Program repository and execute the newly created browser task.
The default browser opens, the toolkit switches to runtime, and an implicit
request is sent to the engine through the requester to run the browser task.

To call a program in runtime from a browser:

Construct a URL according to the following example:

Http://[your_machine][your_requester_location]
[requester_name]?appname=
[application_name]&prgname=[program_name]
 eDeveloper V9 - How To 109

Creating a Simple Interactive Web Application Program
This topic explains how to manually create a simple running interactive Web application
on the query task. You can also perform these steps using the Automatic Program
Generator.

This section includes the topics listed below:

• Building an Interactive Web Application Task

• Defining the Properties for the Interactive Web Application Task

• Defining HTML Controls

Building an Interactive Web Application Task
To build an interactive Web application task:

1. Before starting to build your interactive Web application make sure that you have
the required configuration setup for interactive Web application tasks.

2. Create a table on which you wish to run the Browser task.

3. Open the Program repository and create a new program. Zoom to the new
program and in the Task Properties dialog box set the Task type to Browser
and select your table as the Main table.

4. Define the dataview for this task by selecting the fields of the Main table.

5. Open the Form repository.

6. Press CTRL+P to open the property sheet of your main class 0 Browser form.

Once you have completed these steps you need to define the task properties. This
procedure is explained in the next section.
 eDeveloper V9 - How To 110

Defining the Properties for the Interactive Web Application Task
To define the properties for the interactive Web application task:

1. On the property sheet, set the following properties:

• Repeated lines - define the number of rows of data you wish the table to have.

• HTML file - the interface you create is in HTML format and should be stored
in an HTML file.

2. Define the name of the HTML file in which you store the HTML information.
For new tasks, you usually define a name of a new file.

3. Zoom into the Form.
eDeveloper prompts a message stating that this file does not exist and that a new
file will be created using the default HTML template.

4. Click OK to create the file and open your preferred Web authoring tool.
You may now create a table to present the data in line mode.

5. Using your authoring tool, create a table of two rows. The Table control should
be set with an ID attribute to be identified by eDeveloper. If your authoring tool
does not support the ID attribute you should place it yourself in the HTML script
as follows:

<table border=“1" width=”500" id=“Table”>.
The ID may be any descriptive name you choose.

1. In the first row write the name of the columns.

2. In the second row, place a control for each variable you want in each column.

3. The controls for the variables can be placed automatically by selecting and
dropping a variable from the floating Variable palette, or, you can create the
controls yourself.

4. If you create the controls, first insert them into the form using the authoring tool,
and provide a unique descriptive name for each control.

5. Save your page and return to eDeveloper.
 eDeveloper V9 - How To 111

Defining HTML Controls
To define the HTML controls:

1. In the HTML Control repository, specify each object including the Table and
attach the variables to each control.
All new objects on the HTML page can be viewed and selected from the new
HTML controls list.

2. Click on the New HTML tags button to view this list.
This list displays the table control and the other controls you placed with the
names they were given.

3. Select the controls you created including the table control. All controls will be
added to your HTML Control repository.

4. Create new lines and define new controls by giving them names, and define their
type in the Type column.

5. Associate the corresponding variable for each control. You can do this by
zooming from the Var column to see the available variables and select the
appropriate variable for each control. You can also type in the identifier code of
the variable.
The most important property to define for the table control is the Detail line #. In
this property set a numeric value that indicates the number of the line to be
repeated. This line will be repeated a number of times as defined in the Repeated
lines property of the form.
The basic browser task is complete.

6. Press F7 on the program in the Program repository to execute it.

Preparing an HTML Template
eDeveloper can easily generate browser tasks automatically. In this case, eDeveloper
creates the dataview and the interface of the browser task. The interface, which is an
HTML file attached to the task’s browser form, can be based on a pre-defined HTML
template.
 eDeveloper V9 - How To 112

Using such a template, the automated browser forms can be based on a common template.
This gives the browser a uniform appearance.

Note: eDeveloper can also automatically generate just the browser form interface for an
already existing browser task.

This section includes the topics listed below:

• Creating the HTML Template

• Using the HTML Template File

Creating the HTML Template
To create the HTML Template file:

1. Include the following basic HTML tags (HTML, HEAD, BODY and FORM).

<HTML>
<HEAD>
</HEAD>
<BODY>
<FORM NAME = “”>

</FORM>
</BODY>
</HTML>

This HTML file is sufficient to be used as an HTML template file. Actually,
when you do not specify your own pre-defined template file, eDeveloper uses
this template to create the HTML files for the browser task interface.
Using this basic template file you can now add any other HTML based tags and
properties to create a desired look. You may edit it using your preferred HTML
authoring tool.
 eDeveloper V9 - How To 113

2. Define a background color for the entire HTML page using your preferred
HTML authoring tool.
You can place an image of a reserved name that will display eDeveloper’s VCR
toolbar that allows you to browse easily through the dataview.

Using the HTML Template File
The following procedure presents an example of where and how you can direct
eDeveloper to use the new HTML template.

To run the Automatic Program Generator (CTRL+G) on a table:

1. Set the Mode field to Generate.

2. Set the Option field to Browser Client.
eDeveloper provides a default name for the HTML file. This file keeps the
interface for this task. You may also change the file name.
If you have not used your own template file yet, the Template file name field is
blank.

3. To use your own HTML template file, enter the path and name of your HTML
template file in this field
-OR-
zoom to the File Open dialog box to select the template file.

4. Click OK to confirm the APG, in order to create the interface based on its
internal template.
Running the Result program displays the task with the added new options on the
page.

Note: eDeveloper remembers the last template defined. You may remove the file name
and eDeveloper will use its internal basic template.
 eDeveloper V9 - How To 114

Handling HTML Controls
The interface of the eDeveloper browser task is kept in an external HTML file.

Although the entire interface is external to the browser task, eDeveloper provides the
necessary means to view, define, and handle every supported input control that is defined
in the HTML file.

This section includes the topics listed below:

• Defining HTML Controls

• Creating Controls with the APG

• Dragging and Dropping Variables

• Adding an HTML Control

• Assigning Data to HTML Controls

• Defining HTML Control Properties

Defining HTML Controls
To define the HTML controls:

1. Zoom to the browser task form. The HTML controls table opens.

2. Define all the controls that reside on the HTML interface definition and handle
them as if they were eDeveloper controls.

Column Purpose

HTML control name The name of the control as it is defined in the HTML file.

Exp An Expression that in runtime evaluates to provide a
dynamic name of the HTML control as it is defined in the
HTML file.

Type A combo box that defines the type of HTML control. This
is required for the eDeveloper toolkit so it will provide you
with the corresponding property sheet.
 eDeveloper V9 - How To 115

Creating Controls with the APG
If you created your browser form using the APG utility, then eDeveloper has already
created the HTML controls in the provided HTML file name and defined these controls in
the HTML Control repository.

Dragging and Dropping Variables
If you dragged and dropped a variable on the HTML file (using the authoring tool) then
eDeveloper automatically creates a corresponding entry in the HTML Control repository.

Adding an HTML Control
You can handle an HTML control that exists on the page.

To add an HTML control:

1. Click on the New HTML tags button to display the list of available HTML
controls.
This list shows all the HTML controls that have not yet been entered on the
HTML Control repository.
This list also shows the names of these controls and their types.

2. Click Select to add the control you are parked on.

3. You can also multi mark several controls you wish to add and then click Select.

Var The letter code of the variable attached as data for this
HTML control.

Exp The number of the expression attached as data for this
HTML control.
 eDeveloper V9 - How To 116

Assigning Data to HTML Controls
To assign data to HTML controls:

1. Zoom from the Var column to select a variable to assign to the HTML control (or
type in the variable letter code).
This allows you to make the HTML control serve as the editing field of the
assigned variable.

2. Assign an expression to be used as the control’s data.
This control will not be enabled for editing.

Defining HTML Control Properties
For each defined HTML control in the HTML Control repository, you can open its
property sheet to define its properties values.

Note: Properties that are basic HTML properties, such as color, font, or size, can be
assigned only with an expression.

For such properties eDeveloper provides the dynamic values, or expressions,
whereas the authoring tool is used to set the initial or fixed value of these properties.

Defining an HTML Table Control in a Browser Task
eDeveloper enables you to easily define an HTML Table control to present your data in
line mode, where the data can be easily scrolled.

This section includes the topics listed below:

• Creating the HTML Table Control

• Setting the Table’s Details Line # Property
 eDeveloper V9 - How To 117

Creating the HTML Table Control
To create HTML table and input controls in a browser task:

1. Create the HTML table control using your preferred HTML authoring tool.

2. Give the table an ID recognizable by the eDeveloper toolkit and runtime engine.
For example:

<Table border=”1” ID=”My_Table width=”100%”>
3. Place the column titles in the table row you designate as the column title row.

4. Define the input and display controls of the represented data in the table row you
designate as the repeated data line.
You may also use eDeveloper’s Variable palette to drag and drop variables onto
your HTML table.

5. In the HTML Control repository, define the input controls you have just added
and associate them with the variables of your task.
If you dropped these controls using the Variable palette then they are
automatically added to the HTML Control repository.

6. Click on the New HTML tags button to view the remaining HTML controls.
Among them you see the table control you created.
The table control appears by the name given to it in the ID attribute of the table
HTML tag.

7. Select the table control to add it to the task’s HTML controls.
 eDeveloper V9 - How To 118

Setting the Table’s Details Line # Property
To set the table’s Details line # property and define the number of lines to be
displayed:

1. Open the table property from the HTML Control repository.

2. Define the row number you designated to be your repeated data line.

3. Enter the number of this line in the Details line # property.
Any line above the Details line will be considered as the table header.
Note: The table header cells may contain data bound controls. Such controls will
reflect the value of the current record but will be shown only once for each
current record.

4. Specify the desired number in the # of repeated line property in the Form
property sheet.
Using the defined number, eDeveloper automatically repeats the designated
detail line in the number of times as defined by this form property. Any line
below the detail line will be considered as the table’s footer.

Note: The table footer cells may contain data bound controls. Such controls reflect the
value of the current record, but are shown only once for each current record.
If this form property is set to Zero, eDeveloper repeats the detail line on top of the
remaining rows below the detail line. This action may override any other content of
the remaining lines.

Increase Record Scrolling Performance
The browser task of eDeveloper allows easy scrolling of the data viewed on the browser.
The newly displayed records need to be fetched from the database through the eDeveloper
application server.

Numerous interactions with the eDeveloper application server may hinder the
performance of the browser task. In order to improve the performance of the browser task
while browsing the through the records, the user must:
 eDeveloper V9 - How To 119

• Provide the browser client with a greater amount of record than it initially displays, and

• Diminish the number of times the browser clients address the application server.

This section includes the topics listed below:

• Defining the Chunk Size Number

• Resetting the Cache

Defining the Chunk Size Number
The Chunk size expression property enables you to define how many new records will be
sent to the browser client upon every request for new records as a result of scrolling.

To define the chunk size number:

1. In a browser task, open Advanced tab of the Task Properties.

2. In the Chunk size expression property, use an expression to define a numeric
expression that will define the chunk size.

This expression is computed once, upon the initial phase of the browser task.

If, for example, the Chunk size is evaluated to 100, then eDeveloper provides the client
with the first 100 records of the defined view, regardless of the number of displayed rows.

In this case, the client browses through the first 100 records locally since it keeps the
records it receives in its local cache of records.

If the user scrolls over the first 100 records, then the browser client automatically issues a
request to the application server for the next chunk of records.

This new chunk of records is added to the client’s cache of records. This allows for local
back-scrolling through the 200 records.

Resetting the Cache
Upon non-sequential scrolling, such as Begin Table and End Table, the client clears its
cache of records and adds the corresponding new chunk of records.
 eDeveloper V9 - How To 120

Creating a Browser One-to-Many Relationship of Tasks
The HTML that is produced can represent, in one interface, several eDeveloper tasks.
Each task handles different parts of the entire HTML interface.

This situation is very common when you create a one-to-many relationship view, where
one task displays and handles the parent view and another task, or tasks, handles the
extended view for each record of the parent.

The eDeveloper subform control allows you to include two separate tasks in one HTML
interface definition file to handle two separate dataviews.

This section includes the topics listed below:

• Creating Parent and Extended View Tasks

• Defining Subform Controls and Properties

• Recomputing the Subform

Creating Parent and Extended View Tasks
To create the parent and extended view tasks:

1. Create the parent view task by defining a browser task to display the parent’s
dataview, the One part.

2. Create the extended view task or subtask of the browser task you have just
created that will show and handle the extended dataview (the Many view). In
creating this second program you should follow the following guidelines:
Use the same file name as the parent’s browser form for the HTML file name that
the browser form uses.
Add all the HTML controls (including the table control - if required) of this
program to the existing HTML file, in any location you choose.

3. Verify that the newly added HTML controls of the second program do not have
the same name as the controls of the parent task. If there are controls with the
same name, you must provide a new unique name to these controls and update
the new names in the HTML Control repository.
 eDeveloper V9 - How To 121

4. Create Select Parameter operations for the required parent details that are
needed to range the view, and initialize the corresponding variables.

Defining Subform Controls and Properties
To create subform controls and set subform properties:

1. Return to the parent task. Zoom to the browser form to open the HTML Control
repository.

2. Create a new entry in the HTML Control repository.
This entry is your subform control. You may provide a descriptive name for this
subform control.

3. Define the type of this entry to be Subform.

4. Open the property sheet of the subform and define the following properties:

a) Connect to - Define the type of task you created as the extended view task -
program or a subtask.

b) PRG\TSK num - Define the number of the program or task of the extended
view. You may also zoom in to select it from a selection list.

c) Arguments - Zoom to the Arguments list to pass the required arguments.

These arguments will be retrieved by the parameters defined in the extended task
to range the dataview and to initialize the corresponding variables.

5. The One-to-Many browser task is completed, and you can run the parent task.

Recomputing the Subform
The arguments passed to the extended task are used not only by the parameters that get
their values but also as recomputing agents of the subform.

Whenever one of the passed arguments is changed, the values of the arguments are re-
passed to the extended task and its view is refreshed to display the new view.
 eDeveloper V9 - How To 122

Whenever the subform is recomputed and the view is refreshed, the Task Prefix and Task
Suffix of the extended view task are activated. The focus, however, remains at the parent’s
view.

Note: Only arguments that are passed as variables may cause a view refresh of the
extended task. Passed expressions will not cause a view refresh of the extended
task.

Working with a Third Party HTML Authoring Tool
The interface of an eDeveloper browser task is defined and edited by a third party HTML
authoring tool of your choice.

This section includes the topics listed below:

• Defining Your HTML Authoring Tool

• Editing the Browser Task Interface HTML File

• Editing the HTML File

• Editing the HTML File Externally

Defining Your HTML Authoring Tool
eDeveloper enables you to define your own preferred authoring tool.

To define your preferred HTML authoring tool:

Enter its execution file name and location in the Web Authoring Tool environment
setting under the Enterprise Server tab.

Note: The installation process looks for a default HTML authoring tool. The name and
path of the found tool is automatically entered in the eDeveloper environment
setting.

Editing the Browser Task Interface HTML File
To edit the browser task interface HTML file:
 eDeveloper V9 - How To 123

1. Zoom to the browser form entry.
The HTML Control repository opens. This repository lists all HTML controls
that are handled by the browser task.

2. Click the HTML Editor button to activate the HTML authoring tool.
The authoring tool opens.

3. Edit the HTML file defined for this form entry.

Editing the HTML File
You can edit the HTML file after opening the authoring tool.

To edit the HTML file:

1. Define any object you create that you wish to use as a control in eDeveloper with
a name (NAME=XXX).

2. Identify any object you create, such as a table, which does not support the NAME
attribute using the ID attribute.

3. You should create\keep only one FORM object on your HTML page.
If you add a new control that you wish to handle from the browser task, you
should add this control, by its name, to the HTML Control repository.

4. You may edit your HTML file to include Cascade Style Sheets (CSS), Java
Script, Java Applets, Active-X, DHTML for an enhanced interface.

To drag and drop variables:

1. Activate the authoring tool.
The Variable palette opens floating on top of the authoring tool.

2. From this palette, drag and drop a variable onto your HTML file.

When dropping a variable, eDeveloper creates a control that was defined for the variable
in its Style\Browser property. This control receives the variable’s name. If a control by this
name already exists, the given name is concatenated by a number. eDeveloper also
automatically adds a corresponding entry in the HTML Control repository assigned with
the corresponding variable.
 eDeveloper V9 - How To 124

Note: Once a variable is assigned to a control in the HTML Control repository, it cannot
be dropped. The drag-and-drop capability is only available for authoring tools that
support OLE Drag and Drop, such as Microsoft® FrontPage®. Therefore, it does
not support Microsoft® Notepad or Macromedia® DreamWeaver®.

Editing the HTML File Externally
Although eDeveloper provides a smooth and transparent integration with the authoring
tool of your choice, and since the HTML file is kept as an external file that is accessible
regardless of Edeveloper, you can easily create your HTML file directly through any
HTML authoring tool.

Opening a Browser Task in a Specific Frame
The user can direct the opening of a client of a called browser task in a different window
than the window in which the calling task opens. The given window destination can also
be a different frame in a frame set. You can direct a browser task to be opened in a
different window or frame by providing the window or frame name in the Destination
property of the Call operation.

To open the task:

1. Create a Call operation entry in your main browser task.

2. Define the number of the browser task you wish to call in the Task Operations
repository.

3. Open the property sheet of the Call operation and in the Destination property
define the name of the window or frame that you want this task to be opened in.

4. Run the task.
Whenever the Call operation is executed, the new browser task opens in the
given window or frame according to its name.
 eDeveloper V9 - How To 125

Changing the Task Mode in a Browser Client
A browser task maintains the basic mode rules of the Modify, Create, Query, and Delete
modes that are available for a browser task. In each mode the browser client functions
according to the rules of the defined mode. For example, in Query mode, data entry and
data deletion are not allowed, whereas in Modify mode they are allowed.

The event type is Internal and it can be one of the following:

• Modify Records

• Create Records

• Query Records

You set the browser task’s Initial mode in the Properties tab of the Task Properties dialog
box.

1. From a program, zoom to open the Task Execution repository.

2. Press CTRL+P to open the Task Properties dialog box.

3. In the Initial mode property click Modify, Create or Query.

Note: You can also change the task mode by raising an event. The Raise Event operation
should have the Wait property set to No. The trigger for the event can be a button or
a Hot Key.

If the event is used in more than one program it is best to create a handler in the
Main Program and activate the trigger from all the different tasks.

Defining and Using the eDeveloper VCR
A VCR control is a VCR panel image that provides the end user with easy navigational
functionality for the dataview. The panel is for use with Web applications.
 eDeveloper V9 - How To 126

The VCR image shown below, is supplied as a .jpg file with eDeveloper. The file name is
Mgvcr.jpg.

To insert the VCR image into your HTML page:

1. Using your HTML authoring tool create an HTML image tag.

2. Make sure that the source of the image tag points to the Mgvcr.jpg file. The
name should be MG_VCR.
For example:

3. The Browser client identifies this image by its name and handles it automatically.

You can also create your own version of the VCR image. If you decide to do this and not
use the one supplied with eDeveloper, you should ensure your image contains six items
corresponding to the eDeveloper VCR functionality.

1. Enter the following tag:
<HTML>
<HEAD>
<title></title>
</HEAD>
<BODY bgcolor="#00FFFF">
<FORM NAME = “”>

</FORM>
</BODY>
</HTML>

2. When eDeveloper encounters an image on the page with the name of
“MG_VCR,” it treats it as a VCR toolbar. The browser client internally divides
this image into six vertical parts where each part is used for one of the navigation
 eDeveloper V9 - How To 127

options (from the left):
Begin Table
Previous screen
Previous Row
Next Row
Next Screen
End Table

3. Click on each part of the image to perform the corresponding navigation action.
This image file name should be defined in the Image source file, in a path that is
recognized by the Web server.

This template can now be used by eDeveloper to create new browser interfaces when
created using the Automatic Program Generator.

Setting eDeveloper to Work with the Persistent Client Mode
The Java applet, which is the main part of the browser client engine module, needs to be
loaded by the browser client. With certain browsers this can take time. The eDeveloper
Enterprise Server enables you to make the Java applet module persistent on the client side.
This means that once the applet is loaded for the first time, it remains on the client
machine, and every browser task requiring this module, takes it from the client.

To define your application server to work with a persistent applet module do the
following:

1. From the Settings menu choose Environment.

2. Click the Enterprise Server tab.

3. Set the Persistent Browser Client Module property to Yes. Setting the value to
No disables this option.

When you set the property to Yes, the end user must provide confirmation in the Browser
Confirmation dialog box.

Note: The Browser Client Java module has been certified and digitally authenticated by
VeriSign. This assures the end user that the module has not been tampered with.
 eDeveloper V9 - How To 128

Defining a Subform
You can use a subform when the browser client is designed to display extra data on top of
the main view, when the extra data usually consists of more than one record. This is
usually referred to as a one-to-many relationship. In such a case there is usually more than
one task involved, and the Subform control enables the two separate tasks to be displayed
on the same HTML interface.

To display two subtasks on the same HTML page do the following:

1. Design your HTML interface file to include the required HTML elements for
both the main task and the descendant task.
Note: The names and IDs of the elements of both tasks should be unique
throughout the entire HTML page.

2. Create two browser tasks, a parent task and a child task, and define the HTML
file property of the browser form in both tasks to point to the same HTML
interface file, that was created previously.

3. In each task define the relevant HTML controls, including the table control of
each task, if used.

4. Create an extra HTML control in the main task, and set its type as Sub form.
Set the property of this control to call the child task.

5. Use the Arguments property to pass required data to the child task. Usually the
passed arguments will be the variables responsible for ranging the data of the
subform.

6. Run the main task.

Opening Two Browser Programs in the Same Frame
It is common to use a frameset when developing Internet-based applications, making it
easier to maintain the user interface. Usually a screen is divided into several different
frames including a navigator, the main working screen and a banner frame.
 eDeveloper V9 - How To 129

The procedure below explains how you can enable one browser program to call another,
and open the called program within the frame containing the calling program.

You should create a simple HTML file with a frameset. The following is an example taken
from the eDeveloper demo:

<html>
<head>
<title>Query</title>
</head>
<frameset rows="100,*"frameborder="0" framespacing="0"
border="0">
<frame name="NavigatorFrame"src="/Magic9Demo/
tf_start.html" scrolling="no" marginwidth="0"
marginheight="0" noresize frameborder="0">
<frameset cols="122, *" frameborder="0" framespacing="0"
border="0">
<frame name="LogoFrame" src="/Magic9Scripts/
mgrqispi9.dll?APPNAME=Magic_9_Demo&PRGNAME=prog_A"
scrolling="no" marginwidth="0" marginheight="0" noresize
frameborder="0">
<frame name="MainFrame" scrolling="yes" marginwidth="0"
marginheight="0" noresize frameborder="0" src="/
Magic9Scripts/Magic9Demo/HTML_Pages/Welcome.html">
</frameset>
<noframes>
</noframes>
</frameset>
<frameset>
</frameset>
</html>

The frameset example above contains two frames displaying a simple HTML file and the
frame calling the eDeveloper browser programs.

In this example, prog_A is the program in the MainFrame, and it contains a button calling
prog_B, the new program also to be opened in the MainFrame.

1. In the application’s Main Program press F4 to create a new Handler. From the
Task menu choose User Events to open the Events repository. In the
 eDeveloper V9 - How To 130

Description column enter the name Call prog_B and from the Type list select
Internal. Click OK.

2. In the Handler’s Operation repository press F4 to create a new operation. From
the Operation list select Call and set it to Prog. Zoom from the 0 property to
select prog_B.

3. Press CTRL+P to open the Call Properties dialog box. In the Destination frame
field enter MainFrame. Click OK.

4. In prog_A create a Handler for the button. From the Event column zoom to
open the Event dialog box.

5. From the Event type list select Internal and from the Event zoom to the Action
List and select Click. Click OK.

6. In the Operation repository press F4 to create a new operation. From the
Operation list select Raise Event.

7. From the Name column zoom to open the Event dialog box. From the Event
type list select User and from the Event list select the Event Call prog_B that
you created in the Main Program.
 eDeveloper V9 - How To 131

Using Transaction and
Recovery Techniques 7

ransaction processing is a data processing technique used to preserve database
integrity. It can be defined as the execution of a set of logically related data
modifications, which must be completed and written to disk or aborted as a single

unit. Reservation and credit-checking operations are typical examples of such
transactions.

This chapter covers the topics listed below:

• Working with Deffered Transactions

• Continuing a Program When the Transaction Fails

• Dynamically Logging into a Database

• Handling a Violation of the Database Constraint by a User

• Sending Nulls by Expression

• Working with MS-SQL Temporary Tables

• Committing a Transaction Every nn Records

T

 eDeveloper V9 - How To 132

Working with Deffered Transactions
Transaction processing is used to preserve data integrity. eDeveloper stores all Data
Manipulation statements within the deferred transaction in a cache.

The statements are sent to the database in one step according to the Transaction mode.

This type of transaction handling shortens transaction time, increases performance, but
also can reduce consistency.

There are 3 Transaction modes for Deferred Transactions:

• Before Record Prefix - Updates are accumulated at the Record level before being sent
to the database in a transaction after Record Suffix.

• Before Task Prefix - Updates are accumulated at the Task level before being sent to the
database in a transaction after Task Suffix.

• Group (valid in Batch tasks with Group Level only) - Updates are accumulated at the
Group level and sent to the database in a transaction when a variable changes its value.

This section includes the topics listed below:

• Defining the Transaction Begin Property as Before Record Prefix

• Defining the Transaction Begin Property as Before Task Prefix

• Defining the Transaction Begin Property as Group

• Handling Deferred Transaction Errors
 eDeveloper V9 - How To 133

Defining the Transaction Begin Property as Before Record Prefix
When you define the Transaction Begin property as Before Record Prefix, eDeveloper:

• Opens the transaction before fetching the record.

• Commits the transaction only after the data file update that follows the execution of the
Record Suffix

• Includes all operations between the open and the commit, including subtasks, within
the transaction scope.

To define the Transaction Begin property as Before Record Prefix:

1. Open the Program repository.

2. Create a new line and enter the program name.

3. Zoom to the Task Properties dialog box or Generate a Program from a table.

4. Select Online for the Task type on the Properties tab.

5. Click the Enhanced tab and select the following:
Deferred for the Transaction mode field.
Before record prefix for the Transaction begin field.

6. Click OK.

Note: When using eDeveloper’s Monitor/Debugger, with the Gateways check box, all
updates are sent to the database after the Record Suffix, in one transaction. Since
the transaction is open during the interactive stage (Record Main), you should not
usually define a transaction at Prefix level for Online tasks in a multi-user
environment. The transaction involves locking and may cause problems for other
users trying to access the same records or table.

Defining the Transaction Begin Property as Before Task Prefix
When you define the Transaction Begin property as Before Task Prefix, eDeveloper:

• Opens the transaction before fetching the task.
 eDeveloper V9 - How To 134

• Commits the transaction only after the data file updating, which follows the execution
of the Task Suffix.

• Includes all operations between the open and the commit, including subtasks, within
the transaction scope.

To define the Transaction Begin property as Before Task Prefix:

1. Open the Program repository.

2. Open a new line and enter the program name.

3. Zoom to the Task Properties dialog box or Generate a Program from a table.

4. Select Batch for the Task type on the Properties tab.

5. Click the Enhanced tab and select the following:
Deferred for the Transaction mode field.
Before task prefix for the Transaction begin field.

6. Click OK.

Note: When using eDeveloper’s Monitor/Debugger, with the Gateways check box, all
updates are sent to the database after the Task Suffix in one transaction.

Defining the Transaction Begin Property as Group
1. Open the Program repository.

2. Open a new line and enter the program name.

3. Zoom to the Task Properties dialog box or generate a program from a table.

4. In the Properties tab, for the Task type select Batch.

5. Click the Enhanced tab and select the following:
Deferred for the Transaction mode field.
Group for the Transaction begin field.

6. Zoom from the Var field to open the Variable list and select the grouping
variable.
 eDeveloper V9 - How To 135

Note: When using eDeveloper’s Monitor/Debugger, with the Gateways check box, all
updates are sent to the database in one transaction when the variable specified for
the group changes.

Handling Deferred Transaction Errors
Each Deferred Transaction has its own Transaction cache.

If an error occurs when an Update operation is sent to the database when working with
deferred transactions, you can use an error handler to access the cached row value at the
time of the error.

Continuing a Program When the Transaction Fails
eDeveloper provides two pre-defined error behavior strategies:

• Recover – eDeveloper keeps the current dataview and remains on the current task
where possible. Recover allows the end user to recover and continue working after an
error.

• Abort – eDeveloper rolls back the current transaction (where the end-user cannot
recover), removes the current dataview, and aborts the task in which the transaction
occurs.

When eDeveloper default error behavior strategies do not apply, the Error Handling
mechanism lets you overwrite eDeveloper’s default behavior for different errors that can
arise.

eDeveloper’s Error Handling mechanism searches for a defined error handler to intercept
the error. Once the error is found, you can control it and perform a user-defined operation
such as Call Program or Verify, which can be defined in the error handler - and then
eDeveloper performs the corresponding action, according to the Engine Directive
property.

The Engine Directive property determines the action that will occur after execution of the
error handler.
 eDeveloper V9 - How To 136

This section includes the topics listed below:

• Defining eDeveloper’s Pre-Defined Error Behavior Strategies

• Defining an Error Handler

• Defining the Engine Directive

• Defining the Error Result

• Overwriting Database Errors

• Using eDeveloper Functions to Retrieve Error Information

• Defining the Any Error Handler

• Defining the Propagate Property

Defining eDeveloper’s Pre-Defined Error Behavior Strategies
To define eDeveloper’s pre-defined error behavior strategies:

1. Open the Program repository.

2. Create a new line and enter a program name.

3. Zoom to the Task Properties dialog box and click the Enhanced tab.

4. In the Error Behavior property, select the strategy you want: Recover or Abort.

Defining an Error Handler
To define an error handler:

1. Open the Program repository and zoom to the Task Execution repository.

2. Open a new line after the Task Suffix.

3. Select the Handler option for the Level column.

4. Place the cursor in the Event column and zoom to the Event dialog box.
 eDeveloper V9 - How To 137

5. Select the Error option for the Event type field.

6. Zoom from the Event field to the Error List and select the error you want to
handle.
The Details parameter on the Task screen changes to Directive.

Defining the Engine Directive
The Engine Directive property determines the action that will occur after the execution of
the error handler and its operations.

There are 6 actions that can occur after the execution of the error handler:

• As Strategy – performs the action defined in the Task properties.

• Abort Task – aborts the task and rolls back the transaction.

• Rollback and Restart - retrieves the dataview’s original values and causes eDeveloper
to start again from the level that the transaction begins.

• Auto retry

• User retry

• Ignore – skips the error and continues to the next record.

To select the Engine Directive property:

1. On the Handler level of the Task Execution repository, place the cursor on the
Details column.

2. From the drop-down list, select the action you want to occur after the execution
of the operations.

Defining the Error Result
When the error handler is triggered with an error situation, it performs the operations that
are defined for the handler.

To define the resulting action:
 eDeveloper V9 - How To 138

1. Place the cursor on the Oper column and zoom to Task Operation repository.

2. Open a new line and define the result of the error that you have encountered.

Overwriting Database Errors
eDeveloper displays the full error message whenever an error is encountered. The error
message is the same message that is displayed in interactive SQL for the command in
error. You use the Display Full Messages setting to control the display of the message.

To define whether or not to display the database error message:

1. On the Settings menu, select the Environment option.

2. In the Preferences tab, select the appropriate option for the Display full
messages setting.

Yes – eDeveloper displays the full error message.

No – An Error message box is not displayed.

If you want to display your own message, the Error Handling mechanism lets you
overwrite eDeveloper’s default behavior for different errors.

When an error occurs, eDeveloper’s Error Handling mechanism searches for a defined
error handler to intercept the error.

Information about the error can be retrieved using different eDeveloper functions. Using
this information, you can decide on the next operation in your program.

Using eDeveloper Functions to Retrieve Error Information
There are a series of functions that can be used to retrieve information regarding an error
message: ErrTableName, ErrDatabaseName, ErrDbmsCode, ErrDbmsMessage,
ErrMagicName, and ErrPosition.

When the error handler is triggered, it performs operations that are defined for the handler.
In this operation, you can use these functions to display information about the error, or to
use this information on the next step.
 eDeveloper V9 - How To 139

Defining the Any Error Handler
The Any error type can be executed for any error type that occurs. Once the error is
captured, you can decide whether to move on to other error handlers in the lower levels of
the task tree, using the Propagate property.

To define the ‘Any’ Error Handler:

1. Open the Program repository and zoom to the Task Execution repository.

2. Create a new line after the Task Suffix.

3. Select the Handler option for the Level column.

4. Place the cursor in the Event column and zoom to the Event dialog box.

5. Select the Error option for the Event type field.
The default for the Event field is Any.

Defining the Propagate Property
You can propagate an event to an event handler in a higher level. When eDeveloper
regards the event as not handled and the Propagate property is set to Yes, the dispatcher
searches upwards through the task for another event handler:

• Yes - takes the task event to the next handler level.

• No - stops the event from going to the next handler level.

To define the Propagate property:

1. On the Handler level in the Task Execution repository, place the cursor in the
Propagate column.

2. Select Yes or No.

When the error handler is triggered with an error that eDeveloper encounters, and the
Propagate property is set to Yes, eDeveloper will execute other error handlers that are
defined in low-level task tree.
 eDeveloper V9 - How To 140

When an Any error handler is defined in task level 1 (sub task), it is triggered and the
Propagate property is set to Yes. If another error handler is defined in task level 0 (parent
task), it will also be triggered and will perform its operations (Call Task, Verify, etc.).

Dynamically Logging into a Database
When working with databases, you may want to change the user login and login to the
application as another user. The login to a database is static within an open connection. To
change the user login you must close the connection, enter the new user name and
password and reestablish the connection. The following steps explain how to achieve this
in eDeveloper:

1. From the Settings menu select Logical Names to open the Logical Names
repository.

2. Press F4 to create a new logical name called DB_USER. Press F4 again and
create another logical name called DB_PASSWORD.

3. From the Settings menu choose Databases (you will need to exit your
application) to open the Database Properties dialog box and click the Login
tab. In the User Name field specify %DB_USER% and in the User Password
field specify %DB_PASSWORD%.

You can change the values of the logical names as required using the INIPut function.

To close the database connection use the following function: DbDiscnt(database name).

The next time a task needs to connect to the database, eDeveloper creates this connection
using the new user and password values.

Handling a Violation of the Database Constraint by a User
In order to maintain database integrity, database constraints such as unique constraints and
foreign keys are used. When there is a violation of these constraints the database throws an
error and this error can trigger an Error event in eDeveloper.
 eDeveloper V9 - How To 141

To enable the user to resolve the problem causing the error you need to use the Error
trigger. The following steps explain how to do this:

Note: This example is relevant to an SQL database.

1. Create an Online task for one of the application tables.

2. Define a new Handler in the task. From the Event column zoom to the Event
dialog box and from the Event type list select Error.

3. In the Handler’s Operation repository press F4 to create a new operation. From
the Operation list select Call Task. Press F4 again to create another operation.
From the Operation list select Raise Event.

4. From the 0 property zoom to open the Subtask list. Press F4 to create a new
subtask. Close this subtask to use the subtask in the Call Operation. The task
should be in Screen mode.

5. From the Task menu choose Range/Locate to open the Range/ Locate dialog
box. In the Position field enter the ERRPOSITION () expression that returns
the position of the record where the error occurred. From the Usage list select
Range On.

When an error occurs, the task is called and the user is able to fix the problematic record.
When the user exits the subtask the correction is saved. In order to view the updated
record the user must refresh the records on the screen. You can enable this by using the
View Refresh event.

1. Return to the Raise Event operation you created in the parent task.

2. From the Name column zoom to open the Event dialog box.

3. From the Event type list select Internal and from the Event list select View
Refresh. Click OK.

4. Set the Wait property to No.
 eDeveloper V9 - How To 142

Sending Nulls by Expression
SQL databases can hold the Null value in a column. This procedure explains how to
correctly set the Null expression:

1. Open the Application Properties dialog box and click the StartUp tab.

2. In the Null arithmetic property there are two values that you can set: Nullify and
Use Default.

If you set the property to Use Default and use the NULL() function, the function result
will be the field’s default values and not Null.
For example: If you range from Null to Null on a numeric field, the Null is replaced by
zero and you receive all the records having zero in this field.

If you set the property to Nullify, Null is used and you receive the expected result.

Note: This behavior is only effective for expressions. When using Nulls in the DB SQL
WHERE clause a real Null is always used.

Working with MS-SQL Temporary Tables
Temporary tables are tables that are automatically dropped by MS-SQL when it has
finished working with them.

There are two types of temporary tables:

• Local temporary tables

• Global temporary tables

Local Temporary Tables
A local temporary table is only visible in the current session, and is automatically dropped
at the end of the current session. The temporary table’s name is prefixed with a single
number, for example: #table_name.
 eDeveloper V9 - How To 143

Global Temporary Tables
A global temporary table is visible in all sessions. Global temporary tables are
automatically dropped when the session that created the table ends, and all other tasks
have stopped referencing them.

The association between a task and a table is maintained only for the life of a single
Transact-SQL statement. This means that a global temporary table is dropped at the
completion of the last Transact-SQL statement that actively referenced the table when the
creating session ended.

Global temporary table names are prefixed with a double number sign, for example:
##table_name.

Note: MS-SQL automatically creates global and local temporary tables in TempDB,
irrespective of which database issued the CREATE command. Temporary tables
are automatically dropped when they go out of scope, unless they have already been
explicitly dropped using DROP TABLE.

To store temporary tables in the TempDB database using eDeveloper’s MS-SQL7
gateway:

• In the Table repository add the number sign ‘#' or '##' as the table name’s prefix.

When working with temporary tables you should also be aware of the following:

• Local temporary tables cannot be created in a subtask. To create a local temporary table
as you work, you must define the temporary table in the parent task’s DB table.
You could also choose to work with global temporary tables.

• Local temporary tables cannot be viewed using Direct SQL.
You should use global temporary tables instead.

• Local temporary tables cannot be created when the MCF file is also stored in MS-SQL.
To be able to create temporary tables in such a situation, define two separate DB entries
in eDeveloper, one for the MCF file and another for the data.
You could also choose to work with global temporary tables.
 eDeveloper V9 - How To 144

Committing a Transaction Every nn Records
In a batch program that inserts or modifies a large amount of records, it is recommended to
commit from time to time the transaction instead of using one large transaction.

To control the transaction duration:

1. Add a virtual variable in the Record Main.

2. Open a group for the variable you have created.

3. Update the variable in the Record Suffix with variable+1 when COUNTER(0)
MOD n=0 (where n is the number of records you wish to have in each
transaction).

4. In the Enhanced tab of the Task Properties dialog box set the Transaction
begin property to group and select the variable you defined in the By var field.

5. Run your program. After n records, the transaction is committed and a new
transaction opens.
 eDeveloper V9 - How To 145

Securing Your Application 8
his chapter explores questions arising from eDeveloper’s user authorization
system. Rights assignment is used to control or restrict access to different elements
of toolkit or runtime, program execution, menu selection, and other program

elements. The eDeveloper Authorization System also provides a means to utilize
underlying database security features for restricted data table access and for data
encryption. In addition to assigning rights to individual users, eDeveloper simplifies the
assignment of a collection of rights to a class of similar users. The system supervisor can
define groups, and can then define rights and assign them at a group level. Group
membership for an individual user is optional. One user may belong to several groups.

This chapter covers the topics listed below:

• Creating a User in the eDeveloper Environment

• Changing the Logged-On User in eDeveloper Runtime Mode

• Assigning Rights to a User Group

• Using the Authorization System in eDeveloper Toolkit Mode

T

 eDeveloper V9 - How To 146

Creating a User in the eDeveloper Environment
eDeveloper allows us to define application users. The User ID is used to check User rights
within eDeveloper applications. Whenever you start eDeveloper, the Logon dialog box
appears. The User ID and Password must be entered. These values are checked against the
User ID repository in order to determine the user’s rights. If the User ID and Password do
not match an entry in the User ID repository, an error message is displayed and the dialog
box stays open. If the User ID and Password are found in the User ID repository, they are
used to compile the rights of the user for later use, within an application. User IDs and
Passwords have development and runtime functionality. The Logon also provides access
to the eDeveloper Date parameter. The SUPERVISOR User ID without a password is the
default user provided by eDeveloper. This ID, at least initially, has full rights to all
applications.

This section includes the topics listed below:

• Logging on as Supervisor

• Creating a New Group

• Creating and Defining New Users and User IDs

• Retrieving User Information

Logging on as Supervisor
To log onto the system as SUPERVISOR:

1. On the Settings menu click Logon to access the Logon dialog box.

2. Enter SUPERVISOR in the User ID field, and click OK.

Creating a New Group
To create a new Group and assign rights to the group:

1. Log on as SUPERVISOR.

2. On the Settings menu, select the User Groups option to access the User Groups
 eDeveloper V9 - How To 147

repository.

3. Create a new line to define a user group.

4. Zoom from the Rights column to the Rights Of: [the group’s name] repository,
and create a new line.

5. Click Application to select the application for which you want to define group
rights.

6. Zoom from the Key column to the Public Rights List and select the right’s key.

7. Steps 5 and 6 can be repeated for each application.

Note: Rights must be defined in the Rights repository within an application before they
are available in the Public Rights List.

Creating and Defining New Users and User IDs
To create a new User ID and assign rights & groups to the User:

1. Log on as SUPERVISOR.

2. On the Settings menu, select the User IDs option to access the User ID
repository, and create a new line to define a new user.

3. Enter the User ID and Name.

4. Zoom from the Password column, to the Password window. Enter a Password
up to 8 digits and press ENTER. Retype the password for confirmation, and press
ENTER.

5. Zoom from the Rights column to the Rights Of:[the user’s name] repository, and
create a new line.

6. Click Application to select the application for which you want to define user
rights.

7. Zoom from the Key column to the Public Rights List and select the right’s key.
Steps 6 and 7 can be repeated for each User declared in eDeveloper.
 eDeveloper V9 - How To 148

8. Zoom from the Groups column of the User ID repository to the Groups of: [the
user’s name] list and select the group.

On the Main menu Settings Environment System tab, if Input Password and Input Date
parameters are set to Yes, eDeveloper by default asks for the User ID and password.

Retrieving User Information
The following functions are used to retrieve information on the logged-in users.

RightAdd () Assigns a Right to a user in the Security File from within an
application. Note: Only the user SUPERVISOR can use the function
successfully.
Example: RightAdd (Accountant, Issue Invoice) assigns the Right
Issue Invoice to the user called Accountant.

Rights () Query whether user has been given rights. Returns TRUE if the user
has rights.

User () Query user data. Returns user data as specified in the User ID
repository.
Examples: User (1) returns the User Name of the current user.

UserAdd () Add a user record into the Security file from within an application.
Note: Only the user SUPERVISOR can use the function
successfully.

Logon () The Logon function allows the user to access the current application.
Example: Logon (CARL, PASS321) performs similarly to the User
Logon. Unlike the User logon, the Logon function processes the user
name and password in a batch mode.

GroupAdd () Assigns a user to a user group in the Security File from within an
application.
Note: Only the user SUPERVISOR can use the function
successfully.
 eDeveloper V9 - How To 149

Changing the Logged-On User in eDeveloper Runtime Mode
eDeveloper allows you to define users who can access the eDeveloper application.
eDeveloper comes with a default user, SUPERVISOR. Logging on with SUPERVISOR
allows you to create users, and to limit their access to the application.

When working with MVCS, it is mandatory to log on with a user. eDeveloper provides a
way to change the logon user during runtime. This option allows you to change the user
for a specific use. This saves exiting and re-entering the application. During runtime, a
current eDeveloper user can be displayed on the screen, and checked within a program.

Note: To identify a user from within a program use the User function.

This section includes the topics listed below:

• Logging onto the System

• Using the Logon Function

Logging onto the System
To log onto the system as user [XX]:

1. On the Settings menu, select Logon to open the Logon window.

2. Enter a Username. A Username is mandatory whereas a password and date are
optional. Users are created with the eDeveloper default user: Supervisor.

Using the Logon Function
To use the Logon function:

1. Create an eDeveloper program.

2. Go to the Task Prefix and zoom to operations.

3. Select the Evaluate operation. Zoom to the Logon function.
Example: Logon (CARL, PASS321). CARL is a username with PASS321 as
password.

4. Execute the program. You will see the requested username active. This user
 eDeveloper V9 - How To 150

remains active until either eDeveloper is closed, or until this function is run for
another user.
The current logged on User Name is displayed at the message line on the bottom
of the screen.

Assigning Rights to a User Group
eDeveloper applications recognize rights. If the right required to perform a specific
activity is assigned to a particular user, that activity is permitted to that user.

Rights can be assigned to individual users and to groups of users.

The Rights repository lists the names and keys of all of the rights defined for the
application. The Supervisor has exclusive authority to modify the Rights repository, while
other users can only view it. eDeveloper displays only those rights held by the user who is
viewing the repository.

Note: Define the Right Key for every program in order to prohibit unauthorized use.

This section includes the topics listed below:

• Creating a Right

• Assigning Rights to a User Group

• Assigning Rights to a User

Creating a Right
To create a right (Key):

1. Log on as SUPERVISOR.

2. Open the required application.

3. On the Workspace menu, select Rights to open the Right repository.

4. Create a new line.
 eDeveloper V9 - How To 151

5. Enter a descriptive name for the Right in the Name column.

6. Assign a key to the Right. The key is the code name used to identify a right.

7. Select Yes to specify whether the right is Public, or visible outside the
application, or No, if the right is Not Public or concealed outside the application.

8. Click OK to save your changes, and close the application.

Assigning Rights to a User Group
To assign rights (privileges) to a User Group:

1. Log on as SUPERVISOR.

2. On the Settings menu, select the User Groups option.

3. Create a new line and enter the group name.

4. Zoom from Rights column, and create a new line to add a Right Key.

5. Select the required right from Public Rights List.

Note: Different operations in the task or program must be conditioned by the Rights(N)
function. Different places in the Toolkit must also be authorized for the user.

Assigning Rights to a User
To assign rights (privileges) to a User:

1. Log on as SUPERVISOR.

2. On the Settings menu, select the User IDs option.

3. Select a user to authorize the rights.

4. Zoom from the Rights column and select from the list of available Rights keys.

5. Zoom from the Group column to open the Groups of: list. Zoom again to the
Group List and select a group.

6. Click OK to save the entry.
 eDeveloper V9 - How To 152

Note: Different operations in the task or program must be conditioned by the Rights(N)
function. Different places in the Toolkit must also be authorized for the user.

Using the Authorization System in eDeveloper Toolkit Mode
eDeveloper has a flexible authorization system to control user operations. The
authorization system lets the application main developer or system supervisor limit access
to various activities with eDeveloper objects. The authorization system exercises its
control through sets of rights and the use of built-in eDeveloper functions. Rights can be
thought of as keys to locks. Using groups allows for certain classes of users to access
certain parts of an application. The person in the role of Supervisor can assign rights that
give each user access only to the activities for which that user is authorized.\

This section includes the topics listed below:

• Assigning Rights

• Assigning Global Rights to eDeveloper Repositories

Assigning Rights
Common rights are as follows:

• Query right: Allow holders of the selected right to view entries.

• Modify right: Allow holders of the selected right to update entries.

• Delete right: Allow holders of the selected right to delete entries.

• Create right: Allow holders of the selected right to create entries.

• Execute/APG right: Allow holders of the selected right to use the Automatic Program
Generator and execute a program from the Program repository.

Note: The Execute/APG Right is not available for the Model, Help screens, and Menu
repositories. Delete, Create, and Execute/APG rights are not available for
Application properties.
 eDeveloper V9 - How To 153

To assign Rights:

1. Log on as SUPERVISOR.

2. Park the cursor on any entry of any repository other than Right.

3. On the Options menu, select the Authorize option.
The Rights Assignment dialog box opens. You can assign rights for Query,
Modify, Delete, Create, and Execute/APG.
For each activity appearing in a Right Assignment field, you can enter the
number of Rights or zoom to the Allowed Rights List to select the Right.

Any user or developer who has a particular right displayed in one of the Rights
Assignment dialog boxes can view the relevant dialog line, change the entry to a
different right that they hold, and remove the right.

Assigning Global Rights to eDeveloper Repositories
The Rights Assignment dialog boxes are used to identify which activities within various
application objects are to be permitted. These activities may be relevant to both
Development and Deployment modes. When the developer attempts to perform an
activity, for example to create a new row in the Table repository, or to invoke a program,
eDeveloper executes the attempted activity only if the developer owns the right that
corresponds to that activity.

Selecting the Authorize option on the Options menu from anywhere in the Model, Table,
Program, Help, or Menu repositories, or from the Application Properties dialog accesses
the Rights Assignment dialog box.

To assign Global rights to different eDeveloper repositories:

1. On the Settings menu, select the Logon option.

2. Enter a User ID, and click OK.
 eDeveloper V9 - How To 154

3. Park the cursor on the zero level of any repository, or invoke the application
properties, for example: SHIFT+F6 for the Menu repository.

4. On the Options menu, select the Authorize option, or press F9.
The Rights Assignment dialog box opens. You can assign rights for Query,
Modify, Delete, Create, and Execute/APG.
For each activity appearing in a Right Assignment dialog box, you can enter the
number of the Right, or zoom to the Rights repository to select the number.
Any user or developer who has a particular right displayed in one of the Rights
Assignment dialog boxes can do the following:

• View the relevant dialog line

• Change the entry to a different right that they hold

• Remove the right
 eDeveloper V9 - How To 155

Using Advanced Programming
Techniques 9

his chapter discusses the features you can add to provide the end-user with greater
usability when working with your application. You can add elements such as a
currency converter for the Euro, or design unique interface components.

This chapter covers the topics listed below:

• Creating a Dynamic List or Combo Box

• Merging Database Information into an Existing Document

• Developing a One-to-Many Relationship Program

• Saving and Re-Using a Form Display

• Defining Automatic Currency Conversion

• Modifying the EURO Text File

• Currency Conversion

• Fetching the Full Translation of an eDeveloper Logical Name

• Designing and Displaying an Image Push Button

• Changing the Image and Title Bar Text of the eDeveloper Window

• Making an eDeveloper Online Task Window Modal

• Exiting a Program from a Subtask Level

• Playing WAV Files from eDeveloper

• Calculating the Sum of Several Records in a Table

T

 eDeveloper V9 - How To 156

• Changing the Caption of the eDeveloper Title

• Changing the Windows Cursor

• Sending E-mail from Within eDeveloper

• Avoiding the Control Verification

Creating a Dynamic List or Combo Box
To maintain data integrity you usually save values from linked tables as codes rather than
the description, and in the programs use the link command to retrieve the description.
Elements such as combo boxes are used with programs to eliminate the need for the user
to deal with code.

eDeveloper V9 has new features that ease the process of creating these controls.

This section includes the topics listed below:

• Combo Box Properties

• Using the Items List Property

Combo Box Properties
To access the Combo Box Property Sheet

1. Open the Program repository and zoom from a program to the Task Execution
repository.

2. Press CTRL+F to open the Form repository and zoom from a form to open the
Form Editor.

3. On the Control palette, select the Combo Box control and drag and drop it onto
the Form layout.

4. Press ALT+F2 to open the Combo Box property sheet.
 eDeveloper V9 - How To 157

The Details section of the Combo Box property sheet contains the following new
properties, as well as the old ones, for displaying and retrieving values from a table:

The eDeveloper Engine opens the requested eDeveloper query table and retrieves the
displayed and linked field values from the table, in accordance with the defined range.

Using the Items List Property
The existing Items List property value is used when the eDeveloper table cannot be
opened or is not defined. The Control parent and child relationship works in the same way
as an expression in the Items List property.

Merging Database Information into an Existing Document
When working in an eDeveloper Web environment, eDeveloper creates HTML files. It
can do this either with its own HTML editor and tools or by merging with an external
template. This template is a text file with special tags that eDeveloper recognizes.
eDeveloper recognizes these tags using a special prefix and suffix for each tag. There are
two types of tags – name tags (placing values) and logic tags.

The template can be either an HTML file, *.txt file or MS-Word RTF file.

Using external templates and eDeveloper’s merge functionality offers great flexibility.

Source table The number of the linked table in the Table repository. Click the ellipsis button or
zoom to the Table list.

Display field The number of the variable you want to display (the description). Click the
ellipsis button or zoom to the Variable list.

Linked field The number of the field you want to retrieve (the code). Click the ellipsis button
or zoom to the Variable list.

Index The number of the index you want to use for the sort. Click the ellipsis button or
zoom to the Index list.

Field ranges The programmer can set a range value(s) for the linked table. Click the ellipsis
button or zoom to the Field Range screen.
 eDeveloper V9 - How To 158

This section includes the topics listed below:

• Using HTML Tags

• Selecting the HTML Merge Option

• Defining the Tag Values

• Defining the HTML Merge Task Controls

Using HTML Tags
The HTML Template File Tags repository is used to define data elements that are matched
with and replaced by the appropriate merge tags in the associated HTML template.

When the Output Form operation is selected in runtime, the tags and displayed values,
from the variable/expression and picture, are sent to the merge mechanism. If the merge
mechanism cannot find the tags of the displayed values in the template, it will disregard
the tag and its value.

All trailing blanks of data strings sent as output to the merge mechanism are trimmed.

The template file may be of any type as long as the eDeveloper merge tags are stored as
regular ASCII strings.

To work with HTML tags, you should carry out these steps described in the sections
below:

1. Select the HTML Merge option.

2. Define Tag values.

3. Define the HTML Merge Task controls.

Selecting the HTML Merge Option
To select the HTML Merge option:

1. Create a program and zoom to the task screen. The Task Properties dialog box
opens.
 eDeveloper V9 - How To 159

2. Select Batch as the Task type and click OK.

3. Select the I/O Files option on the Task menu.

4. Open a new line and enter a name for the file.

5. In the Media column, select File.

6. Press CTRL+F, create a new line.

7. In the Interface Type column, select HTML Merge.

When you have completed these steps you should then define the Tag values.

Defining the Tag Values
To define the Tag values:

1. Press CTRL+P from the HTML Merge line to open the Form Properties sheet.

2. Enter the RTF filename in the HTML File property.

3. Zoom from the Tags Table property to open the Tags Table.

4. Click Select New Tags and select the required tag.

5. Specify the tag’s value (either by a variable or by an expression).

When you have completed these steps you should then define the HTML Merge Task
Controls.

Defining the HTML Merge Task Controls
To define the HTML Merge Task Controls:

1. The Picture value is set by default. You can also use an expression.

2. In the Task repository, zoom to the Record Suffix Operation repository and
create a new line.

3. In the Operation column, enter the letter o to select the Output Form operation.
 eDeveloper V9 - How To 160

4. From the I/O field, zoom to the I/O File List and select the file.

5. Press CTRL+C to open the Task Control dialog box.

6. On the Modes tab, select No for the Allow options property, then click the
Behavior tab and select No for the Open task window property. Click OK.

Note: If the tag is an MGIF tag, the specified value should be logical (True or False). It is
not necessary to specify MGREPEAT, MGENDREPEAT, MGELSE and
MGENDIF tags.

Developing a One-to-Many Relationship Program
The two most important and useful relationships among tables in a relational database
system are:

• One-to-One: implemented in eDeveloper by the Link operation, which establishes a
relationship between the current row of the Main table and a specific row in the Linked
table, inside a task.

• One-to-Many: implemented in eDeveloper by a parent task and child subtask structure.
A one-to-many relationship exists between two tables, whenever each row in one table
corresponds to, or owns, many rows in another table. eDeveloper uses corresponding or
matching columns to associate rows of the two tables. The matching process is more
efficient if you define the matching columns as indexes in the tables.

The following example of a customer order and billing application illustrates such a
relationship:

• A Customer table row represents a single customer. Each Invoice table row represents
an invoice associated with a particular customer.

• Each Customer table row is related to many Invoice table rows, through the Customer
No. column, defined as an Index in both tables.

This section includes the topics listed below:

• Building a One-to-Many Program

• Preserving Data Integrity in the One-to-Many Relationship
 eDeveloper V9 - How To 161

Building a One-to-Many Program
The procedures below describe how to build a one-to-many program for an Order Entry
screen:

You should first create a Parent Task as follows:

1. Create a parent task with an Order Headers table as the Main Table.

2. Select all necessary fields.

3. Generate a form in Screen mode.

Once you create the Parent task you should then create the Subtask as follows:

1. Create a subtask with an Order Lines table as the Main Table and select all
necessary fields.

2. Specify the range values of an Order_Number field as the Order_Number in the
parent task.

3. Specify the Init value of the Order_Number field using the same expression as
the range value.

4. Open the Task Control dialog box (CTRL+C) and on the Behavior tab, set the
Close Task Window property to No.

5. Open the Task Properties dialog box (CTRL+P) and click the Properties tab.
From the End Task Condition zoom to define the property as ”level(1)=’RP’”
Set Evaluate Condition to Immediately when condition is changed.

6. Generate a form in Line mode.

7. Once the subtask has been created, you need to call it from the parent task in two
places:

• Record Prefix

• Record Main

Note: The subtask can also be designed as a separate program.
 eDeveloper V9 - How To 162

Make the following modifications:

1. Select a parameter for the parent task Order_Number.

2. Modify the range and initial value of the Order_Number field to the parameter
value.

Preserving Data Integrity in the One-to-Many Relationship
This section includes the topics listed below:

• Deleting a Parent Record (order title)

• Aborting the Order Entry Program

Deleting a Parent Record (order title)
To prevent a user deleting a parent record, leaving non-valid records in the Order Lines
table, do the following:

1. Add a batch subtask to the parent task with Order Lines as the main table.

2. Set Delete as the Initial mode.

3. Select the Order_Number field only and specify the range values as the parent
task’s Order_Number.

4. Open the Task Control dialog box (CTRL+C) dialog and click the Properties
tab. Set both the Allow options and Open window properties to No.

5. Call the subtask from the Record Suffix level using STAT(0,’D’MODE) as the
condition of the Call operation.

Aborting the Order Entry Program
To prevent a user aborting or adding the parent record modification, leaving non-valid
records in the Order Lines table:

1. Add an Update operation in both the Record Suffix level and in the parent task
of one of the fields.

2. Set No in the Undo property of the operation.
 eDeveloper V9 - How To 163

Saving and Re-Using a Form Display
You can preserve a unified form design using the eDeveloper Form templates.

This section includes the topics listed below:

• Form Templates

• Saving a Form Template

• Loading a Form Template

Form Templates
You can save a current form layout to a file as a template. The default file extension is
MFT (Magic Form Template). The template contains all controls and all control properties
except for the following:

• Control Name

• Property expressions

• Data properties

• Help and Prompt Help properties

• �uto Call Program properties

The above properties have empty value parameters when loaded from the template file.

If you load a template into a pre-existing form, the template file overwrites all form
settings. In addition, all controls that were on the form will be deleted. Form Templates are
limited to GUI forms. HTML and Java templates are not accepted by the GUI Form
Editor.
 eDeveloper V9 - How To 164

Saving a Form Template
After designing the form template:

1. On the File menu, select the Save as Template option.

2. Save the form as a template in the desired directory.

Loading a Form Template
To use an existing form template:

1. Enter the form.

2. On the File menu, select the Load Template option.

3. After loading the template, connect the object with the correct fields.

Defining Automatic Currency Conversion
eDeveloper supports European Currency Conversion methods using the Currency
Conversion file and the special functions for European currency manipulation.

This section includes the topics listed below:

• Creating a Euro Conversion Text File

• Setting eDeveloper to Use the Currency Conversion File

Creating a Euro Conversion Text File
You can use the Currency.xxx file, in eDeveloper’s support folder, and modify it
accordingly. The xxx extension represents the local language.
 eDeveloper V9 - How To 165

The file indicates the different currency types and rates. Each line in the file defines a
currency using the following syntax:

<CODE><NAME><PRECISION><RATE>

Setting eDeveloper to Use the Currency Conversion File
You can define the path eDeveloper uses to locate the Currency Conversion file you have
created.

To locate the file:

1. On the Settings menu, select the Environment option.

2. Click the External tab and find the European Currency Conversion file
setting.

3. Zoom to the Open File dialog box and select the required file.

Modifying the EURO Text File
During the workflow of an application, you might need to modify the currency conversion
file to accommodate fluctuating currency rates.

To modify currency exchange rates and to make eDeveloper aware of the changes, you
can use the following methods:

• Using the OS Text Editor.

• Using functions to modify currency rates used by eDeveloper.

CODE A four character string eDeveloper uses to identify the currency.

NAME 20 character string indicating the name (free text).

PRECISION A numeric value defining the precision result of calculations made with
this currency. The valid values are 0,1,2.

RATE The currency rate compared to 1 Euro.
 eDeveloper V9 - How To 166

Using the OS Text Editor
eDeveloper uses an external text file for reading the currency conversion table. You can
use an OS text editor such as Notepad.exe to modify the rates, or add or delete currencies.

The modification takes effect when eDeveloper is restarted.

Modifying the EURO Text File Using eDeveloper Functions
Modification to the currency file using an OS text editor only takes effect when
eDeveloper is restarted. Using the EuroDel() & EuroUpd() functions you can modify the
currency table, currently held in the memory, without restarting eDeveloper. However,
when using these functions, only the eDeveloper memory is changed and not the Currency
File itself. Therefore, changes will be lost when eDeveloper is restarted.

• EuroDel() is used to remove a currency from the conversion table held in memory.

• EuroUpd() is used to modify a currency entry.

The syntax is:

EuroUpd(‘Currency Code’, ’Currency Name’,’Precision’,’Rate’)

If there is no currency code, a new currency entry will be created.
 eDeveloper V9 - How To 167

Currency Conversion
When working with currencies you may need to convert from one currency to the other.

This is more important when working with the Euro currency since in many cases you also
need to show its value in other European currencies.

You should make sure that you have already defined the European Currency Conversion
File.

You can use the following two methods for currency conversion:

• Converting Currencies Using Different Display Types

• Converting Currencies Using the Euro Functions

Converting Currencies Using Different Display Types
eDeveloper can automatically convert currencies, using the currency file’s data, whenever
it is required to present a different currency on the Output or GUI form.

1. Open a GUI or Output form and on the Form layout drag and drop an Edit
field.

2. Select the Edit field and press ALT+F2 to open the control’s property sheet.

3. Zoom from the Viewed Currency property and set as any currency code that is
currently available in the Currency Conversion File.

The default is ASIS, meaning that the value of the field will not be converted while it is
displayed. If you enter the value, it will be of the current default Euro Code.

Once you enter a different Conversion Currency, whenever a value that does not match the
currency code is presented in that field, it will automatically be converted to that currency
using the Currency Conversion file.

For example: If a value of the EURO is passed and displayed in a field on the form marked
as “Viewed Currency = DEM”, eDeveloper will automatically convert the numeric value
from the Euro currency to German Marks.
 eDeveloper V9 - How To 168

Converting Currencies Using the Euro Functions
During calculations you might need to switch the numeric variables of some currencies.
You can do this by using the EuroCnv() function. The function converts a numeric value
from one currency to another, using the currency conversion file/table stored in
eDeveloper’s memory.

For example, to convert variable A from the EURO currency to DEM, you can use the
expression: EuroCnv(‘EURO’,’DEM’,A)

Note: Use the display method only when you need to show the user the value in different
currencies. When internal calculations are required, you should use EuroCnv()
instead.

Use the EuroSet() and EuroGet() functions to set and retrieve the default currency
of the current eDeveloper instance.

Fetching the Full Translation of an eDeveloper Logical Name
Sometimes you create a Logical Name based on other logical names.

For example:

Path = c:\myApp\
Images = %Path%images

When using INIGet(‘[MAGIC_LOGICAL_NAMES]Images’) you will get the value
%Path%Images and not c:\myApp\Images

The program needs to parse the logical name and look for the ‘%’signs.

To fetch the translation:

1. Isolate each one of them (starting from the last to the first).

2. Concatenate them all back together.
 eDeveloper V9 - How To 169

Designing and Displaying an Image Push Button
There are 3 types of buttons you can use in eDeveloper:

• Regular

• Aperient: Resembles a Web hyperlink (underlined blue text).

• Image: This is for a more displayable window.

This section includes the topics listed below:

• Designing the Image Button

• Displaying the Image Button in an eDeveloper Program

Designing the Image Button
Image buttons have four potential statuses, each requiring a variation of the image.

The four statuses are:

If the button has a single status image, eDeveloper breaks the image into the four statuses
described above, giving the impression that it is not working properly.

Displaying the Image Button in an eDeveloper Program
To display the button in an eDeveloper program:

1. Select an Alpha virtual variable. The size must be big enough for the full path of
the image.

On Park The way a button appears when the cursor parks on it.

On Click The way a button should appear when clicked.

Disabled The way a button should appear when disabled.

Default The default view of the button, when the cursor is not parked on it, and it is
not in use.
 eDeveloper V9 - How To 170

2. In the Attributes field, specify that this is a GUI object button and set the type
of button as an Image Button.

3. In the Init column set the value as the location of the image. A Logical name can
be used.

4. Place the object on the screen.

Changing the Image and Title Bar Text of the eDeveloper
Window

eDeveloper has its own Icon. You can use the "RtUserCopyright" Magic.ini switch to set
the Title Bar label in Runtime. This option is only available in Runtime and cannot be
changed while eDeveloper is already running.

Using dlls, you can change the displayed icon and title of eDeveloper.

The eDeveloper window icon however, cannot be changed.

This section includes the topics listed below:

• Changing the Main Window Title

• Changing the eDeveloper Icon

Changing the Main Window Title
Set the following in the Record Main level:

1. A Select Virtual operation, Numeric 8, to get the parent (the eDeveloper
Window) of the program’s window.
The Init value should be
CallDLLS ('USER32.GetParent','44',WINHWND (0)).
This virtual field’s alias is A.

2. A Select Virtual operation, Numeric 8, to get the window handle of the
eDeveloper Window.
The Init value should be
 eDeveloper V9 - How To 171

CallDLLS ('USER32.GetParent','44',A).
This virtual field’s alias is B.

3. A Select Virtual operation, Alpha 30, for the new caption to be set.
This virtual field’s alias is C.

4. A Select Virtual operation, Alpha 10, for the push button executing the change.
This button should raise an Internal Zoom event.

5. An Evaluate operation with the Flow column set to ‘After’.
The expression should be
CallDLLS ('USER32.SetWindowTextA','4A4',B,C).

6. On the form place two fields - the caption and the button.

This example is for an Online task. This program could also be a batch program, in which
case you do not need the button, and the Evaluate operation should be in the Task Suffix.

Changing the eDeveloper Icon
Set the following at the Record Main level:

1. A Select Virtual operation, Numeric 8, for getting the parent (the eDeveloper
Window) of the
program’s window.
The Init value should be CallDLLS ('USER32.GetParent','44',WINHWND (0)).
This virtual field’s alias is A.

2. A Select Virtual operation, Numeric 8, for getting the window handle of the
eDeveloper Window.
The Init value should be CallDLLS ('USER32.GetParent','44',A).
This virtual field’s alias is B.

3. A Select Virtual operation, Alpha 30, for the new icon filename to be set.
This virtual field’s alias is C.

4. A Select Virtual operation, Numeric 10, for the Icon handle.
 This virtual field’s alias is D.
 eDeveloper V9 - How To 172

5. A Select Virtual operation, Alpha 10, for the push button executing the change.
This button should raise an Internal Zoom event.

6. A Block-If operation with flow ‘After’.
The block should contain the following operations:
a. Update D with CallDLLS ('shell32.ExtractIconA','4A44',0,C,0).
b. Evaluate with expression
CallDLLS ('USER32.SendMessageA','44444',B,128,1,D)
c. Evaluate with expression
CallDLLS ('USER32.SendMessageA','44444',B,128,0,D)

7. On the form place two fields – the Icon filename and the button.

This example is for an Online task. This program could also be a batch program, in which
you do not need the button and the all the operations in the Block should be in task suffix.

Making an eDeveloper Online Task Window Modal
A Modal Window means that you cannot click another window without first closing the
current (modal) window.

To make the task window Modal:

1. Press CTRL+F to Enter the task’s Form repository.

2. Press CTRL+P to open the Form’s Property sheet.

3. Set the Modal Window property to Yes, or an expression that evaluates to True.

Exiting a Program from a Subtask Level
The Exit operation exists only on the current level. If you are on a task on a lower level,
the Exit operation only takes you up one level. The procedures below, discuss how to exit
a program from the lowest subtask level using a button on the task flow.
 eDeveloper V9 - How To 173

Two procedures are given, one uses the Fill function familiar to Magic V8, and the other is
unique to eDeveloper V9. Both procedures assume the user will click a button in order to
exit.

Through Magic V8, an event consists of two components, the trigger and what to do with
the trigger. In eDeveloper V9, these components are separated. The trigger is “raised” with
either the new Raise Event command, or with a push button. The second comment, or the
action, is called a Handler. You can place as many commands as you want inside the
handler. One property of the handler is to propagate. This means that the handler will
“push” the trigger to upper levels of the task.

This section includes the topics listed below:

• Using the KbPut Function with the Fill Function

• Using Events in eDeveloper

Using the KbPut Function with the Fill Function
1. In the Push Button handler, or action, add an Evaluate operation.

2. Enter the expression
KbPut (Fill (‘Exit’ACT,TDepth ()))

Using Events in eDeveloper
1. Add a Raise Event operation in the lowest task level in the Push Button handler.

2. The event should be an Internal Exit, and the Wait property should be set to No.

3. The Push Button trigger should be propagated.

4. Define the Push Button handler with the same operation in all tasks except the
parent task.
 eDeveloper V9 - How To 174

Playing WAV Files from eDeveloper
The following steps describe how you can use WAV files in your application using the
winmm.PlaySoundA function:

1. To call this method use the CallDLL function.

2. Evaluate the following expression:
CallDLL
('winmm.PlaySoundA','A48','c:\path\MsgSent.wav',13107
2)

c:\path\MsgSent.wav is the complete path of the WAV file. The PlaySoundA function
receives the following three parameters:

• A string that specifies the WAV sound to play.

• The executable file’s Handler, containing the resource to be loaded. This must be Null
if requesting a file on disk.

• A flag specifying that the first parameter is a filename.
The number 131072 is Hex 0x20000, which is the flag value for snd_filename.

Calculating the Sum of Several Records in a Table
Sometimes when you present a table on the screen you want to give the user the ability to
simultaneously perform certain actions on several of the records, such as calculating the
sum value of several records. With the table multi-marking capabilities and with a set of
eDeveloper functions you can add this functionality.

Assume that you have a table with two columns, product number and product price. If you
want to calculate the sum of the price of several products you can multi-mark them and
activate a handler to calculate the sum; for example, by pressing the F9 key.

To calculate the sum of several records in your table:

1. Create a handler for the F9 key, a system handler.

2. In the handler create a virtual numeric field. This field is used to accumulate the
values.
 eDeveloper V9 - How To 175

3. Create an Update operation for the virtual; the updated value should be zero. The
update condition should be MMCurr (0)=1. This function makes sure that this
update is performed only for the first record you marked.

4. Create an Update operation for the virtual. The updated value should be the
virtual + the column you are adding.

5. Create a Verify operation and display The Sum is '&STR (A,'##') where A is
the accumulated variable. The condition for this operation should be MMCurr
(0)=MMCount (0). This condition causes the verify to appear only for the last
record.

Changing the Caption of the eDeveloper Title
The default caption of the eDeveloper window is "eDeveloper". You can specify your own
caption for the eDeveloper window. This topic explains how to work with the windows
user32.dll to perform the required task.

To change the eDeveloper caption title:

1. Create a batch program with the following three virtual variables:

A. Programs Parent (Numeric 8) - to get the parent (the eDeveloper Window)
of the program window.
B. MAGIC Window Handle (Numeric 8) - to get the window handle of the
eDeveloper Window.
C. New Caption (Alpha 30) - to set the new caption.

2. In the Task Prefix, update the Programs Parent variable with the following
expression:

CallDLLS ('USER32.GetParent','44',WINHWND (0))
3. In the Task Prefix, update the MAGIC Window Handle variable with the

following expression:

CallDLLS ('USER32.GetParent','44',A)
 - where A is the 'Programs Parent' variable.
 eDeveloper V9 - How To 176

4. In the Record Suffix, update the New Caption variable with the following
expression:

CallDLLS ('USER32.SetWindowTextA','4A4',B,'My new title')
 - where B is the ‘MAGIC Window Handle' variable. You can replace 'My new
title' with any title you wish.

Changing the Windows Cursor
You can change the Windows cursor to different shapes throughout the application using
the SetCrsr function.

To change the cursor shape:

1. Define an Evaluate operation.

2. Add the SetCrsr(number) function to the Evaluate operation.

This function expects a numeric parameter that determines the cursor shape. The expected
numeric values and the cursor shape they produce are:

1. Standard arrow

2. Hourglass

3. Hand

4. Standard arrow and small hourglass

5. Crosshair

6. Arrow and question mark

7. I-beam

8. Slashed circle

9. Four-pointer arrow pointing north, south, east, and west

10. Double-pointed arrow pointing northeast and southwest
 eDeveloper V9 - How To 177

11. Double-pointed arrow pointing north and south

12. Double-pointed arrow pointing northwest and southeast

13. Double-pointed arrow pointing west and east

14. Vertical arrow

Sending E-mail from Within eDeveloper
To add the ability to send e-mail messages from your application:

1. Create a handler in your program for the Send action.

2. In your handler, define a numeric virtual variable (N6). This variable is used to
call the Mail Connect Error Code.

3. Update the Mail Connect Error Code variable with the function:

MailConnect (1,SMTP_Server_Name,'','')

The MailConnect function has the following parameters:

 MailConnect (type, server, user, pass)

Parameters:Type: number- 1 = SMTP server, 2 = POP3 server,
3 = IMAP server

Server: string- address of mail server

User, pass: string- user id and password of the mailbox
This method of calling creates the connection. If the connection establishment
fails, an error code is returned and the developer can decide what to do next,
such as displayiing the error with the MailError function.

4. If the connection is successful, select another numeric virtual variable (N6) with
the name Mail Send Error Code.

5. Update the Mail Send Error Code with the following function:
 eDeveloper V9 - How To 178

MailSend (from, to, cc, bcc, subject, message, file, …)
Parameters: from: string, email address of sender

To: string, a comma delimited list of main addresses

cc: string, a comma delimited list of CC addresses

Bcc: string, a comma delimited list of BCC addresses

Subject: string, the title of the message

Message: string, the content of the message

File, …: string, file name and path to be used as attach-
ments to the mail

Returns:0 if Success<0 - Error code
You can use the return value for validity check or check the error with the MailError
function.

Avoiding the Control Verification
The Control Verification is performed whenever the insertion point is taken away from the
control and whenever the control is passed through in Fast mode, before the Control
Suffix level.

If you want to add a button on your screen that will perform cancel and exit, and you have
Verify operations in the Control Verification level, then whenever the button is clicked, the
verification will be performed.

To avoid the control verification:

Use the CtrlName() function and check that the name is not the Cancel button name.
When the cancel button is clicked, the control verification will not be entered and you will
not have the problem with the Verify operations that you defined.
 eDeveloper V9 - How To 179

Printing With eDeveloper 10
his chapter discusses many of the printing issues in eDeveloper

This chapter covers the topics listed below:

• Automatically Generating a Printing Program

• Creating a Simple Printing Program

• Defining a Standard Header and Footer

• Printing to the Same I/O File from Several Subtasks

• Printing to the Same I/O from Several Programs

• Changing the Printing I/O Media

• Changing the Default Printer from Within eDeveloper

• Allowing Print Preview

• Creating More Than One Report Set in a Program

• Creating a Report in PDF Format

• Printing Different Length Multi-Line Texts

• Controlling the Number of Lines Displayed in a Table

• Printing a Table Within a Subtask

T

 eDeveloper V9 - How To 180

Automatically Generating a Printing Program
Using eDeveloper’s Automatic Program Generator (APG) you can create programs
automatically. This helps build the basic structure of a task that can be modified and
customized to implement more sophisticated needs.

You can access the APG in one of the following ways:

• On the Options menu, click Generate Program.

• Press CTRL+G.

Generating a Printing Program
This topic explains how you can use the APG to create a printing program.

To set the APG parameters

1. From a table in the Table repository press CTRL+G.

2. Select Generate mode to save the printing program in the Program repository,
select the Execute mode for execution only.

3. Zoom to the Column selection table and number the order of the columns from
left to right.
0 – zero means that the column will not be included in the fields on the report.

4. Give the program a name. This is the program name that the APG generates and
adds to the Program repository.

5. To save the output report as a file and letter, use the COPY COMMAND and
send it to the printer.

To choose the desired style

You can decide whether the report prints as a table or with each record on a separate page.
If you select Generate, you can design the output format at a later stage.

1. In the APG dialog box click the Style tab to give your report a three-dimensional
or two-dimensional appearance.
If you have a pre-designed GUI Output Form model you can select it from the
 eDeveloper V9 - How To 181

list of GUI Output Form models and apply it to the new report.

2. Select the Caption check box to display the program name as the report header.

Creating a Simple Printing Program
This procedure uses the Table APG to generate, but not execute, a Print program, and view
the output.

This section includes the topics listed below:

• Defining the Task and I/O Properties

• Preparing a Report’s Dataview

• Designing a Report’s Appearance

• Using the Output Form Operation

Defining the Task and I/O Properties
To define the Task and I/O Properties:

1. Define a Batch task with the Main file.

2. To disable the Start Execution dialog box press CTRL+C to open the Task Control
dialog box. Click the Modes tab and set the Allow Options field to No.

3. Press CTRL+I to open the I/O Files screen. Create an output file with Media set to
Graphic Printer.

4. To enable the end-user to select the printer, set PDlg to Yes. To provide the end-
user with the Print Preview option, press CTRL+P to open the I/O Properties
dialog box and set Print Preview to Yes.

Preparing a Report’s Dataview
To prepare a report’s dataview:
 eDeveloper V9 - How To 182

1. Select the Main table, and define the fields to use from that table.

2. Go to the Record Main section and using the Select operation select the fields
you want to use from the Main table.

3. If you need temporary fields, you can define Virtual fields and initiate them with
any expression in the Init column.

Note: Only use the Select and Link operations in the Record Main section.

Designing a Report’s Appearance
To design the report’s appearance:

1. Press CTRL+F to open the Form repository.

2. Create a new form with Interface Type as GUI Output, with Class as 1 and
Area as Header.

3. From the Name column zoom to open the Form editor.

4. Place a Table control on the form and assign the field to the table.

5. Add Text controls, such as OWNER(), DATE(), above the table. This appears
on every page as a header. You can also add a footer to the table in the same way.

Using the Output Form Operation
The step below connects between the reading of the records and sending them to the
printer using the designed format. You must send the information for every record to the
printer.

1. In the Record Suffix handler add an Output operation.

2. The Output form sends Form 2 to I/O file 1 with Page as Auto. This means that
Printing headers are automatically managed by eDeveloper.

eDeveloper treats the controls around the table as headers, and only prints them for the
first record and for every new page. For the second record, eDeveloper only sends the
specific row to the printer and not the entire page.
 eDeveloper V9 - How To 183

Defining a Standard Header and Footer
Sometimes you may want to print a standard header and footer, such as a company logo,
for every printed page.

In eDeveloper, you can define blocks of printing to be fixed headers and footers for every
page.

To define a permanent header and footer in your report:

1. Press CTRL+F to open the Form repository and create 2 new forms.
For the first one set Area = Page Header.
For the second one set Area = Page Footer.
These forms do not replace the normal headers that you need to generate for the
report. They are 2 forms that eDeveloper prints before all other forms on every
page.

2. Press CTRL+I to open the I/O file repository and then press CTRL+P to open the
I/O properties dialog. Assign your new forms to the Page header form and
Page footer forms respectively.

eDeveloper automatically raises an internal event before printing Page header/footer
forms. This lets you assign handlers to these events in order to calculate computed fields
that are placed on these forms.

These events are called: Page Header and Page Footer.

Printing to the Same I/O File from Several Subtasks
There are some complex reports that need to be handled by more than one task. If the
information for the report needs to be taken from several tables with a connection between
them, then several subtasks need to be defined in order to handle the table processing. An
example is an invoice, where you need to generate two tasks that will manage the printing.
One to print the invoice header and the second to handle each invoice’s line detail. Both
tasks need to use the same printing definition.
 eDeveloper V9 - How To 184

A task behaves in the following way: Before executing the Task Prefix, the engine opens
the I/O file, which is defined in the task’s I/O files, and closes it after executing all the
operations in the Task Suffix.

To use only one I/O file for all tasks, you need to find a global place for its definition, so
that it opens once when the processing of the report begins and closes once on completion
of the printing process.

Using the Same I/O Among Subtasks
To define an I/O file that can be used among several subtasks:

1. Define the I/O file in the parent task.

2. Zoom to one of the subtasks to view, in the I/O table, the files defined in the
parent task.
The title indicates that this is the I/O files table, belonging to the subtask that
prints the Order/Invoice lines. The I/O file Print Report was defined in the
parent task and can be used in the subtasks.

After defining an I/O file in the parent task so that all subtasks can use it, it is easy to
redirect the output to that I/O file. To be able to do this use this I/O file number when using
the Output Form operation.

Printing to the Same I/O from Several Programs
If you need to print a complex report such as a customer folder, you must write several
programs that manage the printing of items such as orders, invoices, or payments. These
programs must use the same printing and I/O definitions.

Before a program executes the Task Prefix, the engine:

• opens the I/O file, defined in the task’s I/O Files repository and

• closes it after executing all the operations in the program’s task suffix.

To only use one I/O file for all programs, define a global I/O file so that it:

• opens once when the processing of the report begins and
 eDeveloper V9 - How To 185

• closes upon completion of the printing processing. All programs should direct the
output forms to that I/O file.

Using the Same I/O Among Programs
To use the same I/O with different programs:

1. Defining a Global I/O file in the Top program of the Runtime Tree
To define one I/O file that can be used among several programs, you must define
it in the upper program. When calling other programs, you need to define another
I/O file in every program that referring to the upper I/O file.

2. Referring to the Upper I/O File Within a Called Program
Unlike subtasks, where all I/O files from the parent task can be seen and used in
the subtasks, when calling a program within a program you need to define an I/O
file in the called program that will refer to the I/O file defined in the calling
program.

This link between two I/O files can be done using the I/O name to use in the I/O
file properties. The I/O file in the called program must have an expression with
the name of the I/O file that was defined in the calling program.

When using the same I/O file name, the engine does not open a new I/O file, but
directs the output to the same I/O file that is already opened.

Changing the Printing I/O Media
This topic discusses the Windows print dialog and media expression in I/O file properties.

This section includes the topics listed below:

• Windows Print Dialog

• Media Expression in the I/O File Properties
 eDeveloper V9 - How To 186

Windows Print Dialog
If your application does not internally manage a list of resources for each user, the easy
(and quick) way to let the end user choose the printer is to display a list of printers before
the report execution.

To choose the printer:

1. Set the PDlg to Yes, or any Boolean expression, in the I/O file properties.
Before writing to that I/O file, the engine opens the Windows Printer dialog to
choose the printer and set its properties such as copies, orientation, or the name
of a file to create for later printing.

2. Select different priorities, if necessary, then click OK.

Media Expression in the I/O File Properties
You can use the media expression to define any valid operating system file name. You also
have the option to include a server and path to the file name or use a logical name in the
expression. In these cases, eDeveloper will read or write according to the specified
criteria. The expression is evaluated in the task initialization stage, and cannot change
dynamically. Instead of using a file name, you can use a reserved name such as: Console,
LPT1:, LPT2:, LPTn:, or any printer name as defined in the Windows printer list. The
engine redirects the output according to the media expression.

Changing the Default Printer from Within eDeveloper
This topic discusses the printer setup and printer dialog. It explains how you can provide
the end-user with the capability to change printer properties, such as copies, orientation,
and file name.

To setup the printer:

1. From the File menu click Printer Setup.
By selecting this option before executing the report, you can access the list of
printers defined in the operating system and change their properties.
 eDeveloper V9 - How To 187

This is the same action that can be performed by selecting the Printers option on
the Settings menu.

2. Make any changes, if necessary, and then click OK.

The Printer Dialog
In the I/O file properties the PDlg property is only relevant when Media=Graphic
Printer. The Yes option specifies that when the task opens the I/O file, a Windows print
dialog box appears allowing the end-user to change the printer and its parameters. The No
option specifies that the Windows print dialog box should not appear, and that the print
parameters are transferred directly to the printer without end-user interaction. The
Expression option allows dynamic selection of the Yes/No setting.

Allowing Print Preview
This topic explains enabling print preview in the I/O file properties and I/O file table
before Runtime report execution. It explains how to permit the end-user to view the
reports on the screen before sending them to the printer.

There are 3 ways to allow the end-user to view the report before sending it to the printer:

• In the I/O Properties dialog box set the Print Preview option to Yes.

• In the I/O file media set an expression Console.

• In the Task control dialog box set the Allow options property to Yes and use CTRL+I
before starting the process of the report. This is done when the confirmation message
box appears on the screen. In the I/O file repository, choose one of the other options.

Creating More Than One Report Set in a Program
This topic discusses Class > 0 and the Auto Page in Output Form operation, and
explains how to define several report layouts in the same program, and still let eDeveloper
handle the internal mechanism of automatic header printing.
 eDeveloper V9 - How To 188

GUI Forms (class = 0) are used for user interaction and Output Forms (class > 0) are used
for report layouts.

If you need only one report format, you only need to create 3 forms (class = 1) for header,
detail, and footer:

• If you use the Output form operation with Page = Auto, eDeveloper automatically
prints the headers of the same class on every new page.

• If the page header and footer are defined in the I/O file properties, they are printed
first. After that, it prints the headers of the same class.

• It is important to define the forms in the Forms repository in the same order as above.

If you need to define more than one layout for the report, and still have the automatic
headers and footers printing mechanism, then you need to create another class (class = 2)
with the second format.

Creating a Report in PDF Format
This topic discusses the printer driver and the PDF Writer and explains how to create
reports in PDF format.

This section includes the topics listed below:

• Creating the Report Outside eDeveloper

• Creating the Report Inside eDeveloper

Creating the Report Outside eDeveloper
To create a report in PDF format:

1. First install a printer driver that supports PDF format.
You can find this driver in the Adobe site under the support section.

2. Download and install the PDF writer driver.
You now have another printer in the OS environment that supports PDF format.
 eDeveloper V9 - How To 189

Any printing sent to that driver can be saved as a PDF file and can be viewed by
Acrobat Reader.

Creating the Report Inside eDeveloper
To create a report in PDF format:

1. In the I/O Files repository set the PDlg (Print Dialog) property to Yes

2. Enter an output file name in the expression column. This is the file name
eDeveloper uses.

eDeveloper sends the report to the PDF driver and creates a PDF file for preview.
You can print this file or send it via e-mail.

Printing Different Length Multi-Line Texts
This topic describes how to deal with a Multi-Line Edit control and how to print its
contents.

The Multi-Line Edit control gives the end-user the capability to store a lot of information
in a small area (place) on the GUI screen.

When designing the reports, it is impossible to guess how much space is needed to print
all the information (text) in such controls.

To create flexible controls on a flexible form that displays the entire text:

1. In the Form properties sheet set the expand form to One page or Multi-page.
This determines whether a GUI or text-based form can be expanded to
accommodate Multi-Line Edit controls.

2. Specify One page to enable the Multi-Line controls to be resized to contain all of
the text in the control’s frame. The form can increase its size up to a single page
to make room for new lines in the Multi-Line Edit control.

3. Specify Multi-page on GUI forms to enable Multi-Line Edit controls to expand
onto multiple pages using eDeveloper’s header and footer mechanism.
 eDeveloper V9 - How To 190

4. On the form, enter the Edit control properties and in the input group of
properties set the Multi-Line Edit to Yes.

Controlling the Number of Lines Displayed in a Table
You may be need to customize a report to fit the end-user’s paper type. You can do this by
controlling the number of lines to be printed on every page.

To design the report:

In this example to specify that every page should contain only 10 records:

1. In the Table properties of the form, set the Fix Size table property to Yes.

2. Set the table size according to the actual size that should appear on the paper.

3. On the last page, if there are less than 10 records, eDeveloper fills empty lines
until reaching the desired table size. This ensures that content below the table is
always printed at the same position on the page.

Note: You must set the table size to reflect the actual size on the form. If you do not do
this, the report will contain one record per page. By default, eDeveloper draws a
table with only one record.

Printing a Table Within a Subtask
This topic describes how to control the way eDeveloper prints tables within a subtask
when it is called several times from the parent task.

To print a table within a subtask:

1. In the [MAGIC_SPECIALS] INI section use the
ClosePrintedTablesInSubtasks setting.

2. If the ClosePrintedTablesInSubtasks does not exist or is set to Y, eDeveloper
closes the printed table every time it enters the subtask.

3. If it is set to N, the table opens and the print-out resembles one long table.
 eDeveloper V9 - How To 191

Defining Application Menus 11
his chapter discusses how you can define the menus in your application. You can
determine menu content, accessibility, size, and format. The different menu formats
discussed in this chapter include pull-down and context menus.

This chapter covers the topics listed below:

• Defining a Pull-down Menu for an Application

• Changing Options Displayed in the Runtime Toolbar

• Assigning Help Screens

• Assigning Help Prompts

• Defining an Application Default Menu

• Defining an Entry Image on the Runtime Context Menu

• Defining a Context Menu for a Specific Program

• Executing a Program from the Menu with Arguments

• Creating Additional Context Menus

• Defining a Shortcut Key for Menu and Separator Entry Types

• Defining a Shortcut Key for Program, OS Command, and Event Entry Types

T

 eDeveloper V9 - How To 192

Defining a Pull-down Menu for an Application
eDeveloper generates a default pull-down main menu for each new application. Each
application can have only one pull-down menu defined.

To define a menu:

1. From the Navigator pane, select the Menu repository.

2. Select the Default Pull-down menu and zoom to the Menu Definition list.

3. Add or remove entries.

Changing Options Displayed in the Runtime Toolbar
The supervisor can define rights for the logged-in user. If the user does not have the right
to execute an entry, the entry is disabled in the pull-down menu.

You can also change the menu in runtime by using the MNUENABL and MNUSHOW
functions.

This section includes the topics listed below:

• Defining Options Using the Menu Repository

• Defining Options Using the MNUENABL and MNUSHOW functions

Defining Options Using the Menu Repository
To define options for the Menu repository:

1. From the Navigator pane, select the Rights repository

2. Define rights in the Rights repository.

3. From the Settings menu, select the User ID option. From the User ID
repository, assign the defined rights to the appropriate users in the Rights
column.
 eDeveloper V9 - How To 193

4. From the Navigator pane, select the Menu repository.

5. Select the desired pull-down or context menu and zoom to the Menu Definition
list. Press CTRL+P.

6. From the Menu Properties dialog box, click the Properties tab, and zoom to the
Rights field.

7. Select one of the pre-defined rights, as defined in Step 1, as the right for this
menu entry. Click Select.

8. Repeat steps 5-8 to define options for another menu entry.

Defining Options Using the MNUENABL and MNUSHOW
functions

You can also change the menu entries a user sees in runtime by using the MNUENABL
and MNUSHOW functions.

To enable or disable a menu entry:

1. Use the MNUENABL function to enable or disable a menu entry according to a
specific condition that would be set in runtime, in addition to the assigned rights
of the menu entry.

2. To hide or show a menu entry:

3. Use the MNUSHOW function to hide or show a menu entry according to a
specific condition that would be set in runtime, in addition to the assigned rights
of the menu entry.
 eDeveloper V9 - How To 194

Assigning Help Screens
You can assign help screens, either internal, Windows, or URL help, and help prompts to
an entry in a menu.

To assign help screens for entries in a menu:

1. From the Navigator pane, define help screens in the Help Screens repository.

2. From the Navigator pane, select the Menu repository.

3. Select a pull-down or a context menu and zoom to the Menu Definition list.

4. Press CTRL+P for the specific entry to assign a help screen.
Note: you cannot assign a help screen to only System, Program, or OS
Command entry types.

5. From the Menu Properties dialog box, click the Properties tab, and zoom to the
Help field.

6. Select one of the pre-defined help screens as the associated help screen for this
entry. Click Select.

7. Repeat Steps 4-7 to assign a help screen to another menu entry.

Assigning Help Prompts
You can assign help screens, either internal, Windows, or URL help, and help prompts to
an entry in a menu.

To assign help prompts, or status bar messages, for entries in a menu:

1. From the Navigator pane, define help prompts in the Help Screens repository.

2. From the Navigator pane, select the Menu repository.

3. Select a pull-down or a context menu and zoom to the Menu Definition list.

4. Press CTRL+P to assign a help prompt to a selected entry.
Note: You cannot assign a help prompt to a System, Program, or OS Command
 eDeveloper V9 - How To 195

entry type, but not tan an Menu entry type.

5. From the Menu Properties dialog box, click the Properties tab of the Menu
Properties dialog box, and zoom to the Prompt field.

6. Select one of the pre-defined help prompts, as defined in Step 1, as the associated
help prompt for this entry. Click Select.

7. Repeat Steps 4-7 to assign a help prompt to another entry.

Defining an Application Default Menu
For every new application, eDeveloper generates a default context menu that is empty and
you cannot delete it. You can have more than one context menu in your application, but
only one context menu can be the default.

To define a default context menu:

1. From the Navigator pane, select the Menu repository.

2. Select Default Context menu and zoom to the Menu Definition list.

3. Add and remove entries from the Default Runtime Context menu.

Defining an Entry Image on the Runtime Context Menu
Context menus appear when the user clicks the right mouse button in Runtime mode. This
topic discusses how to define an image for a context menu entry.

To define the image:

1. From the Navigator pane, select the Menu repository.

2. Select a context menu and zoom to the Menu Definition list.

3. Press CTRL+P to assign an entry image to a selected entry.

4. From the Menu Properties dialog box, click the Toolbox tab, and from the
Image For combo box select Menu.
 eDeveloper V9 - How To 196

5. Select either a bitmap of your own for the image or an internal eDeveloper
image:
For your own bitmap, you need to specify the location of the BMP file in the
Tool Image field.
For an internal eDeveloper image, zoom to the Tool Number field and select one
of the displayed images.

6. Click OK to return to the Toolbox tab, and click OK to approve the entry.

Defining a Context Menu for a Specific Program
Context menus appear when the user clicks the right mouse button in Runtime mode. This
topic discusses how to assign a context menu to a program.

To define the context menu:

1. From the Navigator pane, select the Menu repository.

2. Create a new context menu, or use an existing context menu – not the default
one.

3. From the Navigator pane, select the Program repository.

4. Zoom to a specific program you wish to assign a context menu to
-OR-
Press CTRL+P to open the Task Properties dialog box.

5. From the Task Properties dialog box, click the Advanced tab, and zoom to the
Attached Context field.

6. Select one of the pre-defined context menus, as specified in step 2, as the
associated context menu for this entry.

7. Click OK to return to the Task Properties dialog box, then click OK to approve
the entry.
 eDeveloper V9 - How To 197

Executing a Program from the Menu with Arguments
This topic discusses how to add arguments to the program option of the menu so it will be
passed on to the called program.

To add an argument:

1. From the Navigator pane, select the Menu repository.

2. Select a pull-down or a context menu and zoom to the Menu Definition list.

3. Press CTRL+P for the specific entry you wish to send arguments to.
Note: You can send arguments only to a Program Entry type.

4. From the Menu Properties dialog box, click the Properties tab, and zoom into
the Arguments field.

5. Add the arguments you wish to send to that program as global variables, defined
in the main program.

6. Click OK to return to the Menu Properties dialog box, and click OK to return to
the Menu Definition table.

Creating Additional Context Menus
In the Menu repository you can define additional context menu structures to have as many
context menus as you want in an application.

To define a menu:

1. From the Navigator pane, select the Menu repository.

2. Create a new entry in the Menu repository or zoom to the Menu Definition list
and create a new menu type entry.

3. Press CTRL+G to open the Generate Menu Form dialog box.

4. Select the desired program range by typing the program’s numbers or by
zooming to the Program list.

5. Click OK to return to the Menu repository.
 eDeveloper V9 - How To 198

Defining a Shortcut Key for Menu and Separator Entry Types
You can select a menu entry by pressing a shortcut key to open the menu entry.

To designate a shortcut key for one letter:

1. From the Navigator pane, select the Menu repository.

2. Create a new entry in the Menu repository or zoom to the Menu Definition list
and create a new Menu type entry.

3. In the Entry Text column, add the character & before the letter that should select
that menu entry.
For example, if you specify Ed&it in the entry text, when the user presses the i
key, this selects the Edit option on the menu.

4. Click OK to return to the Menu repository.

Defining a Shortcut Key for Program, OS Command, and Event
Entry Types

You can select a menu entry by pressing a keyboard combination to open the menu entry.

To designate a shortcut key combination:

1. From the Navigator pane, select the Menu repository.

2. Select the Default Pulldown Menu entry and zoom to the Menu Definition list
and create a new menu entry type.

3. In the Acc Key column of that entry zoom to the Key Definition box, and press
the key combination that will be the shortcut key for that menu entry.
In runtime, pressing this key combination, such as CTRL+Z, activates this menu
entry anywhere in the application. Shortcut keys made in this manner will not
override previously made shortcuts using the same combination.

Note: This procedure is for the following menu Entry Types:

• Program, OS Command, Event

You should not use it for Menu or Separator entry types.
 eDeveloper V9 - How To 199

Creating Application Helps 12
Developer allows you to provide help for end-users at appropriate points in an
application. You can design the help to be displayed when the user requests help
from anywhere in the program. In addition, you can provide prompts and

tooltips that are displayed automatically. When you define a column, type, form, control,
or menu item, you can also specify an associated help.

This chapter covers the topics listed below:

• Creating Internal, Prompt and Tooltip Helps

• Designing WinHelp Help Topics

e

 eDeveloper V9 - How To 200

Creating Internal, Prompt and Tooltip Helps
To define an Internal, Prompt or Tooltip Help:

1. From the Workspace menu click Help Screens option to display the Help
Screens repository.

2. Press F4 to create a new line, and enter a name in the Name column.

3. Choose the help type from the Type column: Internal, Prompt, Windows, Tooltip,
or URL.

4. From the Name column zoom to enter the help text.

5. In the Properties sheet of your form, column, model or control zoom from the
Help screen, Tooltip or Help prompt property to select the appropriate help
from the Help List.

Note: If a column is associated to a model, the internal, prompt and tooltip help
parameters are copied from those defined for the model. eDeveloper keeps the
column’s inheritance of the model’s help parameters, unless you change these
values.

Designing WinHelp Help Topics
An external Help is a help file that is called by the Windows help utility, Winhelp.exe. The
online Help for eDeveloper is an example of this. Windows help files are created in a word
processor or specialized Windows help authoring tool.

You can set eDeveloper to call the Windows help facility to display a Windows Help file.
Windows Help can be attached to types, columns, forms, and programs. All the Windows
Helps for an application are stored in one Windows Help file.
 eDeveloper V9 - How To 201

To define or edit WinHelp screens:

1. From the Workspace menu click Help Screens option to display the Help
Screens repository.

2. Press F4 to create a new line, and enter a name in the Name column.

3. In the Type column select the Windows option.

4. Press CTRL+P to open the Windows Help Properties sheet. In the Details
property, enter the name of the Windows Help file.

5. From the drop-down list select the Help command that you want to send to the
WinHelp engine.

6. In the Help Key parameter, type the context number of the Help topic.

7. Press F7 to test the help topic.
 eDeveloper V9 - How To 202

Using eDeveloper Toolkit
Utilities 13

agic includes a variety of utilities designed to help you to develop, modify, main-
tain, and move your application.

This chapter covers the topics listed below:

• Porting Your eDeveloper Application

• Creating an eDeveloper Application Documentation File

• Cross-Referencing an Object

• Organizing Your Application

M

 eDeveloper V9 - How To 203

Porting Your eDeveloper Application
The Magic Flat File (MFF) lets you deploy a database-independent eDeveloper
application file. The application, created as a binary file, can be stored anywhere on the
user’s computer system and is used for deployment only.

This section includes the topics listed below:

• In the Development Environment

• In the Runtime Environment

In the Development Environment
To create a Magic application flat file in the Development environment:

1. Open your application.

2. From the File menu click Save as MFF.

3. Name the Magic Flat File (MFF) and press Save.
This creates an MFF file for your application. Move this Magic Flat file to the
directory where you’ll run your application.

In the Runtime Environment
To create a Magic application flat file in the Runtime environment:

1. From the Settings menu, click Applications option and select your application.

2. Press CTRL+P to open the Application Properties dialog box.

3. Check the Flat MCF deployment check box.

4. Click OK.
eDeveloper runs the MFF file instead of the MCF file for this specific
application.
 eDeveloper V9 - How To 204

Creating an eDeveloper Application Documentation File
The eDeveloper Documentation Template utility is used to create hard copies of the
eDeveloper elements that are associated with the various eDeveloper structures for a
particular application, such as tables, repositories, dialog boxes and end user forms. These
hard copies serve as developer documentation.

You can also use the default documentation template file, DOC_ STD. ENG, or DOC_
EXT. ENG as a guideline. These files, which create documentation for all data items, are
part of the configuration files in the eDeveloper package.

After you have prepared your documentation template file, you can run the export utility
in Document mode.

Running the Export Utility in Documentation Mode
To run the export utility in Document mode:

1. Open your application. From the Settings menu click Environment and click the
External tab.

2. Place the cursor on the Documentation Template File property and enter the
name of your documentation template file.

3. Press SHIFT+F10 to open the Export/Import dialog box.

4. From the Operation list select Export Document.

5. From the Type list select the eDeveloper component you want to document
(except for Application components). Your documentation template file must
include a section for the component you select.
If your documentation template file has sections for several eDeveloper
components, repeat Steps 5 -9, each time selecting a different eDeveloper
component for the Type list.

6. If there are several occurrences of the type you have just selected, you can
specify a subset of these items by zooming in the Range section’s From and To
fields to indicate the range of occurrences you want to document.
 eDeveloper V9 - How To 205

7. In the File Name field type an output file name.
The documentation generator chooses the first letter of the output file name
based on the component you have selected, placing the file in the same disk
directory in which the application resides, according to the application prefix
specified in the Application repository. You can override the generated first letter
in the filename.

8. Click OK to confirm your export settings.
If the documentation template has a syntax error in the section you have
specified, you receive an error message, and the process terminates.

9. If you want to create documentation for other components, return to the Type
combo box and select the next type.
You can interrupt the documentation generator at any point by clicking Exit or
pressing ESC.

Cross-Referencing an Object
The eDeveloper cross-reference utility provides information about where an entity such as
a model, column, or program is used. An example of where you might want to use the
cross-reference utility would be to obtain a list of programs that refer to a certain column,
index, or table.

The eDeveloper cross-reference utility lets you find information about the following
objects:

Modal Table

Model Index

Program Help screen

Right Menu

Event Component

Expression Form

I/O field
 eDeveloper V9 - How To 206

The results are displayed in the cross-reference tab of the Navigation pane, and can be
printed. You can also delete the results from the result set.

This section includes the topics listed below:

• Selecting Entries to Cross-Reference

• Deleting or Searching for a Cross-Reference

• Saving or Printing Cross-Referenced Information

• Changing the Maximum Number of Cross-Referenced Results

Selecting Entries to Cross-Reference
To select entries to cross-reference in a repository:

1. In an eDeveloper repository select an entry and press CTRL+X.

2. In the X-Ref dialog box check the boxes for the repositories in which you want to
cross-reference your object.

3. Click OK.
The results are displayed in the cross-reference tab of the Navigation Pane.

4. Click the result entry to display the corresponding repository in the Workspace
pane.

Deleting or Searching for a Cross-Reference
To delete a cross-reference item:

On the Navigator pane click X-Ref and select a cross-reference item. Press F3 to
delete the cross-reference.

To search for a cross-reference item:

1. In an eDeveloper repository select an entry and press CTRL+X.

2. In the X-Ref dialog box check the boxes for the repositories in which you want to
cross-reference your object.
 eDeveloper V9 - How To 207

3. Click OK.
The results are displayed in the cross-reference tab of the Navigation Pane.

Note: When you activate a second cross- reference search, the cross- referenced object
becomes the root in the result tree.

Saving or Printing Cross-Referenced Information
To save cross-reference results:

From the File menu click Cross-Ref Result and then click Save Result.

To print cross-reference results:

From the File menu click Cross-Ref Result and then click Print Result.

Changing the Maximum Number of Cross-Referenced Results
To change the maximum number of cross-reference results in the Navigation pane:

1. From the Settings menu click Environment.

2. Click the Preferences tab.

3. In the Maximum number of X-ref results property enter a figure for the desired
maximum number of cross-reference results.

Organizing Your Application
eDeveloper has features that allow you to:

• define Folders for an application.

• use Bookmarks for direct access to a desired object.

• add Comments to document your application.
 eDeveloper V9 - How To 208

• create and use Components in other applications.
For more information, see Chapter 14, Using eDeveloper Components.

This section includes the topics listed below:

• Using Comments

• Bookmarking a Location

• Using Comments

Creating eDeveloper Folders
To create eDeveloper folders:

1. From the Navigator pane select either the table, model, program, rights, help
screens, or components repositories.

2. Press F4 to create a new folder.

3. Give the new folder a name, for example Reports.

4. Repeat steps 2-3 to create other folders.

5. Move to the repository and select the desired folder for each object.

Bookmarking a Location
You can easily bookmark locations in your application for later access. The bookmarks are
stored within the application file and are available through the navigator screen.

At any point during application development, you can save a bookmark of the position
you are at.

To bookmark a location:

1. Select the desired object

2. From the Options menu, select Bookmark or press CTRL+B at any point within
 eDeveloper V9 - How To 209

the application.
The Bookmark box opens.

3. In the Bookmark box enter a name for your bookmark and click OK.

To return to a location using a bookmark:

1. In the Navigator pane (ALT+F1), open the pull-down menu.

2. Select the Bookmark item to see the list of bookmarks.

3. Select the required Bookmark and zoom to the entry.

Note: Bookmarks are shared by all users. Therefore it is advisable that you give each
bookmark a descriptive name, so that any user will be able to understand to where
the bookmark is pointing.

Using Comments
Comments enable you to internally document your application.

To add comments to an application object:

1. Select the item, such as a task or table.

2. Press F10 to open the Comments For text box.

3. Enter your comment.
 eDeveloper V9 - How To 210

Using eDeveloper Components14
n eDeveloper, you can define application objects as components and then use them in
other parts of your application or other separate applications.

A component is an eDeveloper application file with an interface. Using the interface,
another eDeveloper application can call an object within the first application, and execute
or use the object as if it was part of the host application. The file you create is called a
Magic Component Interface (MCI) file.

You can create components for the objects listed below:

This chapter covers the topics listed below:

• Creating a Component

• Loading a Component

• Integrating Components into Your Application

• Sharing an Event Among Applications

• Maintaining the Loaded Component Application

Models Rights

Tables Events

Programs Application properties

Helps Environment settings

I

 eDeveloper V9 - How To 211

Creating a Component
To create a component:

1. Open the application you want to use to build your Component, and from the
Options menu choose Component Builder.
This opens the Component Builder, which is divided into an upper and lower
table.

2. In the upper table press F4 to create a new entry, and give your component a
name.

3. Zoom from the column for the object you want to select, to create a line in the
lower table.

4. Click Add Items to select the objects you want to build into your Component
and then click OK.
A selection window opens showing the objects available for selection. For
example, if you selected the Tables tab, the window displays the tables available
for selection.

Note: You will only be able to select those objects that have been assigned with a
public name.

To specify a path for the MCI file, and to complete its build:

1. After you finish entering the objects in all the columns, from the Component
Builder menu click Build Interface File.

2. Specify the designated path and name for the MCI file. Zoom to browse your
disk drives.

3. Click OK to create the MCI file.

4. From the File menu click Close Component Builder.
 eDeveloper V9 - How To 212

Loading a Component
You can use components for specific application operations that can be used by other
applications. By exporting components you can share the resources you create in one
application among a number of other applications. You share the objects by loading the
component into your application.

To load a component:

1. Open the application in which you want to use the component.

2. From the Navigator pane select the Components repository.

3. Press F4 to create a new line.

4. Press F5 to open the Open file dialog box.

5. Select the required component interface file and click Open.
This loads the component and you can now use it in your application.

Integrating Components into Your Application
When you open a selection list in an application with a component, the View list at the top
of the window enables you to define the objects for selection, as follows:

• All – All the objects are available in the selection window from the current application
and from components. The component object’s prefix is the component name from the
component repository.

• Internal – Only objects from the current application are available.

• Component name – All the components names from the Component repository
appear. You can select to view one object from within a specific component.
 eDeveloper V9 - How To 213

Selecting a Component for Integration
The steps below illustrate the procedure for selecting a table component.

1. Open the Program repository and press F4.

2. Press CTRL+G to activate the Automatic Program Generator (APG).

3. Zoom from the Main Table field to open a selection window with both the
current application’s and the component’s tables. The component table appears in
red.
You can use the View list to limit the tables available for selection.

4. Select the required table in order to create a program based on a component table,
as opposed to a table from the current application’s Table repository.

Note: In the Component Builder you can only select objetcs that have been
given a public name.

Sharing an Event Among Applications
An application Event Handler you define as a Global Event in the Main Program, can be
caught in a component when the event is fired in another component, or in the main
application itself, the host application.

A component, that includes an Event Handler in the component main program that you
define as a Sub-Tree, can also be caught in the component when the program which fired
the event is also part of the component.

The search path for the Event Handler is always as follows:

• The starting point is the task where the event was fired up in the Runtime tree, to the
Main Program of the host application.

• After this climb, the event handler is searched in the loaded components and Main
Program, but only for Handlers defined as Global.

Host application event handlers defined as Global, will be treated as subtask handlers. The
component application’s event handlers, which are defined as subtask, and fired from a
program in the same component application, will be treated as Global handlers.
 eDeveloper V9 - How To 214

Maintaining the Loaded Component Application
When you create a component, you should include information about the help, colors and
fonts files that are used in that specific component. If you do not include this information
when you create the component, the host application’s environment will take effect.

In Runtime, once the component is loaded, some of the component application’s
environment properties, such as Database, DBMS, Server and Services properties and
Logical Names, are added to the correct Magic.ini sections in the of the host application.

Note: When deleting a component from the host application, the added properties are not
removed automatically from the Magic.ini file.

You can set special environment values when you create a new component in the
Component Interface Builder. These values are stored within the MCI file. When loading
the component into the host application these values are entered into the host environment.

Adding Settings to a Component
To add settings to a component:

1. From the Options menu click Component Builder to open the Component
Builder.

2. From the Environment column zoom to open the Environment selection table.

3. Click a tab and then click Add Items to open the tab’s selection list.

4. When you have made your selection click OK to add the settings to your
component.

5. From the Component Builder menu click Build Interface File to save your
component as an MCI.
 eDeveloper V9 - How To 215

Partitioning eDeveloper 15
Developer achieves a high level of interoperability among different computing
environments. Interoperability means the ability of eDeveloper applications to
operate in multi-database, multi-platform, and multi-network data processing

contexts. Using the simple interface common to all eDeveloper applications, every user,
from any workstation, can access any type of local or remote database, execute queries,
and update the data.

The term Application Partitioning is used to describe the process of developing
applications that distribute the application logic among two or more computers in a
network. In the simplest case, the application can run on a single PC, as a remote service,
and send task requests for execution to a server. In more advanced cases, the application
logic can be distributed among several servers.

This chapter covers the topics listed below:

• Setting Up an eDeveloper Partitioned Application

• Retrieving Broker Information From the Command Line

• Running a Remote Program From the Command Line

e

 eDeveloper V9 - How To 216

Setting Up an eDeveloper Partitioned Application
You can choose which application components you want to run on the server side (remote
engine) and which components will run on the client side (local engine).

Background tasks should be selected as remote executed tasks.

Setting up an eDeveloper Partitioned Application requires the following:

1. Partitioning the eDeveloper Application

2. Knowing How a Partitioned Application Works

3. Setting the eDeveloper Application

4. Setting Up the Server

5. Setting Up the Client

6. Using eDeveloper Partitioning

Partitioning the eDeveloper Application
eDeveloper supports partitioning of the application logic among one client and one or
more servers. Partitioning the application means that part of the application runs on the
client machine and other parts run on other server machines. In addition to the eDeveloper
client installation, eDeveloper Enterprise installation should be performed on each
machine running an eDeveloper server. Only batch processes can be run on the server
side.

Knowing How a Partitioned Application Works
An eDeveloper engine should be started and connected to a messaging server. The
eDeveloper client issues a Call Remote for a service and a specific program (public name).
The request is sent to the eDeveloper server which processes the request.

There are two request types:
 eDeveloper V9 - How To 217

• Synchronous requests - The eDeveloper client waits until the server finishes processing
the request.

• Asynchronous requests - These are sent from the client, and the client immediately
continues processing without waiting for the server to finish its processing.

For each Call Remote operation, the Wait flag determines the type of request (Yes =
Synchronous, No = Asynchronous). A messaging server is also required to send requests
from the eDeveloper client to the eDeveloper server. The Magic Broker is one of the
messaging servers that eDeveloper works with.

The servers and the client can share the same MCF file or use separate MCF files.

Setting the eDeveloper Application
Set the public name for eDeveloper programs that will be called from another eDeveloper
client or server.

Setting Up the Server
To set up the server:

1. Set up the Magic Server to connect to a messaging server.

2. Define a messaging server in the Servers list.

3. Set Activate as Enterprise Server to Yes and set the Messaging Server to the
appropriate Server in the Partitioning tab.

4. Two optional settings:
In the System tab set a Start Application, you can command the Magic server to
open an MCF file in advance.
In the Partitioning tab if you set the Enterprise Server can change application
property to No, you can disable the replacement of an already loaded MCF.

When you use the Magic Broker as the messaging server, and set a password for accessing
the Broker (in the Mgrb.ini file), the same password should be set in the password field in
 eDeveloper V9 - How To 218

the properties of the Magic Server you defined. It is also recommended to use a secret
name for this field.

Setting Up the Client
To set up the client:

1. Set up a Magic Server.

2. Enter a name (descriptive name).

3. Set the Server property as the messaging server defined in the Servers list.

4. In the Remote Application property, enter the remote application name.

5. In the Call Remote properties window choose the service, the public name of the
called program, and the return codes.

Using eDeveloper Partitioning
Before the eDeveloper client can issue Call Remote requests, the Magic server engines
must be started. Each one should be connected to a messaging server.

The eDeveloper client can now issue requests.
 eDeveloper V9 - How To 219

Retrieving Broker Information From the Command Line
You use the MGRQCMDL utility with the different tags to learn about the state of the
broker and the applications attached to the broker. The Magic Command Line Requester
(Mgrqcmdl.exe for Windows, Mgrqcmdl for Unix) can be used to query the Magic
Broker. It has a set of parameters that enable querying and sending commands to the
Magic Broker.

• To list the Magic Engines connected to a Magic Broker:

mgrqcmdl –query=rt
The output contains a list of Magic Engines that are currently connected to a
Magic Broker.

• To list the applications that the Magic Engines serve:

mgrqcmdl –query=app
• To list the requests a Magic Broker received:

mgrqcmdl –query=log
The requests are listed in descending order (starting with the last request that the
Magic Broker received).

• To list a range of request numbers:

Use –query=log=100-90.
• To limit the list to a single application:

Use –query(app_name).
• To list the requests waiting in queue:

mgrqcmdl –query=queue
 eDeveloper V9 - How To 220

Running a Remote Program From the Command Line
You use the MGRQCMDL utility with the tags to execute a program in a remote
eDeveloper Application.

The Magic Command Line Requester (mgrqcmdl.exe on Windows, mgrqcmdl on Unix)
can be used to call remote programs on Magic Engines that are connected to a Magic
Broker.

To run a remote program:

1. The minimum information for calling a remote program is:
an application name: (-appname=my_appl)
and a program’s public name: (-prgname=my_remote_prg)

mgrqcmdl –appname=my_appl –prgname=my_remote_prg
2. To specify a username and password, use the parameters:

username=my_user and –password=my_pass
3. When the output of the program is a Requester, you redirect the output to a file

using the parameter:

-filename=request.out
4. You supply additional arguments using:

-arguments=… and –variables=…
5. To set the priority of the request (between 0 and 9) use:

-priority=5
 eDeveloper V9 - How To 221

Connecting to External
Applications 16

Developer can receive data from other applications using Dynamic Data
Exchange (DDE), OLE Automation, and Call Operations for a DLL file or a 3rd
Generation Language.

This chapter covers the topics listed below:

• Calling eDeveloper from an External Application

• Calling an External Application Using the Exit Operation

e

 eDeveloper V9 - How To 222

Calling eDeveloper from an External Application
You can connect from non-eDeveloper clients to an eDeveloper server. eDeveloper
supports connections using standard methods such as Enterprise Java Beans.

Calling an External Application Using the Exit Operation
The Exit operation lets you run external programs and script files from eDeveloper. You
can perform the Exit operation using an expression and eDeveloper then sends a command
to the operating system. The command can include any parameters that are used when
calling an external program from a command line, such as cmd on Windows NT.

Examples of expressions are:

• notepad list.txt

• external.bat

• output.log

This section includes the topics listed below:

• Using the Exit Operation in a Client/Server Environment

• The Wait Property

• The Show Property

• The Ret Property

• Troubleshooting

Using the Exit Operation in a Client/Server Environment
When using eDeveloper Client/Server architecture, you can start running any program on
the server, the machine where the data server runs, by specifying the server name, in
parentheses, in the expression. For example:

‘(unixsrvr) prog1’
 eDeveloper V9 - How To 223

The Wait Property
The Wait property controls whether an eDeveloper program waits until the external
program is completed.

• When you set the Wait property to No, the eDeveloper program does not wait for the
called program to finish before continuing.

• When you set the Wait property to Yes, the eDeveloper program waits for the called
program to finish before the eDeveloper program continues.

The Show Property
The Show property controls the initial behavior of GUI external programs that are called.

The valid values are: Normal, Hide, Minimize, and Maximize.

The Ret Property
The Ret property, which is optional, lets you specify a numeric variable that will receive a
return code. If the returned value is greater or equal to zero, the external program was
successfully executed by eDeveloper, and the return code should be interpreted according
to the specifications of the external program. If the value returned is less than zero, the
command failed, which usually happens because a wrong program or path name was
specified.

Troubleshooting
If you have problems starting a program using the Exit operation, try issuing the same
command from the command line interface.

• For Windows use cmd or DOS window

• For UNIX use the terminal window (like xterm)
 eDeveloper V9 - How To 224

Improving Performance 17
here are some procedures you can use to improve eDeveloper performance.

This chapter covers the topics listed below:

• Influencing the DBMS Optimizer

• Using RDBMS Features

• Repeatedly Calling a Task

• Accessing a Heavily Used Table

T

 eDeveloper V9 - How To 225

Influencing the DBMS Optimizer
eDeveloper allows for influencing the DBMS optimizer using DBMS hints. eDeveloper
supports sending hints to the DBMS in order to change or influence the optimizer’s
behavior or priorities.

This section includes the topics listed below:

• Prioritizing the Hints

• Examples of Hints

Prioritizing the Hints
eDeveloper can send hints to the database at the following levels:

• Index entry level

• Table entry level

• Database entry level

The priority is: index, table, database. This means that if there is a hint in both index and
table level, the index hint is sent to the DBMS. For example, if you specify
FORCE_INDEX hint:

Hints are a method of changing the DBMS optimizer’s behavior, and must be used with
special care and caution since the effect can be serious.

In the Properties
dialog of the

Effect

Index Applies only to the index

Table Applies to all indexes in the table

Database Applies to all indexes in all tables in the database
 eDeveloper V9 - How To 226

Hints can be of the following nature:

• The optimization approach for a SQL statement

• The goal of the cost-based approach for a SQL statement

• The access path for a table accessed by the statement

• The join order for a join statement

• A join operation in a join statement

• The locks to be set for a table being accessed

• The isolation level to be used

Examples of Hints

Database
• Oracle:

 /*+ FIRST_ROWS */

• SQLserver:
FASTFIRSTROW
SERIALIZABLE

Table
• Oracle:

 /*+ ROWID */

• SQLserver:
HOLDLOCK
LOOP
MERGE
FORCE ORDER
 eDeveloper V9 - How To 227

Index
• Oracle:

 /*+ (INDEX table index_name)

• SQLServer:
INDEX = index_name

You can change the session’s parameters constantly using a Direct SQL command, such as
(for Oracle):

ALTER SESSION SET OPTIMIZER_GOAL = FIRST_ROWS

Using RDBMS Features
This topic discusses the use of specific DBMS features in order to enhance performance
and those eDeveloper features that affect the DBMS.

The following DBMS features can be used within eDeveloper programs:

• Direct SQL statements

• Using views

• DBMS Stored Procedures

• RDBMS sort

• Sequence / Identity

You should examine thoroughly the following features should be thoroughly examined:

• Check existence flag

• Non-unique keys

• Range expression

• Mixed segments in eDeveloper indexes
 eDeveloper V9 - How To 228

Improving Performance Using DBMS Features
In order to improve performance, you should consider implementing the following list of
eDeveloper-supported DBMS features:

• Direct SQL

• Database views

• Database stored procedures

• RDBMS sort

• Sequence

Direct SQL
• DDL statements such as

INSERT into TABLE1 select * from TABLE2

• Aggregate functions such as
SELECT sum(FIELD1), AVG(FIELD2) from TABLE1

• Massive UPDATE/DELETE such as
DELETE from TABLE1 where …

Database Views
Views are a means of defining a range of records over one or more joined tables. Since a
view is only a definition, it does not take up any database space. The view can include
aggregate functions, computed fields, and joined tables.

Database Stored Procedures
Stored procedures are procedural SQL code that can be executed by eDeveloper. A stored
procedure can include SQL code such as cursor handling, DMLs, and, DDLs.

RDBMS Sort
The database can sort data much faster than eDeveloper. However, eDeveloper requests a
database sort in the following cases:
 eDeveloper V9 - How To 229

• When an eDeveloper index is used.

• When an eDeveloper sort is defined over fields from the main, or link Joined tables.

In other cases eDeveloper will execute the sort internally.

Sequence / Identity
In cases where a counter file has to be created, databases supply built-in counters.

eDeveloper supports MSSQLserver by specifying IDENTITY in the TYPE property of a
column in the table repository.

eDeveloper supports Oracle SEQUENCE by Direct SQL commands as SELECT
sequence_name.NEXTVAL from DUAL and SELECT sequence_name.CURRVAL from
DUAL.

Gaining Performance
In order to improve performance, you must examine the following list of eDeveloper/
DBMS features, and check their effect on the application.

• Check Existence: You can request eDeveloper to check for the existence of every table
that you open. This action takes time. This might be an unnecessary step since these
tables might be known to exist.

• Non-unique eDeveloper indexes: When eDeveloper uses a non unique index as its
main/linked table index, it adds the table’s position to the end of the ORDER BY clause
sent to the DBMS. This rule is valid for main tables in online tasks and for all linked
tables.
An ORDER BY clause including the segments from the table’s position might cause
performance problems, especially if there is no corresponding DBMS index to support
the query at hand, which is usually the case.

• Range expression: eDeveloper evaluates this expression for every record retrieved
from the DBMS in order to determine whether it is considered a part of the dataview.
This might cause performance problems since a record has to reach the client in order
to be determined as part of the dataview. Use the eDeveloper SQL WHERE clause or
the DB SQL WHERE clause to solve this problem. The client asks the DBMS to return
only the records that belong to the dataview for processing.
 eDeveloper V9 - How To 230

Repeatedly Calling a Task
When a task is repeatedly called, you can define it as resident. This means that the
eDeveloper code for this task is loaded into memory and can be re-called for use. This also
affects the cursors being used by the task, and on the linked data being accessed by the
task.

To make a resident task:

There are two conditions that have to be met in order for a task to be resident:

1. In the Task Properties dialog box click the Advanced tab and set the Resident
Task property to Yes.

2. Open the files being accessed by this task in the calling task or in any task above
it in the runtime tree.

Once these conditions are met, the task becomes a resident task. This means that:

• The code generated by this task is loaded into memory and is released only at a later
stage. A non-resident task is always retrieved from the application file itself.

• The cursors opened by the resident tasks are prepared once, upon first entering the task.
Once re-entering the task, the cursors are closed and re-opened. These cursors are freed
once the tables accessed by the resident task are closed. You can determine the stage at
which the cursors are free by closing the tables accessed by this task at different stages
in the runtime tree.

• The cache, accumulated by the resident task for linked tables, stays available for the
next time this task will be called. The cache is cleared once the linked table accessed by
the resident task is closed.

This behavior enhances performance since it requires less I/O for code access, cursor
preparation, and data access.
 eDeveloper V9 - How To 231

Accessing a Heavily Used Table
eDeveloper allows the developer to define a table entry as resident. Preloading a table
means that its data will be read and stored in the client’s memory, and all access will be
through the loaded data in memory.

The programmer and the user can decide whether resident tables will be pre-loaded. The
data can be pre-loaded upon opening the application, or upon opening the table, depending
on the parameters specified in the DB Tables list of the running tasks.

To pre-load a table’s data:

1. Open the Table Repository and press CTRL+P to open the Table Properties
dialog box.

2. Click the Advanced tab and set the Resident property to either Immediate or
On demand.

When using the toolkit for debugging programs, tables are pre-loaded once the toolkit
switches to runtime mode. They are released once you switch back to toolkit mode.

To eliminate the loading of the tables to memory when going to runtime:

In the Magic.ini file’s [MAGIC_ENV] section set the LoadResidentTables
setting to No.
This can also be used by the user to eliminate the need to load resident tables.
 eDeveloper V9 - How To 232

Deploying eDeveloper 18
Developer deployment involves several aspects related to the configuration
environment. You should properly configure your deployment environment in
order to optimize performance.

This chapter covers the topics listed below:

• Creating and Using a Magic Flat File

• Setting Up a Multi-Threaded Environment

• Managing a Multi-Threaded Environment

• Setting a Single Context Environment

e

 eDeveloper V9 - How To 233

Creating and Using a Magic Flat File
The Magic Flat File (MFF) lets you deploy a database-independent Magic application file
(MCF). The eDeveloper application is stored as a compressed binary file. You can only
modify the MCF on which the MFF is based. An MFF file cannot be modified and it can
only be used for deployment purposes only. eDeveloper accesses the MFF directly without
the involvement of any database gateway.

This section includes the topics listed below:

• Creating a Magic Flat File

• Running an eDeveloper Application Using a Magic Flat File

Creating a Magic Flat File
To create an MFF:

1. In Toolkit mode open an eDeveloper application.

2. From the File menu click Save As MFF to open the Save As dialog box.

3. Enter the name and location of the MFF file.

Running an eDeveloper Application Using a Magic Flat File
There are two ways to setup an application to run as a Magic MFF. The first method
involves setting the Magic.ini file to run the application as a Magic Flat file.

To set the Magic.ini file:

1. From the Settings menu click Applications and park on your application.

2. Press CTRL+P to open the Application Properties dialog box.

3. Check the Flat MFF deployment box.

4. Click OK.
Note: An MFF file can only be run in eDeveloper Runtime mode. If the
application’s file name is not specified, the application’s prefix is used.
 eDeveloper V9 - How To 234

You can also run an MFF in Runtime mode as follows:

Call the MFF file from the command line prompt using the following parameter:

/MFF=<flat MCF file name>
Note: Make sure that for each MFF file, you have a corresponding MCF file saved in your

system. The eDeveloper Toolkit mode cannot read MFF files. eDeveloper
components can also be stored as MFF files, but you need to create a separate MFF
file for each application that will be used as a component.

Setting Up a Multi-Threaded Environment
The eDeveloper engine is a multi-threaded engine that runs in the background. One
application server can serve concurrent users by using multiple threads. For each request,
eDeveloper creates a new thread whose sole purpose is to serve the request. The thread
remains only as long as eDeveloper operates on the browser side when the request arrives
from an eDeveloper interactive web application client.

To set up a Multi-Threaded environment:

1. From the Settings menu, click Environment option to open the Environment
dialog box.

2. Click the System tab, and set the Application startup mode property to
Background.

3. Restart eDeveloper.

Limiting the Number of Concurrent Threads
You can limit the maximum number of threads by defining the requisite environment
setting to a non-zero value. If the value of this property is zero, there will be no user limit.

To define the number of concurrent threads:

1. From the Settings menu click Environment to open the Environment dialog
box.
 eDeveloper V9 - How To 235

2. Click the Enterpise Server tab, and in the Maximum number of concurrent
requests property enter a value other than zero.

The maximum number of concurrent threads is further limited by two factors:

• Your eDeveloper license: The number of users set in the license cannot be exceeded.
This means that the total number of threads cannot exceed this value.

• The operating system limitation: This is due to a possible limited amount of resources.

Sending Requests to Multiple eDeveloper Applications
To serve requests by two or more separate eDeveloper applications, you must start an
eDeveloper engine separately for each eDeveloper application.

Note: All threads of a single eDeveloper Enterpise Server serve the same application.

Managing a Multi-Threaded Environment
The eDeveloper Enterpise Server is a multi-threaded engine and can serve concurrent
requests through separate threads. This topic explains how to monitor and manage an
eDeveloper multi-threaded environment.

Monitoring and managing an eDeveloper multi-threaded environment involves:

• Monitoring eDeveloper threads

• Starting an eDeveloper application server

• Shutting down an eDeveloper application server

This section includes the topics listed below:

• Monitoring eDeveloper Threads

• Starting or Closing an eDeveloper Enterpise Server
 eDeveloper V9 - How To 236

Monitoring eDeveloper Threads
To monitor eDeveloper threads:

1. Open the eDeveloper Broker menu.

2. Select Display AppServers.
A line is displayed for each Enterpise Server or Magic engine. The number in
parenthesis displays the number of additional threads that eDeveloper can start.
This number depends on the Maximum number of concurrent requests setting
in the Environment settings and the eDeveloper license.

Only a maximum number of 10 requests can be served concurrently and other
requests will wait in the Magic Broker queue.

For example, if your license allows 10 concurrent users, and you did not limit the
number of threads using Maximum number of concurrent requests, then when
you start an eDeveloper Enterpise Server, you see the number 10 in parenthesis.
This number goes down to 0 when loading the Enterpise Server with many
requests.

You can also monitor the number of threads used by eDeveloper using the Operating
System tools. For example: On Windows NT/2000 use the Task Manager. The total
number of displayed threads is larger than the number of threads eDeveloper starts for
serving requests. This is because eDeveloper reserves several threads for internal use.

The eDeveloper RqRtInf function can also be used to receive information on the
Enterpise Server including the:

• current number of busy-work threads

• maximum number of work-threads allowed

• highest number of busy work-threads since the Enterpise Server’s startup
 eDeveloper V9 - How To 237

Starting or Closing an eDeveloper Enterpise Server
To start an eDeveloper Enterpise Server:

• Use the eDeveloper RqExe function.

To close an eDeveloper Enterpise Server:

• Use the eDeveloper RqRtTrm function. A Logical parameter allows you to control
whether the Enterpise Server will stop immediately, or only after completely serving
the executed requests.

Setting a Single Context Environment
This topic discusses how to set up the eDeveloper environment of a single context. The
eDeveloper environment of a single context involves the following:

• Runtime context

• Magic.ini and INIPut function

• Resources shared by threads

• Using external programs (UDF/UDP)

• CTX functions

Runtime Context
The eDeveloper Enterpise Server manages:

• contexts, which are internal descriptions of the exact location of clients in the task.

• manipulated data within the task’s transaction.

Each runtime context has a separate memory area. The context includes: Magic.ini
settings, a Security file (usr_std), and a Main Program (virtual variables).
 eDeveloper V9 - How To 238

The Magic.ini and the INIPut Function
For each Runtime context, the Magic.ini file is stored in a separate memory area. The
INIPut function for a specific Runtime context is written to the Magic.ini file only if it is
specifically requested by using the force write flag:

INIPut (<assignment>,<force write>) (default - N)
When the Magic.ini file is resident, modifications by the INIPUT function are done only
in memory.

Resources Shared by Threads
DBMS connections and external devices such as printers and I/O files, are shared by
threads. There is no DBMS connection for each context, and eDeveloper tries to reuse
DBMS connections when possible. Access to external devices like printers and files are
managed by the Operating System.

Using External Programs (UDF/UDP)
External programs such as UDF/UDP, should be thread-safe. Remember that they can be
run by several threads concurrently.

CTX Functions
Use the functions below for querying the eDeveloper Context Manager:

• CtxNum (number of active contexts)

• CtxProg (number of the top level program of the context)

• CtxStat (context status)

• CtxSize (context memory size)

• CtxLstUse (number of seconds since the last activation of a context)
 eDeveloper V9 - How To 239

Building a Batch Task 19
atch tasks are normally executed without interactive user contact. This means that
the task logic is executed automatically. This chapter discusses the different uses
of a batch task and the modifications you can make to certain batch task settings

and the corresponding results of those changes.

This chapter covers the topics listed below:

• Creating a Simple Batch Program

• Manipulating the Execution of a Batch Task

• Batch Task Event Handling

• Defining an Endless Executed Program

• Defining a Chunk of Records from a Data Table

• Creating an Import/Export Program

B

 eDeveloper V9 - How To 240

Creating a Simple Batch Program
A Batch program is usually used when you want to perform automatic procedures, such as
generating reports and global table updates.

Batch tasks are executed without interactive user contact and the task logic is executed
automatically. The task logic is conditioned according to the expressions defined in the
different task operations and properties.

The Record Main of a batch task cannot hold the task logic, except for the Link condition
which determines whether the link will be executed or not.

The Record Main level is where you should define the task’s dataview, including the range
of the dataview and, if you are in Create mode, the initialization of variables.

To prevent a user interfering with the process:

1. In the Program repository zoom from the relevant program to open the Task
Execution repository.

2. Press CTRL+P to open the Task Properties dialog box. Click the Properties tab
and set the Allow Events property to No. Click OK.

3. From the Task menu choose Task Control to open the Task Control dialog box.
Click the Behavior tab and set the Record event internal property to zero.

Manipulating the Execution of a Batch Task
Batch tasks usually display a pop-up window at the beginning of the execution, where the
user should confirm the execution of the current process. The pop-up window is enabled
by the ‘Allow Options’ property in the Task Control dialog box.

Batch tasks can be terminated in one of the following ways:

• Loops on all the records of the dataview and then ends.

• The End Task condition is evaluated to True.

• The user presses the ESC key.

• Defining Events that will eventually terminate a task execution.
 eDeveloper V9 - How To 241

This section includes the topics listed below:

• Using the Confirm Execution Pop-Up Window

• End Task Condition

• Allow Events

Using the Confirm Execution Pop-Up Window
Before every batch task you are asked to confirm the execution of that process. The pop-
up window is displayed according to the value set in the Task Control’s Allow Options
property.

1. From the Program repository zoom from the relevant program to open the Task
Execution repository.

2. From the Task menu choose Task Control to open the Task Control dialog box.

3. Set the Allow Options property.

The Allow Options property also lists the following operations, which can be defined in
the pre-execution phase:

• Range of Records

• View by Key

• Sort Records

• Redirect Files

Each of these operations can be disabled in the Task Control, or you can set the Allow
Options property to NO and these options will not be allowed automatically.

End Task Condition
The End Task Condition is evaluated on every loop the Batch task performs on the Record
level.
 eDeveloper V9 - How To 242

The End Task Condition is unnecessary when a Main table is defined and the procedure
executed should be performed on all the records in the dataview.

Where no Main table is selected, the evaluation of the End Task Condition to True
prevents the task from entering an endless loop.

1. From the Program repository zoom from the relevant program to open the Task
Execution repository.

2. Press CTRL+P to open the Control Properties dialog box.

3. Set the End Task Condition property to Yes.

4. Set the Evaluate Condition property to one of the following:

• Before Entering Record (default)

• After Updating Record

• Immediately when condition is changed

Allow Events
Batch tasks automatically perform the logic defined in them. Usually the user does not
interfere in the task process, which continues until it is terminated automatically.

Although the process is executed automatically, you can also abort continuation of the
process as follows:

1. From the Program repository zoom from the relevant program to open the Task
Execution repository.

2. Press CTRL+P to open the Control Properties dialog box.

3. Set the Allow Events property to Yes. The user will be able to press the Esc key
at any point and halt the process.

When Allow Events is evaluated to False, none of the triggered events, Internal, System,
User, Timer, Expression, will be polled from the stack of the events and none of the event
handlers will be executed.
 eDeveloper V9 - How To 243

Batch Task Event Handling
Batch task Logic can be defined in the Task Prefix, Task Suffix, Record Suffix and the
different Event Handlers.

All the Event types can be triggered in a batch task. There is a polling mechanism for the
triggered events which is dependent on the Task and Environment parameters.

The parameters are as follows:

• Batch event interval

• Record Event Interval

• Allow Events

The events can be triggered by the user or by the Raise Event operation, both of which
manipulate the logic.

This section includes the topics listed below:

• Defining the Event Handler

• Defining the Handler

Defining the Event Handler
The process of defining an event for either a batch or an online task is the same.

Define the Event trigger as follows:

1. In the Task repository create a new line, either after the Task or Record Suffix,
and select Handler as the Level.

2. From the Event column zoom to open the Event dialog box.

3. Choose one of these Event Types:

• System - a keyboard stroke

• Internal - an eDeveloper action from the Actions list

• User - a logic trigger created by user needs
 eDeveloper V9 - How To 244

• Timer - a timer interval trigger

• Expression - evaluation of an expression to True

• Error - an error retrieved from the Database

Defining the Handler
You can fine-tune a Handler in the following ways:

• Specify the Handler to a control

• Define the handler’s scope

• Determine if the event is propagated up in the runtime tree

• Condition caching of the trigger.

The Handler includes the different operations defined for the event and manipulates the
program logic and results.

You can trigger events in one of the following ways:

• User keyboard strokes, which trigger System type events (such as CTRL+Y or
F4).

• The Raise Event operation, which can trigger System, Internal and User type
events. If required, the Raise Event operation enables synchronization by set-
ting the operation property Wait, to Yes. Another alternative to using the Raise
Event operation is passing arguments to the Event Handler, which caches the
event.

Allow Events
Define this property in the Task Properties dialog box.

• It is a Yes, No or Expression property that is evaluated once, when the task is opened.

• When you evaluate this property to False, none of the triggered events, Internal,
System, User, Timer, Expression, will be polled from the stack of events and none of
the event handlers will be executed.
 eDeveloper V9 - How To 245

Batch Event Interval
To define this property:

1. From the Settings menu click Environment.

2. Click the System tab.

The interval is in milliseconds and determines the interval of polling events which were
triggered from the stack of events.

Record Event Interval
You define this property in the Task Control dialog box.

The interval is in milliseconds and determines the interval of polling events triggered from
the stack of events.

When the Record Event Interval and the Batch Event Interval properties both have a
value greater than zero, the addition of both values is the polling interval of events from
the stack of events.

This property can be set either to a simple number or to an evaluation of an expression. In
both cases, it is evaluated once, when the task is opened.

Defining an Endless Executed Program
Batch tasks can be terminated in one of the following ways:

• Looping on all the records of the dataview and then stopping.

• Evaluating the End task condition to True.

• When the user presses ESC.

• Defining Events that eventually terminate task execution.

You should not use any of the above if you want an endlessly looping Batch task. If you
want an endlessly looping batch task ensure that:

• No Main table is defined for the Batch task in the Task Properties dialog box.
 eDeveloper V9 - How To 246

• The End task condition property is evaluated to False and that it never terminates the
task execution.

• The Allow Events property should always be evaluated to False, which prevents the
user triggering an event that closes the executed task.

Endless looping is also relevant for ISAM databases, when updating one of the segments
of the Fetching index. Increasing that segment will always cause looping since there is
always a following record that is fetched.

This section includes the topics listed below:

• Batch Task without a Main Table

• End Task Condition

• Allow Events

• Updating the Fetching Index

Batch Task without a Main Table
This is a batch program with no Main table selected in the Task Properties dialog box.

A virtual record is always created and as there is no range of fetched records, it loops
endlessly.

End Task Condition
On every loop the Batch task performs on the Record level, the End task Condition is
evaluated.

• If you define a Main table and the procedure executed should be performed on all the
records in the dataview, the End task condition is unnecessary.

• If you do not define a Main table, evaluation of the End Task Condition to True will
prevent the task from entering an endless loop.

To create an endless looping task, this property should always be evaluated to False.
 eDeveloper V9 - How To 247

Allow Events
• If you evaluate this property to True, the user will be able to press Esc at any point and

halt the process.

• If you evaluate this property to False, none of the triggered events, Internal, System,
User, Timer, Expression, will be polled from the stack of events and none of the event
handlers will be executed.

Updating the Fetching Index
This is only relevant for ISAM databases.

When you define a Main table for a program and fetch the dataview, there is an absolute
number of records. This prevents the task from entering an endless loop where the records
of that Main table are processed.

If one of the segments of the fetching index is increased, so that it is re-fetched from the
database with the new greater value, it then enters an endless loop.

Defining a Chunk of Records from a Data Table
To automatically delete a chunk of records you should define a batch program according
to one of the following options:

• Define a Batch program with Init. status = Delete.

• In the Task Control dialog box setting the Force record delete property to True.

• Defining a Batch program with a Direct SQL statement where a chunk of records are
dropped from the database.

The definition of the dataview to be deleted can be one of the following:

• Range FROM/TO of records in the Record Main.

• Range expression in the task’s Range/Locate option.

• Defining a SQL Where clause in the task’s Range/Locate option.
 eDeveloper V9 - How To 248

This section includes the topics listed below:

• Init. Status = Delete

• Force Record Delete = True

• Direct SQL Statements

Init. Status = Delete
If you set Init. Status=Delete, The fetched records are not processed and are removed
from the database. The records deleted are only the ones which are fetched from the Main
Table. Linked records are not deleted.

Force Record Delete = True
To allow records to be conditionally deleted:

1. From the Task menu choose Task Control.

2. Click the Behavior tab and set the Force record delete property to be evaluated
to True.

This is a Yes, No or Expression property and is evaluated for each record
fetched and processed. This is similar to Init. status=Delete, in that the records
deleted are only the ones which are fetched from the main table and linked
records won’t be deleted.

The difference between deleting records when Init. status=Delete and this method is the
process that each fetched record passes. Status=Delete removes the fetched records from
the database without first updating any required information. This means that for each
record in the dataview, there is one record loop (Record Prefix/Suffix). Force record
delete loops twice for each record. The first loop is for modifications, if there are any. The
second is the actual delete.

Status=Delete is generally faster, but in order to delete a chunk of records you need to
have an index that can fetch the requested chunk of records efficiently.
 eDeveloper V9 - How To 249

However, if you want to process a chunk of records and only want to delete a selection
after the process, then Force record delete is the better.

Note: This property can also be defined for Online tasks.

Direct SQL Statements
A Batch task defined without a Main table can use Direct SQL.

The Direct SQL statement should be according to the selected database. Terminology may
be differ from one database to another.

The SQL statement can also have a Where section where the range of deleted records is
set. This enables you to delete a chunk of records. It can be defined according to an index
or not, but this is something that the database determines.

Creating an Import/Export Program
You can use an Import/Export program to import data from a text file into a Table in your
application, or to export data records from a Table to a text file.

To create an Import/Export program:

1. In the Table repository select the Table for which you want to create an Import/
Export program.

2. From the Options menu choose Generate Program or press CTRL+G.

3. Set the Mode property to Generate.

4. From the Option list select either Import or Export depending on the type of
program you wish to create.
If you select Export, text output will be generated from the data currently held in
the Table.
If you select Import, data from a text file will be read into a DB Table.

5. From the Column field zoom to choose the column to be selected by the Import/
Export program:
Note: Only the selected columns will be processed by the program and the other
 eDeveloper V9 - How To 250

columns will be skipped. By default eDeveloper selects all columns.

6. In the Program name field enter a name for the program as you wish it to appear
in the Program repository.

7. In the File name field enter a name for the text file and zoom to set its location.
You can also use a Logical Name to specify the file location.

Defining an I/O Form’s Style
To define a Style for the Input/Output form:

1. In the Program Generator dialog box, click the Style tab.

2. In the Display field select a display type from the Display list. Export/Import
programs usually use Line format.

3. In the Style field select the desired Style type.

4. From the Use Model field zoom to open the Model List and choose the Model of
a text-based form that the program should use:

5. Click OK to generate the new program, which will be entered into the Program
repository.
 eDeveloper V9 - How To 251

Integrating With the J2EE
Environment 20

Developer allows you to generate Enterprise Java Beans (EJBs). Clients operat-
ing within a J2EE environment are able to view and activate programs as EJB
methods.

This chapter includes the topics listed below:

• J2EE Server Installation

• Enabling eDeveloper with EJB Support

• Generating EJBs Using eDeveloper

• EJB Deployment Using eDeveloper

• Setting Up a Java Environment

• Learning the Content of a Java Class

• Creating a New Instance of a Java Class

• Reading Values of Java Variables

• Calling a Java Method

e

 eDeveloper V9 - How To 252

J2EE Server Installation
The environment settings described in this section enable the eDeveloper Component
Builder to generate EJBs. If the test clients are activated on another host, such as a
deployment site, they will also require these variables.

For ease of use each EJB's .jar is copied into the different deployment folders, such as
Weblogic and Websphere. In order to deploy or test an EJB on any host, its folder must be
copied as is to the target host. At deployment the standard settings of each J2EE server are
satisfactory.

This topic describes how to install these J2EE servers:

• WebSphere

• WebLogic 6

• WebLogic 5.1

• Sun Ref

• jBoss 2.4.4

WebSphere
Setup.exe - For silent mode use: setup path\setup.iss -s

1. Install WebSphere, for example into c:\was\appserver.

2. Set the Environment variables
From the Control Panel choose System and then Environment.

MG_J2EE_HOME c:\WebSphere\appserver
This is set automatically depending on the installation.

MG_JAVA_HOME %MG_J2EE_HOME%\Java
 eDeveloper V9 - How To 253

BEA WebLogic 6
1. Install WebLogic 6. For example: into c:\bea.

2. Set the Environment variables:
From the System menu choose Environment.

3. Then set the following:

BEA WebLogic 5.1
1. Download & Install JAVA 1.3.0 or higher, such as from Sun Microsystems.

For example: into c:\jdk1.3.

2. Install WebLogic 5.1.
For example: into c:\weblogic.

MG_J2EE_HOME c:\bea\wlserver6.1
Depending on the installation

MG_JAVA_HOME c:\bea\jdk131

MG_CLASSPATH Prefix with:
%MG_JAVA_HOME%\jre\lib\ext\mgejbgnrc.jar;%
MG_J2EE_HOME%\lib\weblogic.jar;
 eDeveloper V9 - How To 254

3. Set the Environment variables:
From the System menu choose Environment.
This also applies to c:\weblogic\SetEnv.cmd.

Sun Reference Implementation
1. Download & Install JAVA version 1.3.0 or higher, such as from Sun

Microsystems, for example into: c:\jdk1.3.

2. Download & Install J2EE version 1.2.1 or higher, for example into
c:\j2sdkee1.3.

3. Set the Environment variables:
From the System menu choose Environment.

jBoss 2.4.4
1. Download & Install Java version 1.3.0 or higher, such as from Sun

Microsystems.
For example: into c:\jdk1.3.
Set this to start the jBoss server: PATH= c\jdk1.3\bin;%PATH%

2. Download & Install jBoss 2.4.4 from the jBoss Web-site.
For example: into c:\jboss-2.4.4.

MG_J2EE_HOME c:\weblogic
Depending on the installation.

MG_JAVA_HOME c:\jdk1.3
Depending on the installation.

MG_CLASSPATH %MG_JAVA_HOME%\jre\lib\ext\mgejbgnrc.jar;%MG
_J2EE_HOME%\lib\weblogicaux.jar;

MG_J2EE_HOME c:\j2sdkee1.3 - Depending on the installation.

MG_JAVA_HOME c:\jdk1.3 - Depending on the installation.
 eDeveloper V9 - How To 255

3. Set the Environment variables:
From the System menu choose Environment.

If you have installed the enterprise server after installing eDeveloper, you must copy the
MGEJBGNRC.jar file from the Support directory under the eDeveloper root and copy the
file to the %MG_J2EE_HOME%\Lib\Ext directory.

Enabling eDeveloper with EJB Support
To be able to generate EJBs using eDeveloper, you have to set certain properties within
eDeveloper. The following steps describe the changes you should make.

1. In the Script directory edit the Mgreq.ini file by removing the semi-colon in
front of MGSRVRO5. If you enter a gateway value of 5, the server will only be
dedicated for J2EE requests. If you enter a gateway value of 1 and the
eDeveloper engine is set for background mode the server is enabled for IAS,
J2EE and Web Service requests.

2. Open eDeveloper (V9.2 or later) as an Online AppServer.

3. Once you have set eDeveloper to work with EJB generation, you can begin to
create your EJBs.

When you load eDeveloper as a background AppServer, it is not mandatory to set
Gateway=5. You can leave Gateway=1, as with the broker, and uncomment the following
line (add a semi-colon (;) before the line) in the mgreq.ini file:

[MAGIC_MESSAGING_GATEWAYS]
MGSRVR05= , , , ,MaxThreads=10%

MG_J2EE_HOME c:\jBoss-2.4.4

MG_JAVA_HOME c:\jdk1.3

MG_CLASSPATH Prefix with
%MG_J2EE_HOME%\lib\ext\mgejbgnrc.jar%MG_J2EE_HO
ME%\lib\ext\jboss-j2ee.jar;
 eDeveloper V9 - How To 256

In this case 10% of the license is allocated to J2EE, while the remaining 90% is free for
internal messaging. This means that the appserver can simultaneously serve both
types of requests.

Generating EJBs Using eDeveloper
You can create EJBs using eDeveloper’s Component Builder utility. The following
procedure describes the process:

1. In your eDeveloper application, from the Options menu choose Component
Builder.

2. Choose a name for the component, and then in the Class column select EJB from
the Class List.

3. Click Add Items and select the programs you want to use as the EJB’s methods.

4. Zoom from the Arguments/Returned Value column to change the Java type
with which each parameter or returned value will be defined in the EJB.

5. From the Component Builder menu choose Build JAR file to generate the EJB.

EJB Deployment Using eDeveloper
eDeveloper's Component Builder generates the EJB .jar files. The files are saved in an
EJB folder in the main eDeveloper directory.

In order to facilitate testing, the Component Builder generates a test application called
<Bean Name>_test_app.ear. This application is not an integral part of the generated
EJB, but rather wraps the application up with a simple client that you can activate later,
and modify if required, in order to test the EJB.

The following are the steps you need to take to be able to deploy an EJB that you have
generated using eDeveloper:

• Setting Up URL Resources for a J2EE Server
 eDeveloper V9 - How To 257

• Starting the J2EE Server

• Starting the Deployment Tool

• Deploying the EJB

• Running the Client

• Stopping the J2EE Server

• Advanced Configuration of eDeveloper AppServers

Each topic is sub-divided according to these four J2EE server types:

• WebSphere

• WebLogic 5.1

• WebLogic 6

• Sun Ref Implementation

Setting Up URL Resources for a J2EE Server

WebSphere
1. From Start choose Programs, then choose IBM WebSphere. Then choose

Enterpise Server V4.0 and then the Administrator’s Console.

2. In the left-hand frame select the following:
WebSphere Administrative Domain -> Resources -> URL Providers -> Default
URL Provider -> URLS

3. In the right-hand frame click the New button and ������������		�
��������
Name = MagicURL
JNDI Name = url/MagicURL
Spec = http://localhost:1500

4. To save your changes click OK and then click the Save link.
 eDeveloper V9 - How To 258

WebLogic 5.1
Open: %MG_J2EE_HOME%\weblogic.properties and add URLResource(s).

For example:
weblogic.httpd.URLResource.url.MagicURL = http://localhost:1500

WebLogic 6
1. Open: %MG_J2EE_HOME%\config\mydomain\config.xml and add one or

more URL Resources.

2. For example:
<WebServerURLResource="url.MagicURL=http://localhost:1500
url.MagicURL2=http://localhost:1501"DefaultWebApp =
"DefaultWebApp_myserver"
LogFileName = "./config/mydomain/logs/access.log"LoggingEnabled="true"
Name="myserver"/>

Sun Ref
You do not need to set up URL resources for the Sun Ref server.

Starting the J2EE Server

WebSphere
Start > Programs > IBM WebSphere > First Steps > Start Enterpise Server.

WebLogic 6
Start Programs > BEA WebLogic > WebLogic Server 6.0 > Start Default Server.

WebLogic 5.1
cd %MG_J2EE_HOME%
SetEnv.cmd
StartWebLogic.cmd
 eDeveloper V9 - How To 259

Sun Ref
cd %MG_J2EE_HOME%\bin
j2ee - verbose

jBoss 2.4.4
%MG_J2EE_HOME%\bin
run.bat

Starting the Deployment Tool

WebSphere
Start > Programs > IBM WebSphere > Enterpise Server V4.0 > Application Assembly
Tool (AAT).

WebLogic 5.1
Start > Programs > WebLogic 5.1.0 > Ejb Deployer.

WebLogic 6
1. Start Programs > BEA > WebLogic > WebLogic Server 6.0 > Start Default

Console.

2. In the left-hand panel: mydomain > Deployments > EJB.

Sun Ref
Deploytool

Deploying the EJB
When you deploy the EJB into the J2EE server, you make it available for execution.

The following describes the procedures for the different servers.
 eDeveloper V9 - How To 260

WebSphere
In the Application Assembly Tool (AAT):

1. Click Existing and then Browse to open the following file:
\ejb\<Bean_Name>\sun\<EJB_Name>_test_app.ear

2. From the File menu click Generate Code for Deployment.

3. Specify the Deployed Module Location as follows:

\ejb\<Bean_Name>\websphere\Deployed_<Bean_Name>_test_app.ear

4. Click the Generate Now button.

In the Admin. Console:

1. In the left-hand frame select:
WebSphere Administrative Domain, then Nodes, the <Server Name> and
then select Enterprise Applications.

2. Click the Install button, then click the Browse button and select the file
generated by the AAT:
\ejb\<Bean Name>\websphere\Deployed_<bean name>_test_app.ear

3. Click Next, then click Next again and then again click Next.

4. Clear the Redeploy Option and click Next. Then click Finish.

5. Save your changes by clicking the Save link.

6. In the left-hand frame for Default server verify that Execution State is Start
and Module visibility is Application.

7. Click OK and then restart Websphere 4 server.

WebLogic 5.1
From the ejb\<bean_name>\weblogic directory:

1. Use WLrebuild5.cmd once for each EJB, in the development site.

2. From the Ejb Deployer
File > Open > (<bean name>_deployable.jar), Tools > Deploy
 eDeveloper V9 - How To 261

3. Validate the server
Servers > Add

WebLogic 6
In the Default Console choose to install a new EJB.

1. To install a new EJB browse to ..\ejb\<bean name>\sun\<EJB_name>.jar.

2. Then click Upload.

Sun Ref
1. From the File menu choose Open Application.

2. From the Tools menu choose Deploy Application and select the Return Client
Jar box.

Running the Client
The .cmd file uses the client JAR generated in the previous stage.

Stopping the J2EE Server

WebSphere
First Steps > Stop the Enterpise Server.

WebLogic 5.1
You can stop the server from windows services.

WebSphere ejb\<bean_name>\websphere\ClientTest.cmd

WebLogic 6 ejb\<bean_name>\weblogic\ClientTest6.cmd

WebLogic 5.1 ejb\<bean_name>\weblogic\ClientTest5.cmd

Sun Ref ejb\<bean_name>\sun\ClientTest.cmd
 eDeveloper V9 - How To 262

WebLogic 6
1. WebLogic Server 6.0 > StartDefaultConsole.

2. In the Administration Console domain tree of the left-hand pane, select the
server.

3. On the Monitoring General tab page, click the Shutdown this server link.

Sun Ref
J2ee – stop.

Advanced Configuration of eDeveloper AppServers
Where an EJB is configured to use more than one AppServer, such as MagicAppservers
= mgurl1,mgurl2, then:

1. If all AppServers use the same Magic.ini in [MAGIC_COMMS]TCP/IP, define a
continuous range (e.g. 1500-1501)

2. Otherwise, for different Magic.ini files: in [MAGIC_COMMS]TCP/IP of each
Magic.ini, define one port (e.g. 1500).

Setting Up a Java Environment
This topic will show you how to set up the Java environment. This setup is required in
order to be able to call Java classes from eDeveloper.

Required Java Software
To run Sun Microsystems Inc.’s Java™ code on your PC or server, you should install the
Java Runtime Environment (JRE). As opposed to Java code, which you can write, compile
once (to byte-code) and run on almost any platform, the JRE software is operating-system
specific.
 eDeveloper V9 - How To 263

The Java Software Development Kit (SDK) should be used primarily by Java developers
and includes the tools required to compile Java code, several Java utilities, and the JRE.

System-wide Settings
If you install several Java JRE/SDK versions, you should set the JAVA_HOME
environment variable. This variable should be set in the main directory of the JRE/SDK.

For example:

JAVA_HOME = C:\Java\j2re141

If you are using the eDeveloper Java functions, you should also add the following entries
to the PATH environment settings:

For JRE: %JRE_HOME%\bin\client

For SDK: %SDK_HOME%\jre\lib\client

If you are using eDeveloper on a non-Windows operating system, please follow the
instructions in the readme file that accompanies your eDeveloper installation.

Setting the Java Classpath
The Java code that you want to execute can reside on several directories and in several
files.

Usually, sveral Java classes are packaged in a JAR (Java archive) file or in a ZIP file.

The Java runtime environment locates the Java classes using the classpath. The Java
classpath should include a list of directories and/or JAR/ZIP files.

You can define a system-wide classpath using the environment variable CLASSPATH.
The CLASSPATH value should appear as follows:

CLASSPATH = C:\Java_classes\;C:\my_jars\service1.jar

You can also define a specific classpath for the eDeveloper environment by setting the
CLASSPATH entry in the MAGIC_JAVA section of the eDeveloper INI file.
 eDeveloper V9 - How To 264

The separator between the entries of the CLASSPATH should be a semicolon (;) on a
Windows platform and a colon (:) on Unix and iSeries platforms. For more detailed
information, refer to to the Java 2 SDK documentation, Tools and Utilities, Setting the
Classpath.

Setting JVM Arguments
When running Java code, you may set JVM (Java Virtual Machine) arguments to provide
additional setup information for the Java runtime environment.

When running Java code, you may pass this information using the –D flag of the java
command.

To pass JVM arguments to the eDeveloper environment, you should add the arguments
(prefixed by the –D) to the JVM_ARGS entry in the MAGIC_JAVA section of the
eDeveloper INI file.

For example:

JVM_ARGS= -Djava.compiler=NONE -Djms.properties=C:\j2sdkee1.3.1\con-
fig\jms_client.properties

Learning About the Content of a Java Class
This topic will show you how to learn about the content of a Java class.

What is a Java Class?
In Java, an object has variables and methods. For example, a rectangle is an object that has
length and width variables as well as a calculateArea() method. A Java class (rectangle) is
a blueprint or template of all objects of a certain type. A Java class includes variable
members (fields) and methods (functions that can be accessed using the eDeveloper Java
functions (JCreate, JGet, JCall, etc.).
 eDeveloper V9 - How To 265

The Java developer can choose to define static variables and/or methods. The
static variables are shared by all the Java objects that refer to this class. To access
the static variables and methods you should prefix the variable/method with the
class name. For example, separator is a static variable of class java.io.File. To
access the separator value use: java.io.File.separator (or File.separator).

Using the JExplore Functions
The eDeveloper JExplore function queries a class definition and generates an XML output
that describes the structure of the class.

The EJBExplore fucntion has one alpha input parameter. This parameter should be the full
name of a Java class, such as “java.lang.StringBuffer”. As the XML output can be quite
big (more than the maximum size of an alpha field), it is recommended to define a BLOB
variable with the “GUI display” property set to “Rich Edit” and update it with the
JExplore function.

Using the Javap Utility
The javap utility (part of the Java 2 SDK) can also be used to query a class definition. The
syntax is: javap –s <class name>

For example:

javap –s java.lang.StrigBuffer

Examples
The following is the output of the function: JExplore(‘java.lang.StringBuffer’) [partial
output]

<?xml version="1.0" encoding="UTF-8"?>
<ClassMetaData xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <Classes>
 eDeveloper V9 - How To 266

 <Class name="java/lang/StringBuffer" abstract="N" interface="N">
 <Dependencies>
 <Extends>
 <ClassName>java.lang.Object</ClassName>
 </Extends>
 <Implements>
 <ClassName>java.io.Serializable</ClassName>
 <ClassName>java.lang.CharSequence</ClassName>
 </Implements>
 </Dependencies>
 <Structure>
 <Constructors>
 <Constructor idx="1">
 <Signature>(I)V</Signature>
 <Parameters>
 <Parameter idx="1">
 <name></name>
 <type>int</type>
 </Parameter>
 </Parameters>
 <Throws>
 </Throws>
 </Constructor>
 <Constructor idx="2">
 <Signature>(Ljava/lang/String;)V</Signature>
 <Parameters>
 <Parameter idx="1">
 <name></name>
 <type>java.lang.String</type>
 </Parameter>
 </Parameters>
 <Throws>
 </Throws>
 </Constructor>
 <Constructor idx="3">
 <Signature>()V</Signature>
 <Parameters>
 </Parameters>
 eDeveloper V9 - How To 267

 <Throws>
 </Throws>
 </Constructor>
 </Constructors>
 <InstanceMethods>
 <Method idx="1">
 <name>toString</name>
 <Signature>()Ljava/lang/String;</Signature>
 <Parameters>
 </Parameters>
 <Throws>
 </Throws>
 </Method>
 <Method idx="2">
 <name>append</name>
 <Signature>(C)Ljava/lang/StringBuffer;</Signature>
 <Parameters>
 <Parameter idx="1">
 <name></name>
 <type>char</type>
 </Parameter>
 </Parameters>
 <Throws>
 </Throws>
 </Method>
 …
 </InstanceMethods>
 <StaticMethods>
 </StaticMethods>
 <InstanceVariables>
 </InstanceVariables>
 <StaticVariables>
 <Variable idx="1" final="Y">
 <name>serialVersionUID</name>
 <Signature>J</Signature>
 </Variable>
 </StaticVariables>
 </Structure>
 eDeveloper V9 - How To 268

 </Class>
 </Classes>
</ClassMetaData>

The following is the output of the command: javap -s java.lang.StringBuffer [partial
output]:

Compiled from: StringBuffer.java.

public final class java/lang/StringBuffer extends java.lang.Object implements ja

va.io.Serializable, java.lang.CharSequence {

 static final long serialVersionUID;
 /* J */
 public java/lang/StringBuffer();
 /* ()V */
 public java/lang/StringBuffer(int);
 /* (I)V */
 public java/lang/StringBuffer(java.lang.String);
 /* (Ljava/lang/String;)V */
 public synchronized int length();
 /* ()I */
 public synchronized int capacity();
 /* ()I */
 …

Notes:

You will be able to query only Java classes that can be located using your Java classpath
settings. For more information refer to the Setting Up the Java Environment topic.

The schema of the XML generated by the JExplore function can be found in the <Magic
Dir>\support directory (JExplore.xsd).
 eDeveloper V9 - How To 269

Creating a New Instance of a Java Class

To use a Java class, you should first create an instance of a Java class.

The JCreate function creates an instance of a Java class (a Java object) and returns a
handle to this instance. The handle should be stored in a BLOB variable.

In Java you create class objects using constructors. Each class should have at least one
constructor. You can differentiate between constructors by their signature.

For example, let’s examine the constructors of the java.lang.StringBuffer class.

The output of javap –s java.lang.StringBuffer looks as follows:

 …
 public java.lang.StringBuffer();
 /* ()V */
 public java.lang.StringBuffer(int);
 /* (I)V */
 public java.lang.StringBuffer(java.lang.String);
 /* (Ljava/lang/String;)V */
 …

The java.lang.StringBuffer has 3 constructors (java.lang.StringBuffer methods):

1. Without any input (signature is “()V”)

2. With one input parameter of type int (signature is “(I)V”)

3. With one input parameter of type String (signature is “(Ljava/lang/String;)V”)

Java constructors do not have a return value, they only instantiate a Java object. The V
denotes that these methods do not return a value (void).

The JCreate function has several arguments. The first is the class name and the second is
the constructor signature. Additional arguments should be passed depending on the input
parameters of the constructor.
 eDeveloper V9 - How To 270

For example, to create an empty String Buffer object use:

JCreate(‘java.lang.StringBuffer’,’()V’)
To create the same object and initialize it with a String object use:

JCreate(‘java.lang.StringBuffer’,’(Ljava/lang/
String;)V’,’My String’)

If an error occurs during execution of the eDeveloper Java functions, the
JExceptionOccured function returns logical true and the JExceptionText(‘False’LOG)
returns the Java exception short description.

If you set a wrong signature, eDeveloper will not be able to locate the correct method and
will display the error:

java.lang.NoSuchMethodError: <init>

If you do not supply the correct number of input variables, the following exception is
returned:

java.lang.Exception: Incompatible signature and number of
arguments!

It is recommended to set the GUI display property of the BLOB variable that stores the
reference to the Java object to “Rich Edit”. If you display this variable on a GUI form, you
should see the Java class and an instance id (after updating the variable with JCreate
output).

The following is a description of signature terminology (as copied from the Java JNI
documentation).
 eDeveloper V9 - How To 271

Java VM Type Signatures

For example, the Prompt.getLine method has the signature:
(Ljava/lang/String;)Ljava/lang/String;

Prompt.getLine takes one parameter, a Java String object, and the method type
is also String.
The Callbacks.main method has the signature:

([Ljava/lang/String;)V

The signature indicates that the Callbacks.main method takes one parameter, a
Java String object, and the method type is void.

Signature Java Programming Language
Type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

L fully-qualified-
class;

fully-qualified-class

[type type[]
(arg-types) ret-type method type
 eDeveloper V9 - How To 272

Array types are indicated by a leading square bracket ([) followed by the type of the array
elements.

Notes:

You will be able to create instances only for Java classes that can be located using your
Java classpath settings. For more information refer to the Setting Up a Java Environment
topic.

eDeveloper performs several automatic conversions. For example: Alpha strings are
converted to Java String objects, and Numeric fields are automatically converted to the
appropriate Java primitive type (such as int, long, double TBC).

Reading Values of Java Variables
This topic will show you how to read values of static and non-static Java variables.

Reading Values of Java Object Variable Members
In Java, a class can include the definition of variable members. Each Java object has its
own variable members. It is also possible to define variables that are shared between all
objects of a specific Java class. These shared members are called static variable members.

You can read the value of a variable member (non-static) using the JGet function.

To read a variable member value, you should have a reference to a Java object and you
should decide which variable you want to call and find its signature.

For example, let’s examine non-static variable members of the class java.util.Vector (a
class for storing vectors of objects).

The output of javap –s java.util.Vector looks as follows:

…
 protected int elementCount;
 /* I */
…
 public synchronized boolean add(java.lang.Object);
 eDeveloper V9 - How To 273

 /* (Ljava/lang/Object;)Z */
…

The elementCount member is a member variable of type int and the method add() adds a
Java object to the Vector.

The JGet function has several arguments. The first is a reference to a Java object for which
you would like to read a variable value. The second one is the variable name and the third
is the variable signature.

To store the value of the variable, you should update a virtual with the JGet expression.
The type of the virtual depends on the Java return value from the method. If the function
returns a Java object, you should use a virtual of type BLOB.

As an example we will create a reference to a Vector Java object, add a String object to the
vector and read the number of elements in the vector (elementCount variable member).

1. Create a new online program and define the following virtuals:

• Name = ‘J_Vector object’, type = BLOB

• Name = ‘J_String object’, type = BLOB

• Name = ‘No of elements’, type = Numeric, picture = ‘5’

• Name = ‘Submit button’ (for a push button)

2. Init the ‘J_Vector object’ virtual with the expression:

JCreate ('java.util.Vector','()V')
3. Init the ‘J_String object’ virtual with the expression:

JCreate ('java.lang.String','(Ljava/lang/String;)V','ABC-
DEFG')

4. Define a handler for the button that will execute the following:

a. Evaluate the expression: JCall (A,'addElement',' (Ljava/lang/Object;)V',B)

b. Update the ‘No of elements’ variable with JGet (A,'elementCount','I')
 eDeveloper V9 - How To 274

Explanation:

1. The ‘J_Vector object’ virtual is initialized with an empty Java Vector object.

2. The ‘J_String object’ virtual is initialized with a Java String object with the value
‘ABCDEFG’ .

3. The ‘No of elements’ virtual is updated with the number of elements in the
Vector object (value = 1).

Like with the JCreate function, if an error occurs during execution of the eDeveloper Java
functions, the JExceptionOccured function returns logical true and the
JExceptionText(‘False’LOG) returns the Java exception short description.

If you set a wrong signature, eDeveloper will not be able to locate the correct method and
will display the error:

java.lang.NoSuchMethodError: <method name>
If you do not supply the correct number of input variables the following exception is
returned:

java.lang.Exception: Incompatible signature and number of
arguments!

Reading Values of Java Class Variable Members (static
variables)

Reading values of a static variable member is similar to reading values of non-static
variable members.

You should use the JGetStatic function (instead of JGet).

For example, let’s examine static variable members of the java.lang.Integer class (class for
storing numeric integer values).
 eDeveloper V9 - How To 275

The output of javap –s java.lang.Integer looks as follows:

…
 public static final int MAX_VALUE;
 /* I */
…

MAX_VALUE is a static member of the class java.lang.Integer.

The JGetStatic function has several arguments. The first is a concatenation of the class and
variable name (separated by a dot character). The second one is the variable signature.

For example: JGetStatic(‘java.lang.Integer.MAX_VALUE’,’I’)

Notes:

Java does not permit access to virtual members that are defined as private members.

eDeveloper performs several automatic conversions. For example: Alpha strings are
converted to Java String objects, Numeric fields are automatically converted to the
appropriate Java primitive type (such as int, long, double TBC).

Calling a Java Method

This topic explains how to call static and non-static Java methods.

Calling Java Object Methods (non-static)
Java code is executed by calling Java class methods of a Java object. Java class methods
are like eDeveloper functions. They can have one or more input parameters and a single
return value.

The Java programmer can choose to define static methods, which are shared by all Java
objects of the same class.
 eDeveloper V9 - How To 276

To call Java methods, first you create a Java object (or retrieve a reference to an existing
one). Then, you decide which method you want to call and find its signature.

For example, let’s examine several methods of the java.lang.StringBuffer class. The
output of javap –s java.lang.StringBuffer looks like the following:

…
 public synchronized int length();
 /* ()I */
...
 public synchronized java.lang.StringBuffer insert(int, java.lang.String);
 /* (ILjava/lang/String;)Ljava/lang/StringBuffer; */
…

The method length() does not have input parameters and returns a Java int primitive type.

The method insert() with the signature: “(ILjava/lang/String;)Ljava/lang/StringBuffer;”
has two input parameters, an int and a String Java object and returns a StringBuffer Java
object.

The JCall function has several arguments. The first is a reference to a Java object on which
you want to execute the method. The second one is the method name. The third is the
method signature. Additional arguments should be passed depending on the input
parameters of the constructor.

To store the result of the method call, you should update a virtual with the JCall
expression. The type of the virtual depends on the Java return value from the method. If
the methods return a Java object, you should use a virtual of type BLOB.

As an example we will create a reference to a StringBuffer Java object (initialized with the
string ‘ABCDEFG’), query its length, and call the insert method in order to get a new
StringBuffer object with the value ‘ABC123DEFG’ .

1. Create a new online program and define the following virtuals:

• Name = ‘StringBuffer object’, type = BLOB

• Name = ‘String length’, type = Numeric, picture = ‘5’
 eDeveloper V9 - How To 277

• Name = ‘Another StringBuffer’, type = BLOB

• Name = ‘Submit button’ (for a push button)

2. Init the virtual ‘StringBuffer object’ with the expression:

JCreate ('java.lang.StringBuffer','(Ljava/lang/String;)V','ABCDEFG')

3. Define a handler on the button that will execute.

a. Update the ‘String length’ virtual with JCall(A,’length’,’()I’)

b. Update the ‘Another StringBuffer’ virtual with JCall (C,'insert',' (ILjava/lang/
String;)Ljava/lang/StringBuffer;',3,'123')

c. Using a Verify operation, display the value of the ‘Another StringBuffer’ vir-
tual.

Explanation:

1. The ‘StringBuffer object’ virtual is initialized with a StringBuffer object that has
the string ‘ABCDEFG’

2. The length of the alpha string is retrieved (value is 7)

3. A new StringBuffer is created by inserting the alpha string ‘123’ from position 3
of the String Buffer ‘ABCDEFG’. The result should be ‘ABC123DEFG’

Like with the JCreate function, if an error occurs during execution of the eDeveloper Java
functions, the function JExceptionOccured returns logical true and the
JExceptionText(‘False’LOG) returns the Java exception short description.

If you set a wrong signature, eDeveloper will not be able to locate the correct method and
will display the error:

java.lang.NoSuchMethodError: <method name>

If you do not supply the correct number of input variables the following exception is
returned:
 eDeveloper V9 - How To 278

java.lang.Exception: Incompatible signature and number of
arguments!

Calling Java Class Methods (static)
Calling static methods is similar to non-static methods. However, you should use the
JCallStatic function instead of the JCall function.

The JCallStatic function has several arguments. The first is a concatenation of the class
name and the static method name (separated by a dot character). The second one is the
static method signature. Additional arguments should be passed depending on the input
parameters of the constructor.

For example, the static method toHexString of class java.lang.Integer has the signature:

 public static java.lang.String toHexString(int);
 /* (I)Ljava/lang/String; */

We will call this method from eDeveloper by evaluating the expression:

JCallStatic(‘java.lang.Integer.toHexString’,’ (I)Ljava/lang/String;’,16)

(the result should be the alpha ‘10’)

Note:

eDeveloper performs several automatic conversions. For example: Alpha strings are
converted to Java String objects, and Numeric fields are automatically converted to the
appropriate Java primitive type (such as int and long).
 eDeveloper V9 - How To 279

Using COM Support 21
Developer lets you easily handle any registered COM object in your eDeveloper
application. You may choose to use and handle an ActiveX control as an
additional control in the GUI Display form or as a general OLE object to be

handled by OLE automation.

This chapter covers the topics listed below:

• Defining an ActiveX Control

• Setting a COM Object Property

• Calling a COM Object Method

e

 eDeveloper V9 - How To 280

Defining an ActiveX Control
This topic will show you how to define an ActiveX control for the Web browser and
progress bar, how to add the ActiveX control to the screen and how to activate it.

Creating an ActiveX control for the Web browser
1. Create a virtual variable and set the attribute to ActiveX.

2. From the Local Variable Properties sheet, zoom from the Object name
property to the ActiveX Selection list.
 eDeveloper V9 - How To 281

3. Select the Microsoft Web Browser option.

4. Create an alpha virtual variable and define the URL Init value as
‘www.magicsoftware.com’

5. Open the Form Editor and drag the ActiveX control and the URL control from
the Variable palette onto the form.

6. Create an internal handler with a Zoom event for the URL control.

7. In the handler, create a Call COM operation and zoom to the Call COM Object
dialog box.

8. In the Object field, select the ActiveX control.
 eDeveloper V9 - How To 282

9. In the Option field, select Call Method.

10. In the Method field, select Navigate.

11. From the Arguments field, zoom to the COM Call Arguments dialog box.
 eDeveloper V9 - How To 283

12. From the URL entry, zoom from the Var column.

13. Select the URL field.

14. Run the program and zoom from the URL field.

Creating an ActiveX control for the Progress bar
1. Create a virtual field and set the attribute to ActiveX.

2. From the Local Variable Properties sheet, zoom from the Object name
property to the ActiveX Selection list.

3. Select the Microsoft ProgressBar Control, version 6.0 option.
 eDeveloper V9 - How To 284

4. In the Task Properties dialog box, change the task to a Batch task and set the
End Task condition to: Counter(0)>10000

5. In the Behavior tab of the Task Control dialog box, set the Open task window
parameter to Yes.

6. In the Form Editor, drag the ActiveX control from the Variable palette onto the
form.

7. In the Task Prefix, create a Call COM operation and zoom to the Call COM
Object dialog box.

8. In the Object field, select the ActiveX control.
 eDeveloper V9 - How To 285

9. In the Option field, select Set Property.

10. In the Property field, select Max.

11. Zoom from the Value field to the COM Call Arguments dialog box.

12. Zoom from the Exp column and create a new line in the Expression Rules
repository with a value of 10000

13. In the Record Suffix, create a Call COM operation and zoom to the Call COM
Object dialog box.

14. In the Object field, select the ActiveX control.

15. In the Option field, select Set Property.

16. In the Property field, select Value.

17. Zoom from the Value field to the COM Call Arguments dialog box.

18. Zoom from the Exp column and create a new line in the Expression Rules
repository with a value of Counter(0)

19. Run the program.

Setting a COM Object Property

1. Create a Call COM operation and zoom to the Call COM Object dialog box.
 eDeveloper V9 - How To 286

2. In the Object field, select an ActiveX virtual variable.

3. In the Option field, select Set Property.

4. In the Property field, zoom to select a property.
 eDeveloper V9 - How To 287

5. Zoom from the Value field. The COM Call Arguments dialog box will open.

6. Zoom from the Exp column, create a new line in the Expression Rules
repository and set the relevant value. Or, zoom from the Var column and select
the field that contains the relevant value.

7. Click OK.

Calling a COM Object Method
1. Create a Call COM operation and zoom to the Call COM Object dialog box.

2. In the Object field, select an OLE or ActiveX virtual variable.

3. In the Option field, select Call Method.

4. Zoom from the Arguments field. The COM Call Arguments dialog box will
open.

5. Zoom from the Var column or the Exp column and connect the argument with
the relevant value.

6. Click OK.
 eDeveloper V9 - How To 288

Sending and Receiving Data 22
Sending Data to the Clipboard from eDeveloper

sually, in order to send data to the clipboard, you use the common Ctrl+C
shortcut. In eDeveloper, the more acceptable shortcut is Ctrl+Ins, which
originated in DOS.

In eDeveloper, there are functions that handle the clipboard: ClipAdd, ClipWrite and
ClipRead.

The ClipAdd and ClipWrite functions let the programmer write to the clipboard and later
paste the information in other applications by using the Windows pasting ability.

ClipAdd – Adds a value and its picture to the clipboard for operating systems that support
clipboard functionality.

This function expects to receive at least two parameters – the value that you want to add
(any valid value other than a BLOB value) and its picture.

ClipWrite – The function places the buffer created by the ClipAdd function into the
clipboard by using the CF_Text clipboard format.

To send data to Clipboard from an eDeveloper application:

1. Create an online program with one parkable field.

2. Add a user event with Force Exit = Control

3. Add a handler to the user event.

U

 eDeveloper V9 - How To 289

4. In the handler, add two Evaluate operations:

• evaluate (ClipAdd(a,varpic(‘A’var,0))

• evaluate (ClipWrite())

5. Once this program is executed, enter a value in the field and trigger the event.

6. Open Notepad and paste the value.

Note:

You can add more than one value at the same time.

Simply use the ClipAdd function several times before using the ClipWrite function.

A good example would be using the Clipboard function in a multi-marking program.
 eDeveloper V9 - How To 290

Sending and Receiving
Messages 23

n distributed applications, two different applications often need to communicate
with one another to transfer information. One of the ways to accomplish this is
message queuing.

Message queuing allows applications to send messages without waiting for a reply and to
continue with other processes. Other applications can receive the messages at their leisure
and continue processing according to the data received.

This chapter covers the topics listed below:

• Installing eDeveloper’s Messaging Capability

• Sending a Message from eDeveloper to MSMQ

• Sending a Transacted Message from eDeveloper to MSMQ

• Sending a Message from eDeveloper to JMS

• Receiving the Messaging Error

• Changing the Location of the Messaging Component

I

 eDeveloper V9 - How To 291

Installing eDeveloper’s Messaging Capability
As eDeveloper’s messaging capability is not part of the typical installation, you first have
to install it.

Part 1
To install eDeveloper’s messaging capability:

1. Re-run the eDeveloper installation via the Add Remove option of the Control
Panel.

2. Select the Messaging Component option. eDeveloper will create a new
directory under the eDeveloper installation directory, called Messaging. It will
also add two Logical Names to your Magic.ini file.

• MessagingComponentDir – points to the Messaging component location

• MessagingErrorLogFile – the name of the error log

For more information about these logical names, please consult the Messaging
Connectivity Reference Guide. Once you have installed the messaging capability, this
document can be found using the Windows Start menu: Programs/Magic 9.4 eDeveloper/
Magic Online Manuals.

Part 2
To add the Messaging component to the Component repository:

1. Create an eDeveloper application or use an existing one.

2. Go to the Component repository and create a new entry. Give the new entry a
name, for example: “MSMQ”.

3. From the Options menu, select Load/Reload. This will display a dialog asking
for the component interface file. The file that should be loaded will be found in
the Messaging subdirectory of the eDeveloper installation.

4. In the Messaging subdirectory, you will see a number of .mci files, which are the
eDeveloper component interface files. If you want to work with Microsoft
 eDeveloper V9 - How To 292

Messaging Queues (MSMQ), select the MSMQ.mci file.

5. Return to the Component repository and press F5 to make sure that eDeveloper
has located the files correctly. The component is now ready to use.

Sending a Message from eDeveloper to MSMQ
This topic describes how to send a text message to the Microsoft Messaging Queuing
(MSMQ) system using eDeveloper. This topic assumes that you have MSMQ installed on
your computer as well as eDeveloper’s messaging capability (see p.292). For the purpose
of this example, we will use a MSMQ private queue called: eDeveloper. We will assume
that you have loaded the MSMQ component and called it “MSMQ”.

 To send a message, you need to use three programs from the component:

1. Open Destination – Opens the queue that you need to send a message to

2. Send Message – Sends the message

3. Close Queue – Closes the queue

While the queue is open, we can send as many messages as required.

Part 1

To create the Open Queue program for sending a message to MSMQ:

For the sake of simplicity, we will use a batch program.

1. Create a batch program to send the message. The program should have a numeric
virtual variable to hold the internal queue identifier. This should be defined as
allowing negative values, for example N17.

2. In the Task Prefix of this program, create a Call Program operation.

3. Zoom to the Program selection list and you will get the list of programs,
including programs from the component. These will appear in red. Each program
is prefixed by the name of the component; in our case MSMQ.
 eDeveloper V9 - How To 293

4. Select the program called MSMQ.MSMQ Open Queue. This program receives
5 parameters:

• Format Name – You should use 0. If you prefer to use a TCP address, you
should use 1.

• Address – Enter your computer name. If you entered zero in the first parame-
ter or a valid TCP address if you entered 1.

• Queue Name – This is the full name of the queue. In our example the queue
name will be private$\eDeveloper

• Access – You should give the value ‘W’ because we want to write to this
queue. If we wanted to read from this queue, we would give ‘R’. When open-
ing a queue in MSMQ, the queue may be opened either for read or for write but
not for both.

• Share – Define how other users will access this queue while this program has
opened the queue. In our case, we will enter ‘A’ to allow full access to others.

5. In the return value of the Call operation you must enter the Queue Identifier
variable that was defined earlier. The reason for this is that the program will
return a number. This number will either be positive, which will therefore be the
queue identifier, or negative in the case of an error. If the open was successful
and an identifier used, this will be the number used in the operations that come
after.

6. The next operations should be in a block. Set the condition of the block to: if the
Queue Identifier is greater than zero. Any other value is an indication that the
queue was not opened.

Part 2

To create the Send Message program for sending a message to MSMQ:

1. Create a Call operation to a Send Message program.

2. Select the program called MSMQ.MSMQ Send Message. This program
 eDeveloper V9 - How To 294

receives 8 parameters, only the first five are relevant for this example:

• Queue Handle – The queue identifier returned by the open program.

• Message – The message itself. If you define a variable to hold the message,
this variable should be a BLOB in which the GUI Display style is defined as
Rich Edit. For your convenience the component has a model that you can use.

• Datatype – The Datatype that may be used. To send a regular string, you
should enter ‘A’ for Alpha.

• Picture – Only relevant if the Datatype is numeric (‘N’). For any other type
you can send an empty string.

• Transaction Mode – Defines what kind of transaction will be sent. In our
example no transaction will be used, so you should enter ‘N’ for None.

Part 3

To create the Close Destination program for sending a message to MSMQ:

1. Create a Call operation to the Close Destination program.

2. Select the program called MSMQ.MSMQ Close Destination. This program
receives a single parameter, the queue identifier.

Sending a Transacted Message from eDeveloper to MSMQ
This topic describes how to send a transacted text message to the Microsoft Messaging
Queuing (MSMQ) system using eDeveloper.

This topic assumes that you have MSMQ installed on your computer and that you are
familiar with sending regular messages from eDeveloper to MSMQ.

For the purpose of this example, we will use a MSMQ private queue called, eDeveloper.
We will assume that you have loaded the MSMQ component and called it “MSMQ”.
 eDeveloper V9 - How To 295

A transaction in MSMQ is not a part of the Open Queue operation itself but an external
entity. Therefore, the user can open two different queues, one for Read access and the
other for Write access, within the same transaction.

Transactions in MSMQ are managed by two separate entities:

• Internal – this is managed by MSMQ itself

• MTS – this is managed externally from MSMQ by the Microsoft Transaction
Server

When beginning a transaction, the user is required to define where the transaction will be
managed.

How does a transaction begin, using eDeveloper’s Messaging component?

The component exposes three programs that deal with transactions:

1. Begin Transaction – This creates the transaction itself.

2. Commit Transaction – This commits the transaction and ends it. The transaction
may no longer be used.

3. Rollback Transaction – This aborts the transaction and ends it. The transaction
may no longer be used.

The Begin Transaction receives a single parameter – I for an internal transaction and M for
an MTS transaction. If the transaction was successful, the component returns a number.
This number or handle should be used in subsequent operations.

So, how do we send a message that will be part of a transaction? You should be aware that
you can only send a transacted message to a queue that was created as a transactional
queue. When creating a queue in MSMQ, you define whether or not the queue is a
transactional queue.

The eDeveloper Open Queue program is the same whether you want the messages to be
sent or read within a transaction. It is up to the developer to open a queue that is a
transactional queue.

The order in which you open the queue or begin the transaction is not important.
 eDeveloper V9 - How To 296

Once you have opened the queue and begun the transaction, you have two handles, one
returned by the Open Queue and the other returned by the Begin Transaction. The handle
returned by the Begin Transaction operation is used in the Send Message program in the
parameter Transaction Handle. But this is not enough. You also have to define the
Transaction Mode as T. This means “Within a defined transaction.”

Why do you have to define the transaction mode? There are two types of transactions that
may be used in a transacted queue: a regular transaction and a single message transaction.

A single message transaction is a transaction that explicitly performs its own Begin
Transaction, Send Message, and Commit Transaction for each message. In this case, the
transaction handle should not be passed. The advantage of sending a single message
transaction is that MSMQ handles all the definitions for the user and ensures that the
message is either sent or rolled back.

If a transaction has been opened, you should ensure that you commit the transaction.

Note:

Since a transaction is not part of the queue, you can open a number of different queues and
send and receive messages from different queues, all within the same transaction.

Sending a Message from eDeveloper to JMS
This topic describes how to send a text message to the Sun Java Message Service (JMS)
using eDeveloper. This topic assumes that you have a server using JMS API installed on
your computer as well as eDeveloper’s messaging capability (see p.292). We will assume
that you have loaded the JMS component and called it “JMS”.

To send a message, you need to use three programs from the component:

1. Open Destination – Opens the queue that you need to send a message to

2. Send Message – Sends the message

3. Close Destination – Closes the queue

While the queue is open, we can send and read as many messages as required. You should
note that a JMS queue may be opened both for receiving and sending messages at the
 eDeveloper V9 - How To 297

same time.

Part 1
To create the Open Destination program for sending a message to JMS:

1. Create a program to send the message. The program should have a numeric
virtual variable to hold the internal queue identifier. This should be defined as
allowing negative values, for example N17.

2. In the Task Prefix of this program, create a Call Program operation.

3. Zoom into the Program selection list and you will get the list of programs,
including programs from the component. These will appear in red. Each program
is prefixed by the name of the component, in our case JMS.

4. Select the program called JMS.JMS Open Destination. This program receives
various parameters. Only the first 6 are necessary:

• Factory Name – Enter the name of the JNDI queue factory name. For Sun
Reference and JBOSS, there is a built-in queue factory name called, Queue-
ConnectionFactory.

• Queue Name – Enter the name of the queue that you want to send the mes-
sages to. Sun Reference provides a predefined queue called jms/Queue.

• Username – The user name for the queue. This is an optional parameter.

• Password – The password for the queue. This is an optional parameter.

• Transacted Messages – Here you define whether the messages are part of a
transaction or not. In JMS, you define a transaction when you open a queue.
From that point on, everything is within a transaction. Therefore, if you do not
want a transaction, you should send FALSE to this parameter.

• Acknowledgement Mode – The Acknowledgement mode defines where the
acknowledgement will be created. The various options are:

• Auto Acknowledge – With this mode, when the message is received, the
message is automatically acknowledged. This is the preferred method. If
you want to use this mode, you should pass 1 to the parameter.
 eDeveloper V9 - How To 298

• Client Acknowledge – With this mode, when the message is received,
the acknowledgement has to be performed manually. If you want to use
this mode, you should pass 2 to the parameter.

• Dups OK – With this mode, acknowledgement is made by JMS but not
automatically. Therefore, if you use this method, it is possible that dupli-
cate messages will be sent. If you want to use this mode, you should pass
3 to the parameter.

5. In the return value of the Call operation you must enter the Queue Identifier
variable that was defined earlier. The reason for this is that the program will
return a number. This number will either be positive, which will therefore be the
queue identifier, or negative in the case of an error. If the open was successful
and an identifier used, this will be the number used in the following operations.

6. The next operations should be in a block. Set the condition of the block to: if the
Queue Identifier is greater than zero. Any other value is an indication that the
queue was not opened.

Part 2
To create the Send Message program for sending a message to JMS:

1. Create a Call Operation to the Send Message program.

2. Select the program called JMS.JMS Send Message. Only some of the
parameters will be discussed:

• Queue Handle – This is the queue identifier returned by the open program.

• Message Type – This is the type of message. For this example we will use a
text message. For other types of messages, please refer to the Messaging Con-
nectivity Guide. In order to send a text message, please send T as the argu-
ment.

• Message – This is the message itself. If you define a variable to hold the mes-
sage, this variable should be a BLOB in which the GUI Display style is defined
as Rich Edit. For your convenience the component has a model that you can
use.
 eDeveloper V9 - How To 299

The other parameters are optional.

Part 3
To create the Close Destination program for sending a message to JMS:

1. Create a Call operation to the Close Destination program, in order to close the
queue.

2. Select the program called JMS.JMS Close Destination. This program receives a
single parameter, the queue identifier.

Note:

Remember that as JMS is based on Java and Java is case-sensitive, all names should be
entered exactly as provided by the server.

Receiving the Messaging Error
Messaging errors are automatically written to a log. Often a developer wants to receive the
error and perform an action as a result.

An example of this is the “no messages in queue” error or return code –10. The developer
may want a message dialog to appear for the end user, such as “There are currently no
messages in the queue. Please try again later.” This topic describes how to handle these
errors in the host application.

For simplicity, this topic assumes that you have messaging capabilities on your computer
and that you already know how to work with eDeveloper’s Messaging component.

eDeveloper’s Messaging component automatically traps messages to a log. Some of these
messages are warning messages and some are errors.

The name of this log is defined in the logical name:

MessagingErrorLogFile
When the messaging component encounters an error, it raises an event that the developer
can handle. The component exposes a public event called Public Event.
 eDeveloper V9 - How To 300

To define the handler for the exposed event:

1. Create a new User Handler and zoom to the list.

2. Select the event exposed by the component.

3. Create four Select Virtual operations for the four parameters that are returned by
the event.

a. Message System – An alpha parameter, which will return one of the following
values:

• M – Microsoft Messaging Queue (MSMQ).

• J – Java Messaging Service (JMS)

• W – Websphere Messaging Queue

b. Error Code – The actual error code. A numeric variable that receives nega-
tive values, such as N17. Errors will be negative values.

c. Validation – A logical value. True means that the error was a result of the
component checking the parameters passed to it. False means that this was an
error returned by the messaging system itself.

d. Error Message – The error text as returned by the component.

If you want to provide your own dynamic text for a certain error, such as –10 which is “No
messages”, then create a Verify operation in which the text is “Dear <Username>, the
queue is currently empty”. The condition for the operation will be when the Error Code is
equal to –10.

Changing the Location of the Messaging Component
The Messaging component and most of its files are stored in the Messaging sub-directory
of the eDeveloper installation. Errors are automatically written to a log.

To change the location of the Messaging component:
 eDeveloper V9 - How To 301

The location of the Messaging sub-directory is kept in a logical name, which is added to
the Magic.ini file during installation. The name of the logical name is:

MessagingComponentDir
To change the location, all you have to do is change the translation of the logical name.

For example, if the logical name MessagingComponentDir points to:
C:\Magic\Magic940\Messaging\ , then change the data so that it points to
F:\Magic\Messaging\ .

You must remember to use the slashes appropriate for your operating system. For
example, if you are using the Windows operating system, please use “\”.

It is important to remember that the logical name must have a trailing slash.
 eDeveloper V9 - How To 302

Using Drag-and-Drop
Functionality 24

sing eDeveloper, you can easily transfer information between your
application and other applications using drag-and-drop functionality. You can
also drag and drop information within the same eDeveloper application.

The drag-and-drop feature is used with GUI elements such as the Form, Edit control,
Table control, and other controls. You can enable drag and drop in your application by
specifying that GUI elements allow a Drag operation from an object or allow a Drop
operation on an object.

This chapter covers the topics listed below:

• Dragging Data from eDeveloper to External Applications

• Dragging Data from External Applications to eDeveloper

• Determining Drag-and-Drop Mouse Pointer Appearance

• Dragging Several Controls Together

• Dragging and Dropping User-defined Formats

• Dragging Multiple Records From One Table to Another

U

 eDeveloper V9 - How To 303

Dragging Data from eDeveloper to External Applications
Data can be dragged from eDeveloper to external applications that support drag-and-drop
functionality. Follow the steps below to be able to mark the contents of a field in an
eDeveloper program and drag the field contents to another application, such as Microsoft
Word.

To enable dragging data from eDeveloper to other applications:

1. Go to the task’s form, and mark the control from which the data should be
dragged.

2. Go to the control property sheet, and set the Allow Drag property to Yes in the
details section.

Dragging Data from External Applications to eDeveloper
Objects can be dragged from an external application that supports drag and drop into an
eDeveloper application.

Data can be dropped into virtual or real variables when the task is in Create or Modify
mode.

There are two ways to drop object data into an eDeveloper application:

• Using a Simple Edit Control

• Using an RTF Edit Control Connected to a BLOB Variable
 eDeveloper V9 - How To 304

Using a Simple Edit Control
To enable dragging data from external applications to eDeveloper using a simple Edit
control:

1. Select the Edit control where the data should be dropped in the eDeveloper
program form.

2. Set the Allow Drop property to Yes on the Edit control property sheet.

Using an RTF Edit Control Connected to a BLOB Variable
To enable dragging data together with its visual attributes from external applications to
eDeveloper:

1. Define a virtual variable with a BLOB attribute in your eDeveloper application.

2. Define the GUI display as an RTF Edit control in the property sheet.

3. Generate a form for the task
.
The Allow Drag and Allow Drop properties do not appear in the property sheet
because the RTF Edit control automatically allows drag and drop.

When text is dragged from an external application to the RTF Edit control, the
data will retain its visual format.
 eDeveloper V9 - How To 305

Determining Drag-and-Drop Mouse Pointer Appearance
The eDeveloper engine determines how the mouse pointer icons associated with the
drag-and-drop operation look.

To determine the appearance of the drag-and-drop mouse pointer icons, you must:

• Define an Internal Drag Begin handler event

• Use the Evaluate operation with the DragSetCrsr function

Defining an Internal Drag Begin Handler Event
To define the Drag Begin handler event:

1. Define two alpha variables in a task, and generate a form for the task.

2. Set the first Edit control’s Allow Drag property to Yes.

3. Set the second Edit control’s Allow Drop property to Yes

4. Define a new handler in the task. The event on which the handler is defined is the
internal Drag Begin event.

Using the Evaluate operation with the DragSet Crsr Function
You can use the Evaluate operation with the DragSetCrsr function in the Drag Begin
handler for different modes that determine how the mouse pointer appears when placed
over an area where:

• Data can be dropped - Mode 1

• Data cannot be dropped - Mode 2

For example,
DragSetCrsr (1,'PathToCursorFile.cur')
 eDeveloper V9 - How To 306

causes the new mouse pointer to appear when the data can be dropped, either in an
eDeveloper application or in an external application, such as MS Word

Dragging Several Controls Together
eDeveloper’s default drag operation only allows the operation to be performed on a single
control. Additional programming is required to enable several controls to be dragged
together, such as the entire record in a table.

After you follow the steps below, you will be able to mark a record in a program and drag
it to an external application, such as Excel or Word, or to an RTF Edit control within an
eDeveloper application.

To allow several controls to be dragged together:

1. Define a virtual alpha variable in a line-mode task. The size of the variable
depends on the total size of the dragged fields because the variable will be used
to concatenate the string contained in the drag buffer.

2. Select the table control on the GUI form, and set the Allow Drag property to yes.

3. In the task, define a handler on the internal Drag begin event.

4. Update the alpha variable in the handler with an empty string, in case the variable
has been used before.

5. Update the alpha variable according to the variables you want it to contain. Make
the needed data conversions, and concatenate each field in turn to the already
existing string. Between every two values, concatenate chr(9), to serve as a
delimiter.

6. Evaluate the DragSetData() function with the alpha variable and the number 1,
to indicate that the data format is text, as parameters.
 eDeveloper V9 - How To 307

Dragging and Dropping User-defined Formats
eDeveloper recognizes Text, OEM text, rich text, HTML, and hyperlink formats. In
addition to these standard formats, eDeveloper can also handle other formats that have
been defined and recognized within eDeveloper.

Before you try to drag and drop user-defined formats, you should check that the format is
supported by the dropped object. Use the DropFormat function, which returns true if the
format specified is supported by the object.

To enable user-defined formats to be dragged and dropped:

1. Click Environment on the Settings menu, and set the Drop data supported user
formats to FileName on the External tab.

2. Define two virtual variables with an alpha attribute. Place them on a screen and
set the Allow Drop property of the first one to yes.

3. Define a handler on the internal Drop event. Update the second variable in the
handler with the expression DropGetData (0,'FileName').

4. To check that the FileName format defined in this example can be dragged and
dropped, run the program. Open Windows explorer and drag a file from it to the
first control. The second control will be updated with the file name.
 eDeveloper V9 - How To 308

Dragging Multiple Records From One Table to Another
You can also drag and drop a set of multiple records in eDeveloper by using an auxiliary
vector that stores all the indexes of the marked records in the source table. These indexes
are then pasted in the destination table when they are dropped there.

Allowing multiple records to be dragged from one table to another includes several steps,
which include:

• Creating the User Interface

• Defining Two Handlers

• Defining Two Link Operations

Creating the User Interface
The first thing you must do is define two database tables that have the same structure. One
table will serve as the source table, and the other will be the destination table. For this
example, you should use two-column tables that contains a numeric code and an alpha
value that represents the name.

Creating the program that contains the tables:

1. Generate an online line-mode program that browses the source table.

2. In the program, define two calls for a subtask: one in the record main level and
one in the task prefix level.

3. Define the subtask as another online task that browses the destination table in
line mode.

4. Set the end condition of the subtask to Level (1)='TP' in the task
properties.

5. Set the Close task window parameter to No on the Behavior tab of the Task
 eDeveloper V9 - How To 309

Control dialog.

6. Design the screen so that the two tables seem to belong to the same task.

7. Return to the parent task, and define a virtual variable. Name the variable Index
vector and assign it a vector attribute.

Defining Two Handlers
Now you need to define two handlers, one for the Drag begin event and one for the Drop
operation.

Defining the Drag Begin Event Handler

To define the internal Drag begin event handler:

1. Define a new handler for the internal event Drag begin as described in the section
on Determining Drag-and-Drop Mouse Pointer Appearance on page 306.

2. Update the index vector with null() in the handler if this is the first record the
handler runs. Specify the condition as MMCurr (0)=1

3. Set a new value in the vector for each marked record using an evaluate operation
with the expression:
VecSet (reference to the index vector variable ,MMCurr
(0), Code field from the source table)
This results in a vector that contains the code indexes for all the marked records.

Defining the Drop Operation Handler

To define the internal Drop operation handler:

1. Go back to the subtask, and define an internal Drop operation handler.

2. Set a block loop in the handler with the condition to
LoopCounter ()<=VecSize (Index Vector)

3. Call another subtask inside the loop.
 eDeveloper V9 - How To 310

4. Pass the current value of the index vector to the subtask as an argument using the
expression VecGet(Index vector, loopcounter()).

5. Outside the block, raise the view refresh internal event.

6. Define the called sub-task as a batch process with no main table. Set the end task
condition to Yes and the evaluate condition parameter to after.

7. In the subtask, define a numeric parameter where the current index value will be
received.

Defining Two Link Operations
Now you must define two different link operations, one for the source table and one for
the destination table.

1. Define a Link Query operation for the source table, and specify the numeric
parameter defined in the subtask for the Locate value.

2. Define a Link Write operation for the destination table, and specify the numeric
parameter defined in the subtask for both the Locate value and the init column
expression.

3. In the Record Suffix, update the destination table’s alpha variable with the alpha
value from the source table.
 eDeveloper V9 - How To 311

Using the Block Loop
Operation 25

he Block Loop operation allows a set of operations to run continuously while a
certain condition is evaluated to true, just like a DO loop.

You can set any valid eDeveloper expression as the condition of a Block Loop, and
you can also have a new function dedicated to the Block Loop to serve as an inner counter
for the operation iterations.

The block operation is not meant to be used within the record main level.

This chapter covers the topics listed below:

Running a Set of Operations Continuously

Monitoring the Number of Iterations

Running a Set of Operations Continuously
To cause a set of operations to be repeated continuously:

1. Define a new Block operation in eDeveloper, and set the block type to Loop.

2. In the Condition column, set the condition of the block.
Set the condition of the block to LoopCounter()<=N to have the loop run N
times.

You can also use any valid eDeveloper expression as the condition for the block
loop. For example, you can easily parse a string by using a block loop and setting
the condition to LoopCounter ()<=StrTokenCnt(string, delimiter), while each
iteration makes use of the LoopCounter () function again as the index for the

T

 eDeveloper V9 - How To 312

StrToken() function.

Monitoring the Number of Iterations
Monitoring the number of iterations is accomplished using the LoopCounter() function.

Set the condition to LoopCounter()<=N to have the set of operations performed N times.
This makes it unnecessary to have an application counter monitor the number of times the
set of operations in the block has been executed.

The use of the LoopCounter() function is limited to the execution of the block. Outside the
block, the function returns 0.
 eDeveloper V9 - How To 313

Using the List Box 26
ew eDeveloper list boxes let you select more than one value. This is done by
connecting the list box to a vector type variable that allows a set of values to be
stored. Depending on the cell model of the vector, the list box can be associated

with different data types, not necessarily alpha types.

This chapter covers the topics listed below:

Enabling Selection of More Than One List Box Item

Allowing Retrieval of Non-string Attributes from a List Box

Enabling Selection of More Than One List Box Item
To allow more than one item to be selected from a list box:

1. Define a model for the vector cell, such as alpha 6.

2. Define a virtual variable with a vector attribute. In the variable properties, set the
cell model to the model you defined.

3. Define another virtual variable, and set its attribute to BLOB. In the properties of
this variable, set the GUI display to rich text edit. This variable will later contain
the list of selected items.

4. Create a form for the task. Connect the vector to a list box control. In the list box
property sheet, define the selection mode as Multiple.

5. Enter values in the list by connecting the list to a table or by defining the label.

N

 eDeveloper V9 - How To 314

Checking the Multiple Selection List
To check the selection list:

1. Run the task.

2. Press the control button.

3. Use the mouse to select more than one item.

4. Click the Rich Edit Format control to enter the values selected from the list box.

Entering the Values While Remaining on the Selection List
Note that a multiple-selection list box only triggers the control change event when the
focus is moved to another variable. If you want the control change event to be triggered
when the focus is still on the list box, you need to modify the program so that it has a
similar handler on some other event, such as a key combination. In this case, because the
variable will not yet be updated, the concatenation should be done with the expression
VecGet(editget(),LoopCounter())

Allowing Retrieval of Non-string Attributes from a List Box
To allow non-string attributes to be selected from a list box, you need to define a Control
Change level for the vector variable and follow the steps below in the level:

1. Update the BLOB variable with a blank string.

2. Open a block loop, and define the expression LoopCounter()
<= VecSize(vector variable) as the condition for the loop.

3. Inside the loop, update the BLOB variable so that it concatenates
VecGet(vector, LoopCounter())&’, ’
to the previous contents of the BLOB field.
 eDeveloper V9 - How To 315

Handling Buffers 27
n eDeveloper application is sometimes required to interact with third-party
modules. This interaction may involve an exchange of information through
binary collection of data commonly known as structures or more generally

known as buffers.

Creating a Structure
eDeveloper lets you handle buffers using BLOB fields. By using the special Buffer
management functions, it is possible to construct the structure required. In addition, by
using matching functions it is possible to retrieve data from a structure.

To create a structure:

1. Define a BLOB variable that will hold the binary information.

Buffers are binary streams of data. You will need to be familiar with type sizes as
they are implemented in computer languages. For example, a Numeric value in
the range of –32,768 to 32,767 or 0 to 65,575 can be stored in a numeric memory
variable called "Double" and use 2 bytes of memory.

2. Use the special Buffer Management functions in eDeveloper to add values and
store them in the structure that is stored in the binary BLOB.

3. If you want to add a numeric value into a buffer, use the BufSetNum() function.
For example: BufSetNum ('H'VAR,1,B,3,8)

The BufSetNum parameters are:

• Variable pointer – Like all BufSet() functions, the first parameter is a variable

A

 eDeveloper V9 - How To 316

pointer to a BLOB variable that holds the current structure that should be
added with a value.

• Position – The position to which the value should be added.
In the example, the position is 1, meaning the beginning of the structure.

Remember that a buffer is a stream of data. Therefore, position is very impor-
tant as to indicate where in the binary stream the value should be added.
The position of any consecutive value should take into consideration the posi-
tion and length of the values set before it.

• Value – The value to be added to the structure. The value should match the
type of function. For example, it should be numeric for certain functions such
as BufSetNum() and BufSetBit(), while it should be an Alpha value for the
BufSetAlpha() function.
The value can be any valid expression, such as variable and static.

• Storage – The fourth parameter for all BufSet functions, except BufSetVari-
ant(), is the storage type, indicated by a numeric value.
In the example, the Numeric values added to the 'H'Var buffer is stored as a
Float. The available storage types are displayed in the eDeveloper Storage
Type table (see p.318).

• Length – The last parameter is the length of the value that is being added. It
should match the value storage type and size. In the example it is set to 8.
 eDeveloper V9 - How To 317

eDeveloper Storage Type table

Attribute Storage
ID

Storage Name Length

1 Alpha 1 String – Non-null terminated string <32K

2 Alpha 2 Zstring – Null-terminated string <32K

3 Alpha 3 Lstring – Compressed string with a short integer
containing the storage length

<32K

4 Numeric 1 Signed Integer 1,2,4

5 Numeric 2 Unsigned Integer 1,2,4

6 Numeric 3 IEEE Float 4,8

7 Numeric 4 Float MS-Basic 4,8

8 Numeric 5 Float Decimal 4,8

9 Numeric 6 Packed Decimal

10 Numeric 7 Numeric

11 Numeric 8 Numeric Character

12 Numeric 10 C-ISAM Decimal

13 Numeric 11 Extended Float

14 Logical 1 Number containing 0,1 1

15 Logical 2 Dbase containing T,F 1

16 Date 1 Integer – Days from 1/1/1 4

17 Date 2 Integer – Days from 1/1/1901 4

18 Date 3 YYMD 4

19 Time 1 Integer 4
 eDeveloper V9 - How To 318

For more details about adding elements to structures, please see the Buffer Management
function descriptions in the eDeveloper Reference Guide or the help (F1).

Sending a Buffer from eDeveloper
You can use the Call UDP operation to connect to third-party DLLs as well as pass
arguments and receive arguments.

1. Create a structure expected by the third-part DLL function (as described in the
Creating a Structure topic)

2. Once the structure is stored in a BLOB field in eDeveloper, create a Call UDP
(User Defined Procedure) operation to connect with the third-party DLL.

3. In the Call UDP operation, enter a string expression that indicates the path to the
function that needs to be called.
Usually, these DLLs are not compiled especially for eDeveloper's usage, so the
string should start with the '@' symbol.
For example:

'@kernel32.GetSystemTime'

This tells eDeveloper to find the "GetSystemTime" function from the
Kernel32.DLL, which is not a DLL compiled especially for eDeveloper's use.

It is also possible to set a file path to the DLL; for example:

'@C:\Windows\System32\kernel32.GetSystemTime'

20 Time 2 HMSH 4

21 BLOB 1 4 bytes of storage length + the buffer (16 bytes)

22 BLOB 2 The buffer (16 bytes)
 eDeveloper V9 - How To 319

When no path is specified, eDeveloper searches for the DLL, first in eDeveloper's
directory and then anywhere else, according to the environment variable "PATH".
Since System32 directory is usually in the path, there is no need to write the path
into the string.

4. Define the first parameter for the Call UDP operation, which should be the
"Function Mask" – a string value that represents the function header declaration.
In the example above, the GetSystemTime function’s header is:

Public Declare Sub GetSystemTime Lib "kernel32" Alias
"GetSystemTime" (lpSystemTime As SYSTEMTIME)

Note: The description of the function can only be obtained from the vendor of
the DLL or if you have access to its source.

In this example, the "Function Mask" is 'T0' because the function expects a
Structure called SYSTEMTIME and it is declared as Sub (void), so there is no
return value.

The "Function Mask" is a string with the following characters:
1 – Char
2 – Short
4 – Long
F – Float
8 – Double
D – Double pointer
E – Float pointer
L – Long pointer
A – Null terminated string pointer
V – Void pointer
0 – Void
T – Structure

5. Set the next parameters, which are the arguments to be sent to the function. In the
example, you need to send the BLOB variable that holds the structure
SYSTEMTIME.
When sending a variable it will be sent by Reference and the function will update
 eDeveloper V9 - How To 320

it accordingly.

6. Use the Buffer Management functions to fetch the values.

Advanced notes:

The SYSTEMTIME structure is defined as (according to the DLL sources):

Public Type SYSTEMTIME
 wYear As Integer
 wMonth As Integer
 wDayOfWeek As Integer
 wDay As Integer
 wHour As Integer
 wMinute As Integer
 wSecond As Integer
 wMilliseconds As Integer
End Type

To create the SYSTEMTIME structure, you will need to run the following Buffer
Management functions on a BLOB field:

BufSetNum ('B'VAR,1,0,1,2)
BufSetNum ('B'VAR,3,0,1,2)
BufSetNum ('B'VAR,5,0,1,2)
BufSetNum ('B'VAR,7,0,1,2)
BufSetNum ('B'VAR,9,0,1,2)
BufSetNum ('B'VAR,11,0,1,2)
BufSetNum ('B'VAR,13,0,1,2)
BufSetNum ('B'VAR,15,0,1,2)

This will initialize the BLOB ('B'VAR) with an empty structure full of Zero values to all
the elements in it.

Using the matching BufGetNum() function you will be able to read each of the values
returned by the DLL into the buffer (after the Call UDP operation was executed).
 eDeveloper V9 - How To 321

Index
A
ActiveX control

defining 281
Progress bar 284
selection list 281
Web browser 281

Allow Events property 243, 245, 248
APG

basic programs 57
HTML control 116
HTML template 114
manipulate data 55
multiple tables 80
printing program 181
Program repository 81
referenced table 45
simple printing program 182
simple program 79
Table repository 79

Application
creating new 22
properties 22
reusable objects 31

AppServer
advanced configuration 263

Arguments
menu 198

Authorization system
toolkit 153

B
Batch Event Interval property 246
Batch program

creating 241
Batch task

Allow Events 243
confirming execution 242
End Task condition 242, 247
endless 246
event handling 244
manipulating execution 241
No Main table 247

BEA WebLogic 254
Block Loop

iterations 313
operation 312
run continuously 312

Bookmark 209
Broker

Command Line Requester 220
Browser program

frameset 129
Browser task

changing mode 126
specific frame 125

Buffer 316
sending 319
storage type 318
structure 316

BufGetNum 321
BufSetNum 321
C
Cache

Cache Strategy 73
dataview 72
linked table 73
Main table 72
resetting 120

Calculating sums 175
Call

Exit operation 223
resident 231
eDeveloper V9 - How To 322

Caption
changing eDeveloper 176

Change Tables in Toolkit 46
Check Existence 47
Chunk size 120
Client

setup 219
ClipAdd 289
Clipboard

sending data 289
ClipWrite 289
Colors

background 29
combinations 28
foreground 29

COM
COM Call Arguments 283
COM Object method 288
COM Object property 286

Combo box 157
Command Line

broker information 220
remote program 221

Comments 210
Component

creating 212
integrating 213
loading 213

Configuration File
external 37

Confirm Cancel 103
Confirm Update 103
Context

defining menu 100
functions 239
runtime 238

Control Verification

avoiding 179
Cross-Reference utility 206
Currency conversion 168

creating file 165
display types 168
eDeveloper functions 167, 169
modifying file 166
OS Text Editor 167

Cursor
changing 177

D
Data structure

preventing changes 46
Data Table

physical definition 51
restore structure 54

Database
constraint 141
default values 47
error overwriting 139
login 141
merging information 158
sequence/identity 230
sort/temporary 69
stored procedure 229
views 229

Dataview 58
cache 72
defining 75
saving changes 101

Date Values
default 35

DBMS
default values 47
Direct SQL 229
enhance performance 228, 230
hints 226
eDeveloper V9 - How To 323

optimizer 226
Default File 26
Default value

application 36
Deferred transaction 133

handling error 136
Direct SQL

batch 250
Direct SQL SELECT 61
Display Full Messages setting 139
Displaying information 90
Documentation Template utility 205
Drag-and-drop 303

between tables 309
external 304
mouse pointer 306
multi controls 307
user-defined 308
using controls 305
variables 116, 124

DragSetCrsr 306
Dynamic list 157
E
EJB

AppServer 263
deployment 257, 260
eDeveloper support 256
generating 257

EJBExplore function 266
e-mail 178
End Task condition 242

batch 247
Engine

directive 138
setup 108

Enterpise Server
starting/closing 238

Environment
multi-threaded 235, 236
single context 238

Error
Any handler 140
behavior strategies 137
defining handler 137
engine directive 138
functions 139
transaction handling 136

Evaluate Condition 90
Event

application 83
global 214
using 174

Event handler
batch 244
defining 244
global 214

Executable File 31
Exit

program 173
Exit operation

calling 223
client/server 223
troubleshooting 224

Export utility 205
F
Field attributes

modifying 49
Folder 209
Font

definitions 30
Footer 184
Force Record Delete 249
Force record Suffix 102
Foreign key
eDeveloper V9 - How To 324

defining 45
Form

I/O style 251
templates 164

Frameset 129
G
Get Definition utility

existing tables 52
mapping 50

GetLang 28
Group

new 147
GROUPADD 23
H
Handler

defining 84, 245
Header 184
Help prompts

assigning 195
Help screens

assigning 195
Helps

creating 201
WinHelp 201

Hints
prioritizing 226

HTML
authoring tool 123
HTML Merge 159
Merge Task control 160
Tag values 160
tags 159

HTML control
adding 116
APG 116
assigning data 117
defining 112, 115

properties 117
HTML file

browser task 123
editing 124
external editing 125

HTML template
creating 113
using 114

I
I/O File

media expression 187
printing 184, 185

I/O form
style 251

Icon
changing 172

Image
context menu 196

Image button
designing 170
displaying 170

Import/Export program 250
Index

creating 40
expression 68
fetching 248
properties 41
row uniqueness 39
segments 40

Inheritance 33
INIPut 23
INIPut function 239
Init Status property 249
Initial mode 94
Interactive Web

building task 110
creating program 110
eDeveloper V9 - How To 325

defining application 106
installing application 107
task properties 111

Internet requester
setup 108

ISAM
fetching index 248

Items List property 158
Iteration 313
J
J2EE

running client 262
server Installation 253
starting deployment 260
starting server 259
stopping 262
URL resources 258

Java
calling non-static 276
calling static 279
class 265
classpath 264
EJBExplore 266
Javap utility 266
JExplore 266
JVM arguments 265
new instance 270
non-static variable members 273
settings 264
setup 263
static variable members 275
VM type signatures 272

Javap utility 266
jBoss 255
JExplore function 266
JMS 297

K
KBPUT 86, 174
L
Language

file 27
starting 27
support 26

Links 60
automatic 44
computation 75
False Link condition 74
Link Create 74
linked table cache 73
unnecessary 74

List box 314
multi selection 314
non-string attributes 315

Locate expression 63
Logical names

defining 34
translation 169

Logical record 59
Login

database 141
Logon 150
Logon function 150
LoopCounter 312
M
Magic.ini 239
MAGIC_DEFAULTS 35
Main Program

exeuction 82
Main table

cache 72
defining 59
index 62

Mapping
eDeveloper V9 - How To 326

default 49
Get Definition Utility 50
SQL type 50

MCI 211
Media expression 187
Menu

additional context menus 198
application default 196
context 197
defining options 193
executing program 198
functions 194
image 196
pull-down 193
rights 193
shortcut 199

Messaging
changing component location 301
component 292
error 300
installing 292
JMS 297
MSMQ 293
MSMQ transacted 295

MFF 204, 234
Mggenw.exe 22
Mgrntw.exe 22
MGRQCMDL utility 220, 221
MNUENABL 194
MNUSHOW 194
Model

defining 39
properties 31

MSMQ 293
MS-SQL

temporary table 143
Multi-Line Edit control 190

Multi-lingual support 26
MVCS 150
N
Null

by expression 143
definitions 36
Display Strings 35

O
One-to-Many

building program 162
data integrity 163
HTML 121
program 161

Open Client Environment 24
Options menu 88

disabling 89
ORDER BY 42, 44
OS Text Editor 167
Output Form operation 183
Owner

table 48
P
Partitioning 217

application 217
using 219

Persistent client 128
Porting 204
Position

table 42
Preventing

data manipulation 87, 89
table modfication 70
table modification 70

Printer
changing default 187

Printing
Allowing Print Preview 188
eDeveloper V9 - How To 327

changing I/O 186
footer 184
header 184
I/O file 184, 185
Multi-Line Edit control 190
table data 56
table in subtask 191
table lines 191
Windows Print 187

Program
executing 66
exiting 173
generating 45
Import/Export 250
Program Generator See APG
terminating 84

Propagate property 140
R
Raise Event 85
Range 62
Range/Locate 61
RDBMS

sort 229
Record

Chunk size 120
display order 67
Force Record Delete 249
increased scrolling 119
no delete confirmation 91
retrieving 41

Record Event Interval property 246
Report

appearance 183
layout 188
PDF 189

Result set 61
RIGHTADD 23

Rights
assigning 153
assigning to group 152
creating 151
global 154
menu 193

Row uniqueness 39
RUNMODE 82
S
Segments 40
Selection List program

creating 95
Selection Table program 97

executing 99
Server

setup 218
SetLang 28
Settings

changing 23
Sort

order 43
virtual key 69

Sort order
adding 68

SQL
connectivity with eDeveloper 26
DB SQL Where 65
defining database 24
Direct SQL DML 76
Direct SQL SELECT 61, 75, 76
eDeveloper settings 25
Index properties 41
Input parameter 77
Magic SQL Where 64
mapping column 50
Output parameter 77
SQL Type 51
eDeveloper V9 - How To 328

Storage Type table 318
Stored Procedure 77
Subform

control 122
defining 129
recomputing 122

Sun Ref
deploying 262
implementation 255
setup 259
stopping 263

Supervisor 147
SYSTEMTIME 321
T
Table

chunk of records 248
default values 48
indexes 42
owner 48
position 42
referenced 45
resident 232
sharing 71

Table control
HTML 117

Table mode
Access 70
defining 71
Share 71

Task
properties 88, 90

Threads
concurrent 235
monitoring 237
shared resources 239

Title bar
changing 171

Transaction
abort 136
commiting 145
fails 136
processing 133
recover 136
Transaction Begin property 134

U
UDF 239
UDP 239
User

creating 147
functions 149
ID 148
new 148
retrieving information 149
runtime 150

User event
Force Exit 102

User group
assigning rights 152
rights 151

USERADD 23
V
Variable

drag and drop 116, 124
global 81
virtual 60

VCR control 126
Views 229

accessing 54
Virtual key 69

unique 55
W
WAV file 175
Web server

setup 107
eDeveloper V9 - How To 329

WebLogic
deploying 262
setup 259
stopping 262, 263

WebSphere 253

deploying 261
setup 258
stopping 262

Window
modal 173
eDeveloper V9 - How To 330

	How to... Working with eDeveloper
	Contents
	Introduction
	01 Configuring the eDeveloper Environment
	Starting a New eDeveloper Session
	Creating a New Application
	Defining Application Properties

	Changing eDeveloper Settings for Each Session
	Defining an SQL Database
	Configuring an Open Client Environment
	Setting up eDeveloper to Work with an SQL Database
	Setting the eDeveloper Environment to Work with SQL Databases
	Checking for Connectivity Between eDeveloper and the SQL Database

	Changing the Application Default File Name
	Setting up eDeveloper Language Support
	Building an eDeveloper Language File
	Setting a Starting Language

	Creating Color Combinations
	Changing Color Combinations
	Changing Foreground and Background Colors

	Creating Font Definitions
	Changing the Name and Look of a Font

	Displaying the eDeveloper Executable File Version
	Defining Reusable Application Objects
	Defining Model Properties

	Using and Breaking Inheritance
	Defining an Object
	Breaking and Returning an Inheritance

	Defining Logical Names
	Using Logical Names

	Defining Default Date Values and NULL Display Strings
	Defining Application Default Values and Null Definitions
	Defining an External Configuration File for a Specific Application

	02 Creating Data Objects
	Defining a Model
	Forcing Row Uniqueness in a Data Table
	Creating a Unique Index for a Table
	Defining Segments in an Index
	Defining Index Properties (for SQL Databases)

	Retrieving Records from the Database in a Specific Order
	Defining Table Indexes and Position
	Choosing an Index Within a Task
	Setting the Task Sort Order
	Using the ORDER BY Clause Within eDeveloper

	Automatic Linking Between Data Tables
	Defining a Foreign Key
	Generating Programs Containing Referenced Tables

	Preventing Changes in the Data Structure
	Regulating Changes in Toolkit Mode
	Setting the Check Existence Setting
	Setting the DBMS Default Value
	Setting the Database Default Values
	Setting the Table Default Values
	Defining the Owner of a Table

	Modifying eDeveloper Field Attributes
	Default Mapping Using the Table Repository
	Mapping a Table Column Using the Get Definition Utility
	Mapping a Table Column Using the SQL Type Option
	SQL Type Options for an SQL Database

	Converting a Data Table’s Physical Definition
	Accessing Existing Tables Using the Get Definition
	Restoring the Structure of a Converted Data Table
	Accessing Database Views
	Adding a Virtual Unique Key
	Using the APG to Manipulate Table Data
	Printing Table Data Directly from the Table Repository
	Automatically Generating Basic Programs

	03 Creating the Task Dataview
	Defining a Program or Task Dataview
	Defining a Main Table for the Program or Task
	Defining Different Linking Options to Additional Data Tables
	Selecting Virtual Variables
	Direct SQL SELECT Statement

	Determining the Result Set of a Program
	Selecting an Index from the Main Table
	Defining the Requested Range
	Defining Locate Expressions
	Defining the Magic SQL Where Clause for an SQL Database
	Defining the DB SQL Where Clause for an SQL Database

	Executing the Same Program with Different Data Tables
	Accessing the Database Table Repository

	Dynamically Changing the Program Record Order Display
	Changing the Display Order of Records
	Using the Expression Index Parameter

	Adding a Record Sort Order to a Program
	Selecting the Database for Sort/Temporary
	Using a Virtual Key to Re-use a Sort

	Preventing Modification of Opening of a Data Table
	Using Access Mode
	Using Share Mode
	Defining Table Modes
	Table Sharing Interaction

	Caching the Dataview
	Defining a Main Table Cache
	Defining a Linked Table Cache
	Defining the Cache Strategy Parameter

	Minimizing Unnecessary Links in a Program
	Defining the Dataview
	Defining Direct SQL Select Statements
	Defining a Direct SQL DML Operation
	Executing a Stored Procedure with Input and Output

	04 Using Basic Programming Techniques
	Automatically Generating a Simple Program
	Generating Programs from the Table Repository
	Generating Programs from the Program Repository

	Defining Global Variables for an Application
	Controlling Execution of the Main Program
	Defining Application Level Events
	Defining a Handler

	Conditionally Terminating the Program
	Terminating a Program
	Using the Raise Event

	Preventing a User from Manipulating Program Data
	Selecting Task Property Attributes
	Controlling Use of the Options Menu
	Disabling the Options Menu
	Controlling User Positioning of the Cursor
	Preventing Data Manipulation

	Displaying Information after the Task is Closed
	Using the Task Properties Dialog

	Removing the Need to Confirm Record Deletion

	05 Building an Online Task
	Evaluating a Program’s Initial Starting Mode
	Selecting the Initial Mode Expression
	Using an Expression in the Initial Mode

	Creating a Selection List Program
	Creating a Selection List Program by Calling a Program
	Defining a Selection Table Program
	Associating a Selection Table Program to a Column
	Executing a Selection Table Program

	Defining a Context Menu for a Program
	Defining an Additional Context Menu
	Defining the Context Menu in a Program or a Task

	Automatically Saving Changes to the Dataview
	Using the Task Control Property: Force record Suffix
	Defining a User Event with Force Exit=Record
	Updating an Operation with Undo=No

	Reconfirming User Steps in a Program

	06 Building an Interactive Web Task
	Defining the Interactive Web Application Developing Environment
	Installation
	Setting Up the Web Server
	Setting Up the Internet Requester
	Running the eDeveloper Broker
	Setting up the eDeveloper Engine

	Creating a Simple Interactive Web Application Program
	Building an Interactive Web Application Task
	Defining the Properties for the Interactive Web Application Task
	Defining HTML Controls

	Preparing an HTML Template
	Creating the HTML Template
	Using the HTML Template File

	Handling HTML Controls
	Defining HTML Controls
	Creating Controls with the APG
	Dragging and Dropping Variables
	Adding an HTML Control
	Assigning Data to HTML Controls
	Defining HTML Control Properties

	Defining an HTML Table Control in a Browser Task
	Creating the HTML Table Control
	Setting the Table’s Details Line # Property

	Increase Record Scrolling Performance
	Defining the Chunk Size Number
	Resetting the Cache

	Creating a Browser One-to-Many Relationship of Tasks
	Creating Parent and Extended View Tasks
	Defining Subform Controls and Properties
	Recomputing the Subform

	Working with a Third Party HTML Authoring Tool
	Defining Your HTML Authoring Tool
	Editing the Browser Task Interface HTML File
	Editing the HTML File
	Editing the HTML File Externally

	Opening a Browser Task in a Specific Frame
	Changing the Task Mode in a Browser Client
	Defining and Using the eDeveloper VCR
	Setting eDeveloper to Work with the Persistent Client Mode
	Defining a Subform
	Opening Two Browser Programs in the Same Frame

	07 Using Transaction and Recovery Techniques
	Working with Deffered Transactions
	Defining the Transaction Begin Property as Before Record Prefix
	Defining the Transaction Begin Property as Before Task Prefix
	Defining the Transaction Begin Property as Group
	Handling Deferred Transaction Errors

	Continuing a Program When the Transaction Fails
	Defining eDeveloper’s Pre-Defined Error Behavior Strategies
	Defining an Error Handler
	Defining the Engine Directive
	Defining the Error Result
	Overwriting Database Errors
	Using eDeveloper Functions to Retrieve Error Information
	Defining the Any Error Handler
	Defining the Propagate Property

	Dynamically Logging into a Database
	Handling a Violation of the Database Constraint by a User
	Sending Nulls by Expression
	Working with MS-SQL Temporary Tables
	Local Temporary Tables
	Global Temporary Tables

	Committing a Transaction Every nn Records

	08 Securing Your Application
	Creating a User in the eDeveloper Environment
	Logging on as Supervisor
	Creating a New Group
	Creating and Defining New Users and User IDs
	Retrieving User Information

	Changing the Logged-On User in eDeveloper Runtime Mode
	Logging onto the System
	Using the Logon Function

	Assigning Rights to a User Group
	Creating a Right
	Assigning Rights to a User Group
	Assigning Rights to a User

	Using the Authorization System in eDeveloper Toolkit Mode
	Assigning Rights
	Assigning Global Rights to eDeveloper Repositories

	09 Using Advanced Programming Techniques
	Creating a Dynamic List or Combo Box
	Combo Box Properties
	Using the Items List Property

	Merging Database Information into an Existing Document
	Using HTML Tags
	Selecting the HTML Merge Option
	Defining the Tag Values
	Defining the HTML Merge Task Controls

	Developing a One-to-Many Relationship Program
	Building a One-to-Many Program
	Preserving Data Integrity in the One-to-Many Relationship

	Saving and Re-Using a Form Display
	Form Templates
	Saving a Form Template
	Loading a Form Template

	Defining Automatic Currency Conversion
	Creating a Euro Conversion Text File
	Setting eDeveloper to Use the Currency Conversion File

	Modifying the EURO Text File
	Using the OS Text Editor
	Modifying the EURO Text File Using eDeveloper Functions

	Currency Conversion
	Converting Currencies Using Different Display Types
	Converting Currencies Using the Euro Functions

	Fetching the Full Translation of an eDeveloper Logical Name
	Designing and Displaying an Image Push Button
	Designing the Image Button
	Displaying the Image Button in an eDeveloper Program

	Changing the Image and Title Bar Text of the eDeveloper Window
	Changing the Main Window Title
	Changing the eDeveloper Icon

	Making an eDeveloper Online Task Window Modal
	Exiting a Program from a Subtask Level
	Using the KbPut Function with the Fill Function
	Using Events in eDeveloper

	Playing WAV Files from eDeveloper
	Calculating the Sum of Several Records in a Table
	Changing the Caption of the eDeveloper Title
	Changing the Windows Cursor
	Sending E-mail from Within eDeveloper
	Avoiding the Control Verification

	10 Printing with eDeveloper
	Automatically Generating a Printing Program
	Generating a Printing Program

	Creating a Simple Printing Program
	Defining the Task and I/O Properties
	Preparing a Report’s Dataview
	Designing a Report’s Appearance
	Using the Output Form Operation

	Defining a Standard Header and Footer
	Printing to the Same I/O File from Several Subtasks
	Using the Same I/O Among Subtasks

	Printing to the Same I/O from Several Programs
	Using the Same I/O Among Programs

	Changing the Printing I/O Media
	Windows Print Dialog
	Media Expression in the I/O File Properties

	Changing the Default Printer from Within eDeveloper
	The Printer Dialog

	Allowing Print Preview
	Creating More Than One Report Set in a Program
	Creating a Report in PDF Format
	Creating the Report Outside eDeveloper
	Creating the Report Inside eDeveloper

	Printing Different Length Multi-Line Texts
	Controlling the Number of Lines Displayed in a Table
	Printing a Table Within a Subtask

	11 Defining Application Menus
	Defining a Pull-down Menu for an Application
	Changing Options Displayed in the Runtime Toolbar
	Defining Options Using the Menu Repository
	Defining Options Using the MNUENABL and MNUSHOW functions

	Assigning Help Screens
	Assigning Help Prompts
	Defining an Application Default Menu
	Defining an Entry Image on the Runtime Context Menu
	Defining a Context Menu for a Specific Program
	Executing a Program from the Menu with Arguments
	Creating Additional Context Menus
	Defining a Shortcut Key for Menu and Separator Entry Types
	Defining a Shortcut Key for Program, OS Command, and Event Entry Types

	12 Creating Application Helps
	Creating Internal, Prompt and Tooltip Helps
	Designing WinHelp Help Topics

	13 Using eDeveloper Toolkit Utilities
	Porting Your eDeveloper Application
	In the Development Environment
	In the Runtime Environment

	Creating an eDeveloper Application Documentation File
	Running the Export Utility in Documentation Mode

	Cross-Referencing an Object
	Selecting Entries to Cross-Reference
	Deleting or Searching for a Cross-Reference
	Saving or Printing Cross-Referenced Information
	Changing the Maximum Number of Cross-Referenced Results

	Organizing Your Application
	Creating eDeveloper Folders
	Bookmarking a Location
	Using Comments

	14 Using eDeveloper Components
	Creating a Component
	Loading a Component
	Integrating Components into Your Application
	Selecting a Component for Integration

	Sharing an Event Among Applications
	Maintaining the Loaded Component Application
	Adding Settings to a Component

	15 Partitioning eDeveloper
	Setting Up an eDeveloper Partitioned Application
	Partitioning the eDeveloper Application
	Knowing How a Partitioned Application Works
	Setting the eDeveloper Application
	Setting Up the Server
	Setting Up the Client
	Using eDeveloper Partitioning

	Retrieving Broker Information From the Command Line
	Running a Remote Program From the Command Line

	16 Connecting to External Applications
	Calling eDeveloper from an External Application
	Calling an External Application Using the Exit Operation
	Using the Exit Operation in a Client/Server Environment
	The Wait Property
	The Show Property
	The Ret Property
	Troubleshooting

	17 Improving Performance
	Influencing the DBMS Optimizer
	Prioritizing the Hints
	Examples of Hints

	Using RDBMS Features
	Improving Performance Using DBMS Features

	Repeatedly Calling a Task
	Accessing a Heavily Used Table

	18 Deploying eDeveloper
	Creating and Using a Magic Flat File
	Creating a Magic Flat File
	Running an eDeveloper Application Using a Magic Flat File

	Setting Up a Multi-Threaded Environment
	Limiting the Number of Concurrent Threads

	Managing a Multi-Threaded Environment
	Monitoring eDeveloper Threads
	Starting or Closing an eDeveloper Enterpise Server

	Setting a Single Context Environment
	Runtime Context
	The Magic.ini and the INIPut Function
	Resources Shared by Threads
	Using External Programs (UDF/UDP)
	CTX Functions

	19 Building a Batch Task
	Creating a Simple Batch Program
	Manipulating the Execution of a Batch Task
	Using the Confirm Execution Pop-Up Window
	End Task Condition
	Allow Events

	Batch Task Event Handling
	Defining the Event Handler
	Defining the Handler

	Defining an Endless Executed Program
	Batch Task without a Main Table
	End Task Condition
	Allow Events
	Updating the Fetching Index

	Defining a Chunk of Records from a Data Table
	Init. Status = Delete
	Force Record Delete = True
	Direct SQL Statements

	Creating an Import/Export Program
	Defining an I/O Form’s Style

	20 Integrating with the J2EE Environment
	J2EE Server Installation
	WebSphere
	BEA WebLogic 6
	BEA WebLogic 5.1
	Sun Reference Implementation
	jBoss 2.4.4

	Enabling eDeveloper with EJB Support
	Generating EJBs Using eDeveloper
	EJB Deployment Using eDeveloper
	Setting Up URL Resources for a J2EE Server
	Starting the J2EE Server
	Starting the Deployment Tool
	Deploying the EJB
	Running the Client
	Stopping the J2EE Server
	Advanced Configuration of eDeveloper AppServers

	Setting Up a Java Environment
	Required Java Software
	System-wide Settings
	Setting the Java Classpath
	Setting JVM Arguments

	Learning About the Content of a Java Class
	What is a Java Class?
	Using the JExplore Functions
	Using the Javap Utility
	Examples

	Creating a New Instance of a Java Class
	Reading Values of Java Variables
	Reading Values of Java Object Variable Members
	Reading Values of Java Class Variable Members (static variables)

	Calling a Java Method
	Calling Java Object Methods (non-static)
	Calling Java Class Methods (static)

	21 Using COM Support
	Defining an ActiveX Control
	Creating an ActiveX control for the Web browser
	Creating an ActiveX control for the Progress bar

	Setting a COM Object Property
	Calling a COM Object Method

	22 Sending and Receiving Data
	Sending Data to the Clipboard from eDeveloper

	23 Sending and Receiving Messages
	Installing eDeveloper’s Messaging Capability
	Sending a Message from eDeveloper to MSMQ
	Sending a Transacted Message from eDeveloper to MSMQ
	Sending a Message from eDeveloper to JMS
	Receiving the Messaging Error
	Changing the Location of the Messaging Component

	24 Using Drag-and-Drop Functionality
	Dragging Data from eDeveloper to External Applications
	Dragging Data from External Applications to eDeveloper
	Using a Simple Edit Control
	Using an RTF Edit Control Connected to a BLOB Variable

	Determining Drag-and-Drop Mouse Pointer Appearance
	Defining an Internal Drag Begin Handler Event
	Using the Evaluate operation with the DragSet Crsr Function

	Dragging Several Controls Together
	Dragging and Dropping User-defined Formats
	Dragging Multiple Records From One Table to Another
	Creating the User Interface
	Defining Two Handlers
	Defining Two Link Operations

	25 Using the Block Loop Operation
	Running a Set of Operations Continuously
	Monitoring the Number of Iterations

	26 Using the List Box
	Enabling Selection of More Than One List Box Item
	Checking the Multiple Selection List
	Entering the Values While Remaining on the Selection List

	Allowing Retrieval of Non-string Attributes from a List Box

	27 Handling Buffers
	Creating a Structure
	Sending a Buffer from eDeveloper

	Index

	eDeveloper Reference Guide V9.4
	eDeveloper iSeries Guide V9.4
	www.magicsoftware.com

