

The information in this document is subject to change without prior notice and does not represent a commitment on
the part of MSE.

MSE makes no representations or warranties with respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular purpose.

The software described in this document is furnished under a license agreement. The software may be used or copied
only in accordance with the terms and conditions of the license agreement. It is against the law to copy the software
on any medium except as specifically allowed in the license agreement.

No part of this document and/or databases may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording or information recording and retrieval systems, for any purpose
other than the purchaser’s personal use, without the prior express written permission of MSE.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes software developed by Computing Services at Carnegie Mellon University
(http://www.cmu.edu/computing/).

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

All references made to third party trademarks are for informational purposes only regarding compatibility with the
products of Magic Software Enterprises Ltd.

Unless otherwise noted, all names of companies, products, street addresses, and persons contained herein are part of a
completely fictitious scenario or scenarios and are designed solely to document the use of Magic.

Magic® is a registered trademark of Magic Software Enterprises Ltd.
PC/TCP® Network Software is a registered trademark of FTP Software Inc.
Microsoft® and FrontPage® are registered trademarks, and Windows™, WindowsNT™ and ActiveX™ are
trademarks of Microsoft Corp.
Macromedia® Dreamweaver® is a registered trademark of Macromedia, Inc.
VeriSign® is a registered trademark of VeriSign, Inc.

Clip art images copyright by Presentation Task Force, a registered trademark of New Vision Technologies Inc.

All other product names are trademarks or registered trademarks of their respective holders.

03 02 01 6 5 4 3 2 1

Copyright • 2001, 2003 by Magic Software Enterprises Ltd. All rights reserved.

iiiiiiiiiiii

Table of Contents

INTERACTIVE WEB APPLICATIONS................................5

Why Browser-based? ..5
World Wide Web ..5
A Common Client ...5
A Thin Client...5

Browser-based Development ..6

Browser-based Deployment ..6

What’s Next? ..6

SUPPORTING ARCHITECTURE..7

Magic Application Server Infrastructure ..7
Distributed Modules..7

Magic Browser Client Construction ...9
Creating the HTML Result Page...9
Persistent Browser Client Module...10

BROWSER TASK LIFE CYCLE12

Browser Task Initialization ...12
Browser Task in Action ..13
Server-side and Client-side Logic ...15
Context Management ..17
Transactions ..18

CONSTRUCTING A BROWSER TASK............................20

Basic Definitions...20
Browser Task Type ...20
Dataview Definition ..20

Task Interface..21
Browser Form..21
Simply HTML ...21

iviviviv

Browser Form Editing ...24
Line Mode Display..25
Subforms ...27
The VCR Toolbar..29
The Edit Toolbar ...30

Browser Task Settings ..31
Chunk Size Expression ...31
Exit URL ...31
Selection Table..31
Main Display...31
Transaction Mode..31
SQL Command..31

RUNTIME BEHAVIOR AND CONSIDERATIONS.............32

Call Operation...32
Calling another Browser Task...32
Calling a Batch Task ...34
Calling an Online Task..34

Verify Operation ...34
Client-side Messages...34

System Event Handlers ...35
Browser Internal Handling ..35

Error Handling ..35
Exceptions in the Browser Task..35
Closing the Browser Window ...36

SUMMARY..37

Easy Programming ..37
Unified Concept ..37
Simplified Paradigm..37
The Tool ..37

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

5555

Interactive Web
Applications
Easy development and deployment of Interactive Web
Applications

agic eDeveloper lets you easily develop and deploy high-level business
applications using a browser as the front-end of your application. Magic
eDeveloper provides full interactive browser client abilities, supported
by a robust Magic Application Server, all generated by the simple table-

driven development paradigm. This document provides a technical overview of
this new technology for rapid Interactive Web Application development and
deployment.

Why Browser-based?
There are many reasons why your application should be browser-based.

World Wide Web
The browser is the most familiar way to access Web sites, Web-
related material, and Web applications. By making your application
browser-based, it becomes a Web-based application that can be
accessed around the world, using the common Internet network.

A Common Client
The browser has become a standard way to access various types of
information, and it can be found on any desktop computer. It is
therefore familiar to most users.

A Thin Client
With eDeveloper there is no need to install proprietary software on
the client side. Magic’s Application Server provides the browser
with all the data, logic, and flow-management module on demand.
All the application’s software elements reside solely on the server

Chapter

M

����

����

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

 6666

side, which allows ease of management and maintenance, low ownership costs,
and scalability.

Browser-based Development
eDeveloper lets you rapidly develop interactive Web applications. Using the easy
table-driven toolkit, you can define your application infrastructure, components
and logic with ease. No knowledge of common browser-related programming,
such as Java or Java script, is required.

Browser-based Deployment
The Magic Multi-threaded Application Server handles high volume transactions
and high rates of requests with ease. The Magic Application Server handles each
individual client and transparently manages the context of each current user. The
HTML-based application interface is passed to the client together with the XML-
formatted application logic.

What’s Next?
Read this document to gain a full understanding of the concept behind Magic’s
Interactive Web Application Development and Deployment paradigm. Learn how
it works and how you, as a Magic developer, can easily create your own browser-
based applications.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

7777

Supporting Architecture
How does an end user access the application? And, how does
the Magic Application Server handle the user’s request?

he Magic Application Server deployment environment is easily
constructed using the Distributed Application Architecture provided by
eDeveloper. The Magic Application Server provides your front end with
automatic and optimized context management designed for handling

large-scale concurrent users.

Magic Application Server Infrastructure
The Magic application runtime engine can be developed to handle a browser
request using a Web browser.

Distributed Modules
The basic modules required to construct the Magic Application
Server are:

WWW Service Capabilities
The WWW server, Web server, is required to receive an HTTP request from
remote browser clients. Using the Magic Internet Requester, the Web server can
forward the HTTP request to the Magic Application Server.

Magic Internet Requester
eDeveloper provides you with an Internet Requester module, which is made
available to the Web server as an executed module. When a request is made by a
browser to the Requester, the module passes the request, with its accompanying
data, to an idle Magic Application Server. The Magic Internet Requester module
can locate an idle application server using the pool of server engines maintained by
the Magic Request Broker.

Magic Request Broker
eDeveloper provides you with an easy middleware agent known as the Magic
Request Broker. The Magic Request Broker handles all the available Magic

Chapter

T

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

8888

Application Server engines and directs each request from the Magic Internet
Requester to the available application server engine. The Magic Request Broker
provides load balancing and recovery capabilities to handle any fail over.

Magic Application Server
The Magic Application Server lies at the heart of Interactive Web Application
deployment. It is the actual runtime unit, which handles each request and executes
the entire application logic for each type of request it receives. The Magic
Application Server needs to know the location of the Magic Request Broker,
connect to it, and then make itself available to the Magic Internet Requester.

The Magic Application Server engine is designed to handle multiple requests using
a single engine process. This is achieved using the multi-threading capabilities of
the Magic Server engine.

Distribution of the Modules
The above modules can be installed on the same machine or distributed among
different machines, even on machines using different operating systems.

The installation procedure for eDeveloper and the Magic Enterprise Server
automatically installs all the required modules and configures the system to prepare
the infrastructure for deployment. The Web server must reside on the same
machine as the installed Magic product.

FIGURE 1: This image illustrates how a browser client communicates with the application server, and
how the back end interacts with the distributed Magic modules

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

9999

Magic Browser Client Construction
Although the entire definition of a browser task is constructed and defined using
the simple Magic paradigm, the Magic Application Server translates the entire task
interface information, logic, and data content into one HTML result page. This
page displays the interface according to its design, functions, and the defined task
logic.

Creating the HTML Result Page
All the data required for the browser task, and the logic defined for
the task, is added to the simple HTML interface definition in XML
format. The XML-formatted information is handled by the browser
client modules, and provides the end user with a full interactive real-

time data application.

XML-formatted Information
The XML portion of the page is hashed so that the end user viewing the source of
the HTML result page cannot see the inner structure of the task. The XML
content is also compressed into a small volume, to reduce the amount of
information returned to the browser.

Browser Client Modules
All task information and data provided in XML format is handled and executed
using two modules. One module is a Java applet that serves as the actual browser
client engine. The other module is a JavaScript module, which provides a means of
interaction between the HTML content and Java applet. Each eDeveloper browser
task uses the same browser client modules. This means that the browser client
modules are the same for every browser task in your application.

The module files are provided with the installation of the Magic product.

The Module File Names
The file names of these modules have different names for each major version and
maintenance version (service pack) of the Magic Engine.

For example, the Java applet provided with eDeveloper version 9.01 Service Pack
1 is MGBC901_03.cab, and the JavaScript module for this version is
MGBC901_03.js. The Magic Application Server embeds the location and names
of these modules into the HTML result page.

The names of the browser client module files derive from the major version of the
engine (e.g. 901) and the applet version (e.g. 03). Therefore, the module names for
this version would be MGBC901_03.cab and MGBC901_03.js.

Where the browser client modules are supplied without an accompanying major
version or a service pack, the name is followed by an additional string. The string
should be specified in the Magic Engine Environment Setting,
Settings\Environment\Application Sever\Browser Client sub-version. The
string you specify here will be added at the end of the file name, preceded by an
underscore. For example, if the browser client module provided after Service Pack

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

10101010

1 is called MGBC901_03_ISFGE.cab, you would enter ISFGE in the
Environment setting.

File Location
The location of these files should be in a directory that is available to the Web
server, a virtual directory. The alias of this directory is provided to the Magic
Application Server engine by setting the Web Document Alias property under
Settings\Environment\Application Server.

Persistent Browser Client Module
The Java applet, which is the main part of the browser client engine
module, needs to be loaded by the browser client. With some
browsers, the module can take considerable download time. The
Magic Application server provides you with the ability to make the

Java applet module persistent on the client side. This means that once the applet is
loaded for the first time, it is kept on the client machine, and every other browser
task requiring this module, takes it from the client.

The persistent option of the browser client module requires the end user’s
confirmation in the Browser Confirmation dialog box.

Browser Task Launcher
The initial response to a request for the browser task is a small HTML page that
comes with a small launcher applet. This applet sends the browser client module to
the client and returns the link information to the application server. If the browser
client module is already persistent on the client side, the launcher immediately
returns the request to the application server, informing the server of the local
browser client module’s location. The launcher module file, MGLauncher.cab,
should be placed in the same directory as the browser client modules.

The response of the returned request results in the final HTML page, which
includes the interface definition and XML information about data and logic.

Since the launcher module is designed to place the browser client module locally,
confirmation by the end user is required. If the end user does not make the
confirmation, the launcher does not preload the browser client module. The
launcher then directs the application server to load the applet with the HTML
result page, and the URL of the embedded browser client module is directed to the
applet residing on the Web server.

If the user accepts the launcher certification, additional confirmation is required for
the actual browser client module. If the user chooses to trust the provider of the
browser client module, Magic Software Enterprises Ltd., the user’s confirmation is
no longer required.

Signed Browser Client Module
The Browser Client Java applet module has been certified and digitally
authenticated by VeriSign®. This means that the applet code is verified by the
VeriSign® authentication certificate, assuring the end user that the module has not
been tampered with.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

11111111

The signed applet file differs from the regular applet file. Its file name is the same
as the unassigned module, and is followed by the letter S: for example, e.g.
MGBC901_03S.cab.

Note 1

Using the Persistent Browser Client Module saves download time
from the Web server. It is best to use this feature in your application.
If you choose to utilize the Persistent Browser Client Module, we
suggest you instruct your end users to trust the signed applet they will
be loading.

Note 2

You can define your application server to work with a non-persistent
applet module. You can set the Persistent Browser Client module
property under the Settings\Environment\Application Server
section to NO. By doing this the initial response does not contain the
MGLauncher.cab applet, and the page only loads the main browser
client module directly from the Web server.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

12121212

Browser Task Life Cycle
Learn more about the lifecycle of a browser task, from the
moment a request is made, through the activity performed
within the task, to the completion of the task

browser task has the full functionality of an online task. A browser task
can open a transaction at the Record or Task levels, and execute any
handler. A browser task can also implicitly perform the Task, Record and
Control level handlers, handle all basic data querying and manipulation

(scroll, modify, delete, create etc.), and it can perform any Magic operation and
function.

Browser Task Initialization
Upon the initial request to execute a browser program, the Magic
Engine opens the requested browser task. A context is opened for
this request and a unique context ID generated. A short response is
immediately returned to the browser, informing it of the created

context.

If a Persistent Java applet is detected, the launcher module is invoked on the client.
As the context response completes its short process on the client, a consecutive
request is made back to the application server, using the context ID generated for
this context.

After receiving the second request, the browser task performs the following
actions on the server:

1. Implicit initialization, which involves opening the DB tables
provided for the task, initializing the virtual variables, determining
range and locate values, and creating the initial Dataview.

2. The Task Prefix level handler set of operations.

Following these server-side operations, the HTML result page is created, using all
the related data affected by the first Task and Record Prefix modifications. This
page is returned to the browser client to be constructed and then made available to
the end user.

Chapter

A

����

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

13131313

Browser Task in Action
Once the browser task is constructed on the client side, it becomes
available to the end user for handling the data and submission to the
logic defined for the task and its data. The task logic, written in the
form of handlers, is executed as defined on the page, in addition to

standard runtime functionality.

Navigation
The browser task provides the end user with an easy way to navigate through the
data supplied.

You can scroll through the data using key combinations to perform the following
actions:

Key Action

Up Previous Record
Down Next Record
Page Up Previous page
Page Down Next page
CTRL+HOME Beginning of Table
CTRL+END End of Table

Easy scrolling is also provided by a VCR image that you can place on the HTML
page. For more information see page 29.

Using the TAB and SHIFT+TAB key combinations, you can move through the fields,
while maintaining record cycling ability.

Handlers
The Browser Client Modules automatically invoke all relevant handlers defined for
the task, both implicit and explicit.

T A S K L E V E L

The Task level handlers, both Prefix and Suffix, are executed on the server side.
This means that no operation that halts the task execution can be executed in these
levels.

R E C O R D L E V E L

The Record Prefix for each record is performed when the end user skips to that
record. The Record Suffix is performed either after exiting a modified record,
exiting a record when the task property ‘Force Record Suffix’ is set to Yes, or after
deleting a record.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

14141414

The Record Main level is only used for dataview definition. This means that it can
only execute the Select and Link operations. Other operations in the Record Main
level will be ignored.

C O N T R O L L E V E L

The Control Prefix of any control is performed when parking on a control. The
Control Suffix of any control is performed once the cursor is removed from that
control. The control verification handler of a control is performed when exiting a
control before its Suffix, and when passing over this control where the record has
been modified.

E R R O R L E V E L

An Error level handler is executed when the corresponding error is encountered.
For more information see the Error Handling chapter of the Magic Reference Guide.

O T H E R H A N D L E R S

All other handlers such as System, Internal, User, Time, and Expression handlers
are executed when the corresponding event is raised and the task is in idle mode.

Task Modes
The browser task keeps the basic task mode rules of the Query, Modify, Create
and Delete modes, which are available for a browser task. In each mode the
browser client functions according to the rules of the defined mode. For example,
in Query mode data entry and data deletion are not allowed, whereas in Modify
mode they are allowed.

To switch among the task modes in runtime, you only need to raise the
corresponding internal events: Query Records, Modify Records, Create Records,
and Delete Records.

Data Manipulation
The Browser Client Module handles any modification of the data, whether it is
updating a record, creating a new record, or deleting a record. All data
manipulation statements are kept by the Browser Client Module and are
transmitted to the server at the following instances:

1. After exiting a record in a Record level transaction.

2. After closing the task in a Task level transaction.

3. When the task returns to the server due to a server-side operation or
function. For more information on server side and client-side
operations and functions, see the section on Server-side and
Client-side logic on page 15.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

15151515

Re-computation
The Browser Client Module performs any required re-computation upon
modification of the data. The values of variables, linked records, and visibility
properties based on modified data are automatically re-computed.

Task Termination
A browser task only terminates properly if the Exit or Close internal events are
raised correctly, or if the End Task Condition and the Evaluate Task
Condition task properties are evaluated in a way that causes the task to terminate.
Closing the browser task window does not terminate the task properly.

If the task is not properly terminated, the Task level transaction or the Record level
transaction of the last parked record is rolled back.

Server-side and Client-side Logic
Browser task logic may include all the available Magic operations
and most functions. However, some of the Magic operations and
functions cannot be executed on the client side because by their
nature they cannot be executed by a browser. Some examples are.

the Output Form operation or the DBDEL function.

Transparent Handling
The Browser Client Module automatically distinguishes between server-side and
client-side operations and functions. When the HTML result page is created, the
XML-based logic information already includes the information for each operation,
whether server side or client side, according to the type of operation or the
function that the operation uses.

Note
In a given list of operations, the browser client performs each
operation according to its resolved-side execution. This means that a
list of mixed-side operations will cause the browser client to switch
back to the server for each operation that differs in its side execution.
It is best to minimize the use of server-side functions and operations.
If you decide to use these functions and operations, we suggest that
you list them in the Operations list consecutively.

Client-Side Operations
Below is a list of all the operations that can be executed on the client:
•

Select
• Verify
•

Update
•

Block
•

Evaluate
•

Raise Event
All other operations are server side only.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

16161616

Client-Side Functions
Below is a list of all the functions that can be executed on the client:
+, –, *, /, MOD, ^, &, =, <>, <, <=, >, >=, OR, AND, NOT, ABS, ACOS,
ADDDATE, ADDTIME, ASC, ASIN, ATAN, BOM, BOY, CALLJS,
CALLOBJ, CASE, CDOW, CHEIGHT, CHKDGT, CHR, CLEFT, CLICKCX,
CLICKCY, CLICKWX, CLICKWY, CMONTH, COS, CRC, CTOP,
CTRLNAME, CWIDTH, CURROW, DATE, DAY, DBROUND, DEL, DOW,
DSTR, DVAL, EDITGET, EDITSET, EOM, EOY, EXP, FILL, FIX, FLIP,
FLOW, HOUR, HSTR, HVAL, IDLE, IF, INS, INSTR, ISDEFAULT, ISNULL,
LASTPARK, LEFT, LEN, LEVEL, LOG, LOWER, LTRIM, MAX,
MAXMAGIC, MID, MIN, MINMAGIC, MINUTE, MONTH, MSTR, MVAL,
NDOW, NMONTH, NULL, RAND, RANGE, REP, REPSTR, RIGHT,
ROUND, RTRIM, SECOND, SETCRSR, SIN, SOUNDX, STAT, STR,
STRTOKEN, STRTOKENCNT, TAN, TDEPTH, THIS, TIME, TRIM, TSTR,
TVAL, UPPER, VAL, VARATTR, VARCURR, VARINP, VARMOD,
VARNAME, VARPREV, VARSET, VIEWMOD, WINBOX, YEAR.

Server-Side Functions
Below is a list of all the functions that are executed by the server:
ANSI2OEM, BLB2FILE, CALLDLL, CALLDLLF, CALLDLLS, CALLPROG,
CLRCACHE, CNDRANGE, COUNTER, CTXKILL, CTXLSTUSE,
CTXNUM, CTXPROG, CTXSIZE, CTXSIZE, CTXSTAT, CURRPOSITON,
DBCACHE, DBCOPY, DBDEL, DBDISCNT, DBERR, DBEXIST,
DBNAME, DBRECS, DBRELOAD, DBSIZE, DDEBEGIN, DDEEND,
DDEGET, DDEPOKE, DDERR, DDEXEC, DELAY, DISCSRVR, EOF,
EOP, ERRDATABASENAME, ERRDBMSCODE, ERRDBMSMESSAGE,
ERRMAGICNAME, ERRPOSITION, ERRTABLENAME, EUROCNV,
EURODEL, EUROGET, EUROSET, EUROUPD, EVALSTR, EXPCALC,
FILE2BLB, FILE2OLE, FLWMTR, GETLANG, GETPARAM, GROUPADD,
INIGET, INIGETLN, INIPUT, INTRANS, IOCOPY, IOCURR, IODEL,
IOEXIST, IOREN, IOSIZE, KBGET, KBPUT, LIKE, LINE, LMCHKIN,
LMCHKOUT, LMUVSTR, LOCK, LOGICAL, MDATE, MLSTRANS,
OEM2ANSI, OWNER, PAGE, PPD, PREF, PROG, PROGIDX,
RIGHTADD, RIGHTS, ROLLBACK, RQEXE, RQLOAD, RQQUEDEL,
RQQUELST, RQQUEPRI, RQREQINF, RQREQLST, RQRTAPP,
RQRTAPPS, RQRTINF, RQRTS, RQRTTRM, RQSTAT, RUNMODE,
SETLANG, SETPARAM, SYS, TERM, TEXT, TRANSMODE, UDF,
UNLOCK, USER, USERADD, VARPIC, VISUAL.

Irrelevant functions
Below is a list of all the functions that are irrelevant to a browser task:
CLEFTMDI, CTOPMDI, CTRLHWND, FILE2REQ, FILEDLG, HITZRDER,
MENU, MMCURR, MMSTOP, MMCOUNT, MNUENABL, MNUSHOW,
MNUCHECK, RESMAGIC, WEBREF, WINHWND.

Dynamic Interface Elements Presentation
HTML Control properties that are defined by an expression cannot include a
server-side function. Any HTML Control property defined by a server-side
function will be disregarded.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

17171717

Link Operation
Although the Link operation is not a procedural operation, it is a server-side
operation. This means that every time a link is re-computed, the browser refers to
the server to execute the new link.

Context Management
Each new activation of a browser task creates a context on the
server side. The context logs the state of the task from the moment
it is activated to the moment it is terminated. Each context is
identified by a context ID that lets the server identify each

consecutive request of the same context.

Context ID
When a new context is created, a unique context ID is generated for the new
context, and this context ID is transmitted back to the client. The client returns the
context ID to the application with every request made throughout the life cycle of
the browser task. In this way, the application server can identify each request from
any browser as belonging to a specific context, and can keep serving this client
within the context of its task.

Context Content
The context contains all the information about the task structure, such as all the
tasks and subtasks opened from the main browser task, and the location of the
client within the task runtime tree structure. The context also keeps the database
cursors opened for this task and its subtasks. Thus, each retrieval of data is carried
out using these cursors.

The context keeps all data manipulation statements that are passed back to the
server within a defined transaction.

The context maintains the runtime information of the browser task, which is local
for this specific context. The runtime information includes memory tables, resident
tables, Main Program variables, global parameters, which are parameters set by the
SETPARAM function, and Environment settings. The instantiation of these
runtime information units occurs separately for each new context and any
modification is only visible to that context.

Context Inactivity Timeout
The context information kept on the server side requires memory resources. To
relieve the server from keeping numerous contexts that might use too many
system resources, a timeout can be set for the context.

The Context Inactivity Timeout setting can be found in
Settings\Environment\Application Server. This setting determines the time
interval in which the client is checked for inactivity. Context inactivity is defined as
an absence of client/server interaction during the life of a browser task.

The context inactivity timeout is set in 10ths of a second. The default setting is
6000 (10 minutes).

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

18181818

When the context timeout is reached, the context is cleared from the server. By
setting a reasonable timeout, you can prevent abandoned contexts from stacking
up on your server.

When a browser is activated from Toolkit mode, the Context Inactivity Timeout is
infinite.

Post Context Unload Timeout
The browser can exit a running browser task by moving back or forward from the
browser task page, or by closing the browser window. These actions move the
context into pending mode, where the browser awaits a return to the browser task
page.

When the browser returns to the browser task, the context is reloaded, the
information preserved on the server is refreshed, and the end user can continue
using the browser task.

The Post Context Unload Timeout setting can be found in
Settings\Environment\Application Server. This setting determines the time
interval during which the context is kept until the browser returns to the browser
task.

The Context Inactivity Timeout is set in 10ths of a second.

R E C O N S T R U C T I O N O F T H E T A S K

When a user returns to the browser task, by moving forward or back, a request is
sent to the server requesting recovery of the context. The context is then
recovered, and the information retained by the context recreates the browser as a
full-running browser task.

B R O W S E R T A S K C H I L D W I N D O W S

Other browser tasks that were called from the main browser task are closed when
the browser leaves the page of the parent browser task. When the browser returns
to the parent browser task, the child browser tasks are reopened at their last state
known to the server.

R E F R E S H

The browser’s refresh action reconstructs the browser task page as if the browser
had moved backwards or forwards and returned to the browser task.

Transactions
The Magic Application Server engine lets you handle data
transactions of data modifications generated by the browser client
task. The transaction used for a browser task is called a Deferred
Transaction.

����

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

19191919

D E F E R R E D T R A N S A C T I O N S

All the data manipulations reported by the client are kept by the context and are
not passed to the database engine until the transaction is completed. If the
transaction is rolled back, the retained transaction information is discarded. This
manner of handling data manipulation is referred to as a deferred transaction,
where the Magic engine defers the physical transaction of the database engine.

This handling of the transaction saves the repeated transmission to the database
engine on every particular data manipulation statement, and provides greater
scalability of the Application Server capacity.

For more information about Deferred Transactions, refer to the Data
Management chapter in the Magic Reference Guide.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

20202020

Constructing a Browser
Task
eDeveloper gives you an easy and simple paradigm for defining
the browser task logic and its interface handling.

he dataview definition and browser task logic are constructed similarly to
an Event-driven Magic online task. A browser task differs from an online
task in interface definition and changes in the general behavior of the task
that derive from the nature of a browser client.

Basic Definitions
Browser Task Type

In the task properties, you define the task type as Browser.
Setting the task as Browser provides you with the appropriate
functionality for a browser task both in Toolkit and in Runtime.

Dataview Definition
The dataview of a browser task is defined the same as for an online task.

Main Table
A browser task can display a real dataview from a defined Main Table. Scrolling
through the data in runtime involves scrolling through the records fetched from
the Main Table. As with any online task, a browser task can display a virtual
dataview where no Main Table is defined. Scrolling through a dataview with no
defined Main Table means scrolling through an infinite number of virtual records.

The Main Table property is set on the Properties tab of the Task Properties
dialog box.

Selecting the Participating Fields
Using the Select operation in the Record Main handler, you can define the fields
that will be part of the task’s dataview.

Chapter

T

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

21212121

You can define any type of Select operation: Real, Virtual, or Parameter.

Extending the Dataview
You can extend your dataview by linking to additional records in other tables using
the Link operation.

Note

Any re-computation of a Link operation requires the browser client
to address the Application Server engine and fetch the new record.
This means that using too many Link operations may be costly in
terms of server interaction. Therefore,. it is recommended that you
limit use of the Link operation. In many cases you may be able to
substitute the Link operation with a data control, a selection control
like a combo box that displays the value of a range field taken from a
table.

For more information about defining the data structure of your application and
defining the dataview of a task, refer to the Magic Reference Guide.

Task Interface
Browser Form

The underlying interface definition of a browser task is an external
HTML page. This way the task interface is not bound to the Magic
application structure and can be maintained externally and updated
without interfering with the application code. This lets you focus on

the task logic while, an HTML designer can independently define the interface
design of your task. eDeveloper smoothly integrates with the HTML-based
elements at any stage if the basic structure of the interface is maintained.

Simply HTML
Every browser task is constructed with at least one main display form of a Browser
type. The form definition can be found in the task’s Form repository (CTRL+F).
One of the main properties of this type of form is the HTML interface file. This
property uses the path and file name of the HTML file that will be used to define
the task interface.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

22222222

FIGURE 2: The HTML interface file property of the Browser Form.

HTML Controls List
Zooming in from the Browser Form entry displays the HTML Controls list
window. In this list you can define each HTML element on the page, assign data to
it, and define the properties freely as if the HTML element were a Magic control.

FIGURE 3: The list of HTML controls in the browser task. Each control is assigned data and a set of properties.

The Magic Application Server and browser client module handle these controls
with their defined data, once the HTML result page is constructed on the browser
client.

New HTML controls can be added to the list by clicking on the New HTML
Tags button. A new list is displayed showing the remaining HTML elements that
have not yet been used by the browser form.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

23232323

HTML Controls and the HTML Page
The Browser interface definition supports a variety of HTML elements. For each
HTML element the property sheet provides a corresponding list of properties.
Each HTML Control type corresponds to a defined set of HTML tags.

eDeveloper identifies each HTML element by its given name or ID. This is also a
required setting of the HTML control definition. The HTML Control name
column is the control identifier and should have the same name as the designated
HTML element. Therefore, the naming of the HTML controls should keep each
control unique.

E D I T

The HTML Edit control corresponds to the <input type=text> HTML tag. This
control is used as an edit box for displaying and entering data and supports the
data of any attribute except for a BLOB.

L I S T B O X

The HTML List Box control corresponds to the <select> HTML tag. This control
is used to display a value from a range of available values and lets the end user
change the value to a new value from the given range. This control supports the
data of any attribute except for a BLOB.

P U S H B U T T O N

The HTML Push button control corresponds to the <input type=button> HTML
tag. This control is used to allow the end user to click and raise a desired event.
This control supports the data of any attribute except for a BLOB.

R A D I O B U T T O N

The HTML Radio Button control corresponds to the <input type=radio> HTML
tag. This control is used like a List Box, to display a value from a range of available
values, and lets the end user change it to a new value from the given range.
However, unlike List Boxes, Radio Buttons can display the entire available range of
values at different points of the form. This control supports the data of any
attribute except for a BLOB.

C O M B O B O X

The HTML Combo Box control corresponds to the <select> HTML tag. This
control is used, like the list box, to display a value from a range of available values
and allows the end user to select a new value from this given range. However,
unlike a List Box, the Combo Box shows a single line of value. This control
supports the data of any attribute except for a BLOB.

C H E C K B O X

The HTML Check Box control corresponds to the <input type=checkbox> HTML
tag. This control is used to display and define a Boolean value. This control
supports the data of logical attributes.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

24242424

I M A G E

The HTML Image Type control corresponds to the HTML tag. This
control is used to display an image. The control supports data of alpha and memo
attributes. The data of the image control should be the image URL.

H Y P E R T E X T

The HTML Hypertext control corresponds to the <a> or <div> HTML tag. This
control is used to display any string from a simple static text to a complex HTML
sequence. This control is mostly used to display static text and to easily define a
dynamic hyperlink for this control. The HTML control supports data with alpha
and memo attributes.

T A B L E

The HTML Table control corresponds to the <table> HTML tag. This control is
used to display your data in a scrollable table. The Table control has no data
assigned to it, but it is set with various properties that define the way the table will
be presented. See the Line mode section on page 25 for a description of the
behavior of the scrollable table and its properties.

S U B F O R M

The HTML Subform control does not correspond to any HTML tag. This control
is the logical definition of an additional browser task that handles different parts of
the HTML page. See the Subforms section on page 27 for a description of a
Subform and its behavior.

Browser Form Editing
eDeveloper lets you edit your HTML page using the HTML
authoring tool you are most comfortable with. From the Magic
Toolkit environment you can easily edit forms using your favorite
editor, or you can take advantage of the fact that the HTML

interface definition is external to the Magic application and edit it directly using any
HTML authoring tool.

Using Your Preferred Authoring Tool
The HTML Controls list lets you zoom even further to edit your HTML page
using your preferred editor. By clicking on the HTML Editor button in the HTML
Controls list window, Magic invokes the editor as defined in the Magic
Environment property under Settings\Environment\Application Sever\Web
Authoring Tool. This property defines the path and name of the HTML editor’s
executable file.

You can edit your HTML page, save the changes and return to the Magic Toolkit.

Drag and Drop
You can drag and drop variables defined in your task onto the HTML page
opened by the HTML editor, using the accompanying variables palette. As you
drop a variable, Magic creates the HTML input element as defined by the style

����

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

25252525

settings of the variable, and creates a corresponding entry in the HTML Controls
list.

Currently the Drag and Drop option is available only for HTML authoring tools
such as FrontPage® and Macromedia® Dreamweaver®.

Control Properties
You can easily set the properties of every HTML element defined as an HTML
Control for the browser form definition. Properties whose initial values can be set
by the HTML script, such as color or font, are assigned their values by the HTML
authoring tool, and this forms part of the HTML script. These properties can only
be set by eDeveloper using a dynamic value, an Expression. Other properties,
which are not HTML properties by nature, for example Format or Select Program,
can be set by eDeveloper using both fixed values and dynamic expressions.

Line Mode Display
You can easily define your data bound controls to be displayed in
Line Mode fashion using the HTML table element. This method of
display provides the end user with an easy scrollable table of data.

The HTML Table Tag
To produce a scrollable Line-mode display of the data, you should create an
HTML Table and position the data-bound controls in one line of the table
designated to be the repeated line. You should also uniquely identify the table
element by providing an ID for the table tag (e.g. <table id=”Customers_List”>.

Table Control
You should define the table element as an HTML control in the Browser Form
HTML Controls list.

FIGURE 4: The HTML table control defines the HTML table tag that uses the table identifier.

Defining the Repeated Line
The Detail Line # property of the HTML Table Control definition specifies the
number of the line whose content will be repeated throughout the table.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

26262626

FIGURE 5: The Detail Line # property of the HTML Table Control Entry

Any table row above the designated repeating line is considered to be the table’s
header. Any data-bound control placed on the header will not be repeated but will
show the proper content for each record.

Boundaries of the Repeated Area
An additional important property of the Line Mode setting is the Repeated Lines
property of the form. This property defines how many times the repeated line
should be repeated.

If this property is set with a number greater than zero, at runtime the table control
repeats the repeated line the amount of times defined. Any table row defined
below the repeated line is considered the table’s footer. The repeated lines are
added before the remaining table rows. Any data-bound control placed on the
footer is not repeated but shows the proper content for each record.

If this property is set to zero, the repeated line is repeated in the remaining rows of
the HTML Table control. The number of remaining rows determines the size of
the repeated area.

Multiple Tables
The browser task lets you define multiple tables in the same task. All the tables are
affected by the navigation simultaneously. This means that by pressing the Down key
on one table, all other tables of the same task move to the next record.

The repeated area of all the tables is always the same as the number defined in the
Repeated Lines property of the form. If this property is set to zero, the repeated
area size is the same as the smallest amount of remaining rows in the tables.

Static Tables
An HTML table tag that is not defined as a Magic HTML control will not be
handled and will remain as a static part of the interface design.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

27272727

Subforms
eDeveloper lets you easily display data from different tasks in one
single HTML interface. Each task will handle its designated part of
the HTML interface according to the logic defined for it. The
browser client transparently switches from one task to the other

according to the location of the insertion point.

When is a Subform Needed?
A Subform is required where the browser client is designed to display extra data on
top of the main view, when the extra data is usually made up of more than one
record. This is usually referred to as a One-to-Many relationship.

In such a case there is usually more than one task involved. The Subform control
enables the two separate tasks to be displayed on the same HTML interface.

How to Define a Subform
If you want to present two subtasks on the same HTML page follow these general
steps:

1. Design your HTML interface file to include the required HTML
elements for both the main task and the descendant task.

Note

The names and IDs of the elements of both tasks should be unique
throughout the entire HTML page.

2. Create two browser tasks, a parent task and a child task, and define
the HTML file property of the browser form in both tasks to point
to the same HTML interface file, that was created previously.

3. In each task define the relevant HTML controls, including the table
control of each task, if used.

4. Create an extra HTML control in the main task, and set its type as
Subform. Set the property of this control to call the child task.

5. Use the Arguments property to pass required data to the child task.
Usually the passed arguments will be the variables responsible for
ranging the data of the Subform.

6. Run the main task.

Creating a task constructed with Subforms is easy. However, before constructing
your Subform, you should read further to learn more about the elements involved.

����

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

28282828

Subform Control
The Subform control is defined as one of the HTML controls of the main browser
task, the task that calls the child task. The Subform control is not represented by
any HTML tag on the page. It is, in fact, a logical definition that tells the main task
that another task handles part of its HTML page. Since the Subform control need
not be related to any HTML element, the name of the Subform control is merely
descriptive.

The Subform control has the following properties:

•

Connect to: Sets the type of task to be called – Program or Subtask.

•

PRG/TSK num: The number of the called task.

•

Arguments: Data, variables or expressions, passed as arguments to
the called task. The passed arguments are not just required to pass
data to the called task. The arguments are the criteria by which the
browser client refreshes the view of the child task. Whenever the
variable passed as a Subform argument is changed, the view of that
Subform is automatically refreshed. Arguments passed as
expressions will not refresh the Subform view if their value is
changed. If no variable is passed as an argument, the Subform will
never be refreshed when scrolling through the main task records.

Note

If the descendant task is a subtask of the main task, the data provided
by the main task view can be accessed directly without passing it as
arguments. However, the variables responsible for the child task view
must still be passed as arguments to serve the Subform refresh
criteria.

Nested Subforms
Each main task can have several Subforms. Each Subform can have its own nested
Subforms.

Subform Life Cycle
The Magic Application Server automatically opens all the tasks that are defined as
Subforms. You do not need to define any Call operations for the Subform task.

B R O W S E R T A S K I N I T I A L I Z A T I O N

After executing the Record Prefix of the first record of the main task, the task
defined in each Subform definition is opened, thus executing the Task Prefix and
Record Prefix of the first record. The tasks are opened according to the order of
the Subform controls in the HTML Controls list. Nested Subforms open after the
Record Prefix of the first record of the parent Subform.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

29292929

B R O W S E R T A S K I N A C T I O N

While scrolling through the main task and changing the content of a variable that is
passed as an argument, the Subform dataview is automatically refreshed.
Refreshing the Subform task does not invoke the Subform task’s Task Prefix or
Record Prefix.

Switching from a main task control to a Subform task control switches to the
Subform task and executes the Record Prefix of the relevant Subform task record.

B R O W S E R T E R M I N A T I O N

On exiting a browser task with Subforms, the Task Suffix of each Subform is
executed just before the Task Suffix of its parent task.

Note

A Subform task cannot be terminated by itself. Any attempt to close
the Subform task, by a Raise Event operation of the Exit internal
event for example, will close the main task as well.

The VCR Toolbar
A VCR control is an image of a VCR panel, which provides the end
user with easy navigational functionality for the current dataview.

The VCR Image

The VCR image, shown below, is supplied as a JPG file with your Magic
installation, Mgvcr.jpg.

The following list explains the function of the buttons on the VCR panel.

Click to invoke the Begin Table event.

Click to invoke the Previous Page event.

Click to invoke the Previous Record event.

Click to invoke the Next Record event.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

30303030

Click to invoke the Next Page event.

Click to invoke the End Table event.

Adding the VCR to the Page
Inserting the VCR image into your HTML page is straightforward. You should
create an HTML image tag using your HTML authoring tool. The source of the
image tag should point to the Mgvcr.jpg, and the name should be MG_VCR. For
example:

The Browser client identifies this image by its name and handles it automatically.

Using a Different VCR image
You can also create your own VCR image and opt not to use the one supplied
with eDeveloper. In this case, you should ensure that your image has six
consecutive items that correspond to the functions described above.

The Edit Toolbar
You can place an additional image control that provides the end user with a
toolbar to create the New Line, Delete Line, and Cancel events.

eDeveloper provides the Mgedit.jpg image, which looks like this:

Click to invoke the New Line event.

Click to invoke the Delete Line event.

Click to invoke the Cancel event.

Adding the MGEDIT Image to the page
You can add the MGEDIT image in the same way as you add the VCR image. Just
create an HTML image tag using your HTML authoring tool. The Image tag
should point to the Mgedit.jpg file, and its name should be MG_EDIT. For example:

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

31313131

Browser Task Settings
Most browser task settings are the same as the settings of an online
task, although some online task settings are irrelevant to a browser
task. However, other settings are new and relevant only for a
browser task. This section describes some of these settings.

Chunk Size Expression
Task\Properties\Advanced

The Chunk Size Expression property defines the number of records to be passed
to the browser client upon each request for additional records.

For example, if this property is set to 100, when the task opens the application
server will pass the first 100 records to the client. This allows the end user to
browse the first 100 records locally. When the end user tries to scroll beyond a
given range of records, the client contacts the server and receives an additional
batch of 100 records.

Each chunk of records is accumulated on the client as a local cache of records. If
the end user goes to the end or beginning of the table, the local cache is cleared
and the cache accommodates a single batch of records.

Exit URL
Task\Properties\Advanced

You use the exit URL property to define the next URL to be opened in the
browser, after a browser task has ended.

Selection Table
Task\Properties\Advanced

As in a regular online task, setting the Selection Table property to a true value
causes the browser task to behave as a selection table task, executing the Record
Suffix handler and exiting the task upon invoking the Select internal event.

Main Display
Task\Properties\Advanced

As with a regular online task, you can define several browser forms and, using the
Main Display property, you can provide an expression that evaluates to the form
number.

Transaction Mode
Task\Properties\Enhanced

A browser task can only be set with a Deferred Transaction or a Nested Deferred
Transaction.

SQL Command
The SQL command is not available for a browser task.

����

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

32323232

Runtime Behavior and
Considerations
Special behavior of the browser task in Runtime

ue to constraints imposed by the browser, certain runtime behavior
needs to be taken into consideration before defining your browser task
logic.

Call Operation
Calling another Browser Task

You can call from one browser task to another using the Call
Program operation by creating a Call operation and selecting the
number of the browser task you want to call. You can also pass
arguments to the calling browser task.

Modal Browser Window
In the Browser Form properties, you can set the window to Modal. When a
browser task calls another browser task that has been set as Modal, the flow of the
calling task is halted until the called task is completed. While the called task is
running, the focus cannot be set back to the calling task. This is similar to the
existing interaction between regular online programs.

When a Browser Form task is not set as modal, the flow of the calling task is not
interrupted when the called task window is opened, and the focus can be moved
freely from the called task to the calling task.

Chapter

D

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

33333333

FIGURE 6: The Browser Form property sheet

Note

The main form task determines the modality of the task window. If
you want the Call operation to determine the modality of the called
task, you can define a relevant parameter to set the modality and have
the Call program pass the desired value to this parameter.

Task Initialization
It is important to remember that the execution of the Task Prefix, the initialization
phase of the task, is executed on the server side as a whole. This means that in the
initialization phase any Call operation to a browser task will be subjected to the
following rules:

•

All Call operations will be executed at the designated time, but the Call
task’s window is opened on the client side after completion of the
Task Prefix. This means that all Call operations will take place after the
other operations are executed.

•

The Modality setting of the Browser Form will be ignored. All Call
operations to a browser task will be opened as if they were set to
Modal=No.

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

34343434

Task Termination
Browser tasks called from the Task Suffix will not be displayed on the browser
because the calling task has already been terminated. A browser task called from
the Task Suffix level handler will be run and immediately closed on the server side;
that is the Task Prefix and Suffix level handlers of the task will be executed
automatically on the server side.

Calling a Batch Task
You can easily call any batch task from your browser task to create
any required batch processing.

Synchronous Call
A call operation to a batch task is always synchronous. This means that the client
waits until the batch task is complete.

The Call operation to a batch task will be synchronous even if it is invoked from a
handler whose event was raised asynchronously.

Start/End Execution
The Start and Stop Execution dialog boxes are not supported for batch tasks that
are called from a browser task.

Calling Another Browser Task from a Batch Task
Another browser task cannot be called from a batch task.

Calling an Online Task
An online task cannot be called from a browser task.

Verify Operation
Client-side Messages

You can use the Verify operation to provide the end user with
messages throughout the application.

Display
The verify message can be displayed in the following two ways:

•

Box – A dialog box is displayed on the browser. The task flow will not
proceed until this box is closed.

����

����

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

35353535

•

Message – The browser’s status bar displays a massage. The task flow
continues while the message is displayed, and no user interaction is
required.

Task Initialization
As with a Call operation to a browser task, the Verify operation, defined as part of
a server-side cycle, will appear on the client after the server-side cycle is completed.
This means that any Verify operation in the initialization phase will be executed on
the client side after completion of the Task Prefix.

Task Termination
A Verify operation in the Task Suffix will not be displayed on the browser because
the calling task has already been terminated.

System Event Handlers
Browser Internal Handling

A running browser window has its own internal handling for
specific system events such as keyboard commands.

For example, the F4 key opens the Address box. The browser client
module cannot prevent the browser window from handling these

system events. Although you can create your own handlers for key combinations,
the browser eventually executes its own handling for them. This means that the
propagate property of the handler of these system events will be ignored.

Handled System Events
The following are the key combinations that are handled by the browser:

F1, F3, F4, F5, F6, F10, F11, ALT+F4, CTRL+F1, CTRL +F4, CTRL +F5, CTRL +F6, CTRL +F10, CTRL +A,
CTRL +C, CTRL +F, CTRL +O, CTRL +P, CTRL +V, CTRL +X.

Error Handling
Exceptions in the Browser Task

Errors that occur in a running browser task are handled in the same
way as they are handled by other tasks in Magic. Exceptions to the
error handling rules specific to a browser task are described below.

For more information about basic Error Handling, see the Error
Handling chapter of the Magic Reference Guide.

Call and Verify Operations
The entire handler of an error event is executed on the server. This means that
operations such as a Call operation to another browser task, or a Verify operation,
are reflected on the browser client after completion of the error handler. In
addition, the Modality of a browser window called from an error handler will be
ignored, and will always be considered as Modal=No.

����

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

36363636

ROLLBACK Function
The ROLLBACK option that displays a confirmation dialog box cannot be
executed on the browser client. This means that the first parameter of the
ROLLBACK function will be ignored.

Closing the Browser Window
Closing the browser window by clicking on the system menu X
button, by choosing Close from the File menu, or by pressing
ALT+F4 are not considered proper ways to terminate a browser task.
The browser task behavior in these cases is described below:

•

No handlers are executed: The Control Verification, Suffix handlers,
Record Suffix, and Task Suffix are not executed.

•

Open Transaction: An open transaction will not be committed. An
open transaction may be the task transaction, if the transaction was set
to be of a task, or the last record transaction, if the transaction was set
to be of a record. When the transaction relates to a record, the records
that have been updated and exited prior to closing the window will
already be committed in the database.

•

Descendant Tasks: Descendant browser tasks that were called from a
task whose window is closed will also automatically be closed.

•

Preventing the window from closing: Due to the nature of the
browser, the Magic browser client module cannot halt the browser in
its closing phase. This means that there is no way to prevent the
closing phase of the window once the end user has invoked it.

⌧⌧⌧⌧

I N T E R A C T I V E W E B A P P L I C A T I O N D E V E L O P M E N T
A N D D E P L O Y M E N T

 37373737

Summary
eDeveloper is your tool for assembling high-level Interactive
Web applications.

agic eDeveloper’s browser-based functionality provides an easy way to
create fully interactive large scale applications on a browser client. This
means that such an application can be operational over any local or
wide-area network.

Easy Programming
Unified Concept

The Interactive Web Application Development and deployment
paradigm has been designed to compliment Magic’s inherent
application development capabilities. The concept behind each
application task is identical to conventional Magic programming

providing an easy transition from conventional client/server application
development to developing browser-based applications.

Simplified Paradigm
eDeveloper simplifies the development process by automatically
handling any required Runtime functionality for the browser client,
such as event handling, component display, and data manipulation.
In addition, eDeveloper handles any required Runtime functionality

of the supporting application server.

The Tool
eDeveloper is the tool for creating your own browser-based
applications.

Chapter

M

����

����

����

	Interactive Web Application Development & Deployment
	Contents
	Interactive Web Applications
	Why Browser- based?
	Browser- based Development
	Browser- based Deployment
	What’s Next?

	Supporting Architecture
	Magic Application Server Infrastructure
	Magic Browser Client Construction

	Browser Task Life Cycle
	Constructing a Browser Task
	Basic Definitions
	Task Interface
	Browser Task Settings

	Runtime Behavior and Considerations
	Call Operation
	Verify Operation
	System Event Handlers
	Error Handling

	Summary
	Easy Programming

