

The information in this manual/document is subject to change without prior notice and does not represent a commitment on the part

of Magic Software Enterprises Ltd.

Magic Software Enterprises Ltd. makes no representations or warranties with respect to the contents hereof and specifically disclaims

any implied warranties of merchantability or fitness for any particular purpose.

The software described in this document is furnished under a license agreement. The software may be used or copied only in

accordance with the terms and conditions of the license agreement. It is against the law to copy the software on any medium except

as specifically allowed in the license agreement.

No part of this manual and/or databases may be reproduced or transmitted in any form or by any means, electronic or mechanical,

including photocopying, recording or information recording and retrieval systems, for any purpose other than the purchaser’s personal

use, without the prior express written permission of Magic Software Enterprises Ltd.

All references made to third-party trademarks are for informational purposes only regarding compatibility with the products of Magic

Software Enterprises Ltd.

Unless otherwise noted, all names of companies, products, street addresses, and persons contained herein are part of a completely

fictitious scenario or scenarios and are designed solely to document the use of Magic.

Magic® is a registered trademark of Magic Software Enterprises Ltd.

Btrieve® and Pervasive.SQL® are registered trademarks of Pervasive Software, Inc.

IBM®, Topview™, iSeries™, pSeries®, xSeries®, RISC System/6000®, DB2®, and WebSphere® are trademarks or registered

trademarks of IBM Corporation.

Microsoft®, FrontPage®, Windows™, WindowsNT™, and ActiveX™ are trademarks or registered trademarks of Microsoft Corporation.

Oracle® and OC4J® are registered trademarks of the Oracle Corporation and/or its affiliates.

Linux® is a registered trademark of Linus Torvalds.

UNIX® is a registered trademark of UNIX System Laboratories.

GLOBEtrotter® and FLEXlm® are registered trademarks of Macrovision Corporation.

Solaris™ and Sun ONE™ are trademarks of Sun Microsystems, Inc.

HP-UX® is a registered trademark of the Hewlett-Packard Company.

Red Hat® is a registered trademark of Red Hat, Inc.

WebLogic® is a registered trademark of BEA Systems.

Interstage® is a registered trademark of the Fujitsu Software Corporation.

JBoss™ is a trademark of JBoss Inc.

Clip art images copyright by Presentation Task Force®, a registered trademark of New Vision Technologies Inc.

This product uses the FreeImage open source image library. See http://freeimage.sourceforge.net for details.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

This product includes software developed by Computing Services at Carnegie Mellon University (http://www.cmu.edu/computing/).

Copyright © 1989, 1991, 1992, 2001 Carnegie Mellon University. All rights reserved.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/).

This product includes software that is Copyright © 1998, 1999, 2000 of the Thai Open Source Software Center Ltd. and Clark Cooper.

This product includes software that is Copyright © 2001-2002 of Networks Associates Technology, Inc All rights reserved.

This product includes software that is Copyright © 2001-2002 of Cambridge Broadband Ltd. All rights reserved.

This product includes software that is Copyright © 1999-2001 of The OpenLDAP Foundation, Redwood City, California, USA. All Rights

Reserved.

All other product names are trademarks or registered trademarks of their respective holders.

eDeveloper Reference Guide V9.4 SP6

September 2005

Copyright © 2005 by Magic Software Enterprises Ltd. All rights reserved.

Contents

 1 Introduction
Documentation...35

Online Resources..35

Installation ..35

Typographical Conventions ..36

Key Combinations...37

eDeveloper Workspace ..37

Navigator and Workspace Panes....................................38

Multiple Document Interface (MDI) Client Edge................38

Property Sheets ..39

Comments..39

Checker Results ..39

Switch Panes ..40

Combined Panes..40

Repositories..42

 2 Settings
The Settings Menu..53

New Applications ..55

 Application Settings ...56

Application Repository..56

Application Properties - Outside the Application60

Application Properties - Within the Application63

Environment Settings..69

System ..71

Multi-User ..84
Reference Guide iii

Preferences ..88

International...103

External ...105

Server ...116

eDeveloper Defaults ..124

Advanced Toolkit Settings..125

JAVA Settings ..125

The MAGIC_JAVA Section ...125

Color Settings ..126

The Color Repository Settings126

Saving Changes to the Color Repository129

Font Settings ...131

The Font Repository Settings ..132

Font Assignment Window ...133

Saving Changes to the Font Repository133

Keyboard Mapping Settings..134

eDeveloper Actions..134

State Qualifications to eDeveloper Actions135

eDeveloper Action Example...136

The Keyboard Mapping Repository136

The Keyboard Mapping Repository Settings.....................137

Servers Settings...140

The Server Repository Settings141

Services Settings..144

The Service Repository Settings144

The Services Properties Dialog145

Visual Connection Settings...146

Communication Settings..148

The Communication Repository Settings148
Reference Guide iv

DBMS Settings ...149

The DBMS Repository Settings151

DBMS Properties ...153

Variable MCF Record Length..158

Database Settings ..159

The Database Repository Settings..................................161

The Database Properties Dialog164

Logical Names Settings ...172

The Logical Name Repository Settings173

Logical Names Usage ...173

Language Settings ..174

The Language Repository Properties175

Printer Settings ..177

The Printer Repository Properties...................................178

HTML Style Settings..179

 The HTML Style Properties ...179

Print Attribute Settings..180

Secret Name Settings..180

Connecting to an LDAP Server.......................................180

User Groups Settings ..181

User ID Settings...181

Logon Settings ...181

The Logon Properties ...182

System Logon Setting ..183

The Magic.ini File..183

The Magic.ini File Format..185

Saving Server Information to the Magic.ini File................187

Command Line Options ...187

Specifying Command Line Options187
Reference Guide v

Command Line Options Examples189

Application Launch via the OS Command Line190

Command Line Options and Magic.ini Values190

Environment Properties and Command Line Values192

 3 Models
Model Repository ..200

Columns ..200

Classes ..200

Properties ..201

Data Items ..203

Data Item Qualifiers ..204

Attributes...204

Storage Field Models..208

Pictures...208

Functional Directives..210

Positional Directives...218

Mask Characters..224

Syntax Rules for Constructing Pictures225

Field Class Properties ..226

Model ..226

Details ...226

ActiveX and OLE..227

Input ...228

Appearance ..228

Style ...229

Def/Null ...229

Storage..230

SQL...230
Reference Guide vi

Control Properties...231

Details ...231

Input ...233

Appearance ..234

Navigation..236

OLE ...236

Form Properties..237

Model ..237

Details ...237

Input ...239

Appearance ..239

Navigation..240

Help Properties...241

Model: (default) ..241

Details ...241

Input ...242

Appearance ..242

Navigation..242

Working with Models ...242

Creating a Model ...242

Deleting a Model ...243

Breaking Model Properties ..243

Selecting a Different Model for an Object243

Removing a Model from an Object243

Expressions ..244

Rights..244
Reference Guide vii

 4 Tables
Table Repository...246

Table Repository Columns ..248

Table Properties ..251

Table Properties - Advanced..251

Table Properties - SQL ...253

Resident Tables...256

 Table Conversion Utility...257

Column Repository ...258

Column Repository Fields ...258

Column Properties ...260

Index Repository ..266

Index Repository Columns ..268

Index Segment List Columns...268

Index Properties..270

Index Properties - Advanced ...270

Index Properties - SQL...271

Foreign Key Repository ..273

 5 Application Engine
Tasks..277

Engine Levels...278

Operation Repositories ...280

Event Handling...283

Event Types..283

Interactive Task Event Handling284

Batch Task Event Handling ...285

Handlers ..287

User-Defined Events ...292
Reference Guide viii

..292

Description ...293

Trigger Type ...293

Trigger...293

Force Exit...293

Public Name ...294

Expose...294

Information about the Engine...295

The 14 eDeveloper Operations295

The Task Dataview ..299

The Effect of Modes of Operation on Task Flow301

End-User Screen Interaction ...304

Engine Execution Rules ...305

Task Cycle Levels ..305

Task Cycle..307

The Record/Row Loop ..308

The Control Level ..310

Group Levels ..312

How the Engine Executes Group Levels313

Group Levels Example..313

Record/Row Loop Flowcharts..314

Record/Row Loop in Online Tasks314

Record/Row Loop in Batch Tasks316

Engine by Record Level ..318

Controlling the Execution of an Operation322

End-User Screen Interaction ...328
Reference Guide ix

 6 Programs
Program Repository ..331

Properties of the Program Repository331

Tasks..332

Menu Options for Tasks ..332

Task Properties Dialog ...333

Direct SQL Command..346

Using Direct SQL Command ..347

Direct SQL Task Elements...348

SQL Command Automatic Program Generator352

Behavior of Direct SQL SELECT Statements.....................352

Restrictions on Using Direct SQL....................................354

Binding Variables...355

Allow DSQL in a Deferred Transaction356

Task Control ..357

Task Control Properties as Conditions.............................357

Task Control Properties Dialog.......................................357

Local Variable Repository...364

Properties of the Variable Repository..............................364

Local Variable Properties Sheet365

Expression Rules Repository...366

Expressions ..367

Form Repository ...369

Form Repository Columns...371

Working with Forms...374

DB Table Repository..380

Properties of the DB Table Repository380

I/O File Repository..383
Reference Guide x

Properties of the I/O File Repository...............................384

I/O Properties Dialog ...389

Sort Repository ..391

Properties of the Segment Area.....................................392

Event Repository ..394

Properties of the Event Repository395

Range and Locate Properties ..398

Range/Locate Tab ...398

SQL Where Tab ...401

Task Execution Repository ...406

The Structure of the Handler Repository407

Handler Repository Properties408

Main Program ..411

Main Program Access and Usage....................................411

Main Program Characteristics ..412

Toolkit Characteristics and Behavior...............................414

 7 Operations
Alphabetical Index to Operations ..420

Introduction...420

Remark ...422

Purpose ...422

Usage ..422

Remark Operation Property ..422

Select ...422

Purpose ...422

Usage ..423

Placement ..423

Select Operation Properties...424
Reference Guide xi

Verify..433

Purpose ...433

Usage ..434

Verify Operation Properties ...434

Link ..437

General Information about eDeveloper’s Link437

Link Usage ...442

Placement ..442

Link Operation Properties ...442

Link Types..443

Link Properties ..450

End Link..454

Purpose ...454

Usage ..455

Placement ..455

End Link Operation Properties455

Block ..456

Purpose ...456

Usage ..456

Block Operation Types ...456

End Block ..458

Purpose ...458

Usage ..459

End Block Operation Properties459

Call Operations...459

Purpose ...459

Passing Arguments ..460

The Argument List ...460

How eDeveloper Passes Arguments................................462
Reference Guide xii

Call Operation Qualifiers...463

Call Task ..465

 Call Program and Call Exp..469

Call a Public Program ...471

Call UDP...475

Call COM ..477

Call Remote..477

Call Web Service ...478

Evaluate..483

Purpose ...483

Usage ..483

Evaluation Operation Properties.....................................485

Update..486

Usage ..486

Update Operation Properties ...486

Output Form ..492

Purpose ...492

Usage ..493

Output Form Operation Properties493

Input Form ..497

Purpose ...497

Usage ..497

Input Form Operation Properties497

Browse..500

Purpose ...500

Usage ..500

Browse Operation Properties ...501

Exit ..503

Purpose ...503
Reference Guide xiii

Usage ..503

Exit Operation Properties..503

Raise Event ...505

Raise Event Properties ...505

Raise Public Event Runtime Behavior..............................509

 8 Expression Rules
Literals..511

Operators ..515

Mathematical Operators ...515

Logical Operators ..515

String Operator...516

Variables ...516

Functions ..517

Dynamic Data Exchange...517

Buffer Management ...518

Vector Data ..518

XML Namespaces ..519

Function Summary ...523

Alphabetical Directory of Functions553

 9 Display Forms
Browser Forms...765

Browser Subforms ...766

Browser Form Properties ..768

HTML Control Repository ...770

Browser Control Properties...772

Browser Edit Control Properties772

Browser Radio Button Control Properties.........................775

Browser Hyper-Text Control Properties776
Reference Guide xiv

Browser Push Button Control Properties..........................778

Browser Check Box Control Properties............................781

Browser List Box Control Properties783

Browser Combo Box Control Properties...........................785

Browser Image Control Properties..................................787

Browser Table Control Properties788

Browser IFRAME Control Properties................................790

Browser Opaque Control Properties................................790

GUI Display Forms..791

GUI Display Form Properties ...791

GUI Display Commands..798

GUI Display Color Palette ...804

GUI Display Controls ...804

Static Controls ..807

Choice Controls ...807

Slider Controls ..809

Editing, Action, and Image Controls809

Table Controls...813

Tree Control ...815

Drag and Drop ...820

Drag Begin Event ..820

Drop Event ...821

Drag and Drop Limitations and Environment Settings822

GUI Display Control Properties ...824

Radio Button Control Properties.....................................825

Rectangle Control Properties ...831

Table Control Properties ...835

Edit Control Properties ...842

Column Control Properties ..848
Reference Guide xv

Tab Control Properties ...849

Ellipse Control Properties..855

Image Control Properties..859

Text Control Properties...864

List Box Control Properties..868

Line Control Properties ...875

OLE Control Properties ...878

Push Button Control Properties......................................882

Combo Box Control Properties.......................................888

Slider Control Properties...893

 Rich Text Control Properties...896

Check Box Control Properties ..901

Group Control Properties ..905

Rich Edit Detail Control Properties..................................909

Tree Control Properties ..913

 10 Output Forms
HTML Forms...921

HTML Form Display..921

HTML Control Placement...921

HTML Form Properties..922

HTML Style Repository ...924

Hyperlink Settings ...925

Context Variables ..927

The HTML Command Palette ...929

HTML Static Table Command Palette932

HTML Control Palette ...935

Fonts and the HTML Controls ..937

HTML Control Properties ...937
Reference Guide xvi

Static Table Control Properties943

Frame Set Forms..945

Frame Set Form Properties ...946

The Frame Set Command Palette...................................947

Frame Set Control Properties ..949

HTML Merge Forms ...950

HTML Merge Form Properties ..951

Web Online Event Handlers...952

The Merge Command Table ..955

The Merge Command List ...957

HTML Template File Tags..958

HTML Merge Tags ..959

HTML Merge Syntax Rules ..961

HTML Merge Runtime Behavior......................................961

HTML File Merge Example ...962

Web Online Page ...964

Web Online Response ..964

Upload Capability of the Requester965

Report Forms ...966

GUI Table Control Functionality966

Multi-Line Edit Printing ...967

Printer Attribute Support ..968

Printer Settings ...969

 Print Styles..970

 11 Data Management
Transaction Processing ..977

Transactions and Execution Levels ..977

Physical Transactions at Task Level................................979
Reference Guide xvii

Physical Transactions for the Group Level980

Physical Transactions for the Record Level980

Deferred Transactions ...982

Transaction Begin..982

Locking Strategy Property ..983

SQL Range Statement..983

Direct SQL..983

Numeric Field Updates ...983

Update/Delete Statements..984

Record Update Fail Before Call985

Nested Transactions ..985

Transaction Tree ..987

Open Transaction ..987

Close Transaction ..988

Runtime Tree Sample ..989

Transaction Processing Recovery ..990

eDeveloper’s Internal Transactions..990

Mapping Transactions to Databases990

Deadlocks and Transaction Processing991

Rollback ..992

Rollback Behavior for Browser-Based Programs992

eDeveloper Cache...993

What Can Be Cached ...993

When is the Cache Used...994

Activating the Cache Size ...994

Changes to Program Behavior995

Cache and Resident Tasks ..995

Cache and The Rollback Operation996

Cache and Client/Server...996
Reference Guide xviii

eDeveloper Cache Internal Implementation.....................996

Error Handling..997

Error Handling Mechanism ..997

Error Behavior Strategies ...997

Error Handlers ..1000

Error Information ..1008

Runtime Error Handling ..1009

Task Range According to a Record’s Position1009

Applications from Previous Versions1011

 12 End-User Menus & Help
Menu Formats ..1014

Pulldown Menus ..1015

Context Menus..1015

Menu Repository...1016

Menu Name ..1017

Menu Type ...1017

Menu Definition Repository ..1017

Entry Types ..1018

Entry Text ..1018

Entry Name ..1018

Menu Parameters ..1019

Menu Access Key...1020

Menu Authorization Options ...1021

The Menu Properties Dialog..1021

Properties Tab ..1022

Toolbox Tab..1024

States Tab..1025

Help Screen Repository ...1026
Reference Guide xix

Help Types ..1027

Internal Helps ...1028

Prompts ...1029

Windows WinHelp Connections1030

Tooltips..1032

URLs..1033

 13 Authorization System
Magic Security and People’s Roles...1035

Getting Started as Supervisor ..1036

Rights Repository ...1036

Description of the Rights Repository...............................1036

Rights Assignment Dialogs...1039

Model Repository Rights Assignment1040

Table Repository Rights Assignment1041

Program Repository Rights Assignment1042

Help Screens Repository Rights Assignment1044

Menu Definition Rights Assignment1045

Component Repository Rights Assignment1046

Application Properties Dialog Rights Assignment1047

 Application Access Key ..1048

Public Rights Access Key ..1048

The Super Right Key ..1049

Force MVCS Key..1049

Restricting Import and Export1050

User ID Repository ...1051

Description of the User ID Repository.............................1051

User Group Repository ..1053

Description of the User Group Repository........................1053
Reference Guide xx

The Secret Name Repository ..1054

Data Security...1054

Restricting Access to Application Data Tables1054

Restricting Access to the Application File Itself.................1055

HTTP Authentication..1056

 14 Components
Component Frameworks ..1058

Component Repository ..1059

Loading a New Component ...1060

Deleting a Component..1060

Magic Component Properties...1061

Objects Connected to the Magic Component Interface1063

Component Runtime Behavior ..1063

INIPut Function Behavior..1064

Component Interface Builder Repository1066

Magic Component Builder Properties1067

Item Type Repository...1067

Environment Repository ...1068

Adding an Item ...1068

 Generating the Magic Component Interface File1069

Sample MCI File ..1069

Web Service Interface Builder ..1070

Web Service Programs Repository..................................1071

WSDL File Settings ..1073

Generating a WSDL File..1074

The Created WSDL File...1074

Enterprise JavaBean Interface Builder1074

EJB Programs Repository..1075
Reference Guide xxi

EJB Settings ...1076

EJB Environment Variable Path Settings1076

Generating an EJB Component File1077

Additional Generated Jar Files1077

Java Generator...1078

XML Generator ...1078

 15 COM Object Support
OLE and ActiveX...1080

Defining COM Object Fields ..1080

Attribute ..1080

Object Name and Type Library Settings1080

Calling a COM Object ..1081

Handling ActiveX Events ..1084

Runtime Behavior ...1086

Passing Objects as Arguments.......................................1086

Manual Object Instantiation ..1087

Referring to an Already Created Object...........................1087

Retrieving COM Related Error..1088

Placing an ActiveX Control on a Form1088

OLE Variable and BLOB Variable of OLE Content......................1088

COM Interface Builder ...1088

COM Interface Builder Repository1089

Object Settings ...1092

Generating a COM Object ...1094

Registering the Object..1095

Local COM Object Runtime Behavior1095

Remote COM Object Runtime Behavior1097

COM Object Errors and Troubleshooting..........................1099
Reference Guide xxii

 16 Java Integration
Java Terminology ...1104

Java and EJB Functions ...1105

Code Pages..1107

Type Signatures ...1109

Runtime Engine Behavior...1110

Life Cycle ...1110

Multi-Threading...1110

Browser-Based Programs..1111

Conversion Tables ...1111

Returning Pseudo-Reference Values1112

Errors and Exception Handling.......................................1112

Garbage Collection Mechanism1113

Environment...1113

Java Component Generator..1114

Specifying the Java Class or
Enterprise JavaBeans Type ...1114

The Java Object Browser ..1116

Java Class Structure ..1117

The Generated Java Component1118

Created Files ..1119

 17 XML Component Generator
XCG Wizard ...1121

XCG Main Options..1122

Modifying a Component..1122

XML Schema Details ..1124

View XSD ...1125

XML Schema Interface Details1126
Reference Guide xxiii

Data Types...1127

Component Details ..1129

XCG Programs..1130

Count Program..1130

DbDel Program ...1130

Get Program...1131

Put Program ...1131

Read Program...1131

Search Program ..1131

Write Program ..1132

Generating the Component ..1132

Output Files..1133

Changing the XCG Directory ...1134

Namespace Support..1134

 18 Connecting Magic to External Applications
Dynamic Data Exchange ..1136

Functions ...1137

Magic & OLE Automation ...1143

Implementing OLE Automation......................................1144

Parameter Type String ...1144

OLE Automation Functions ..1145

Call to a DLL ..1152

Call to a 3rd Generation Language ..1152

Call UDP Operation Parameters1153

UDP Functions ..1154

 19 Distributed Application Architecture
The Enterprise Server General Scheme..................................1156

Uses of Distributed Application Architecture............................1157
Reference Guide xxiv

Application Partitioning...1157

Internet/Intranet Applications1158

Enterprise Server Setup ..1158

Runtime Engine Behavior ...1158

Loading a Middleware Gateway1159

Supported Middleware...1160

Magic Request Broker - MRB ...1160

Magic Request Broker Behavior1168

eDeveloper Requesters..1173

Requester Settings ..1173

Internet Requester ...1180

How You Can Use eDeveloper on the Internet1181

Application Development Concepts1181

Setting Up an Internet Requester1182

Other Web Servers ..1183

Internet Application Paradigms......................................1184

SOAP Server Requests ..1184

Browser Client Applications ..1184

Creating a Browser Task...1185

Creating a Browser Client Program with the Automatic Program Genera-
tor (APG) ...1185

Writing the Logic for the Browser Task1185

 BLOB Support ..1188

Explicit Handling for a Browser Task...............................1189

Help Action Support...1190

Creating the Browser Task Interface1191

Recompute ...1199

Creating a Batch-Based HTML Program...........................1201

The Benefits of Application Partitioning...........................1203
Reference Guide xxv

The Call Remote Command...1204

Synchronous Execution vs. Asynchronous Execution.........1206

Dynamic Assignment of Partitions..................................1207

Command Line Requester...1214

Multi-Threading...1216

eDeveloper Monitor Application...1219

Request-Related Functions..1220

 20 Utilities
Application Wizard ..1223

Automatic Program Generator ..1223

Program Generator Properties for Database Tables1224

Program Generator Properties for a Program Entry...........1229

Check Syntax Utility..1231

Checker Message Categories...1231

Checker Results ..1232

The Check Syntax Process ..1233

Checker Messages Table...1234

Get Definition Utility..1235

Loading Tables..1235

Cross Reference Utility ..1237

The Location From Where to Cross Reference an Object....1238

Deleting a Cross Reference ...1243

Searching for a Cross Reference1243

Saving Cross References ..1244

Printing Cross References ...1244

Changing the Maximum Number of Cross-Referenced Results1244

Export-Import Utility ...1245

The Export/Import Dialog Box.......................................1246
Reference Guide xxvi

Flow Monitor/Debugger ...1250

Flow Monitor Toolbar..1251

Flow Monitor Message Group Filters1253

Flow Monitor Properties ..1254

Flow Monitor Utility for a Server1255

Flow Monitor Support for the Browser Client....................1257

The Remote Flow Monitor ...1257

The Profiler..1266

Profiler Operation ..1266

Profiler Output ..1267

Program Execution Trace File ..1267

Opened Files Trace File ..1269

The OEM2ANSI Utility..1270

The ODBC Check Driver Utility1271

The MakeKey Utility ...1271

The Table Conversion Utility..1271

Magic Flat File ..1273

Print Data Wizard ...1274

Runtime Operations ...1274

Delimiters and String Identifiers1276

Runtime Behavior..1276

XML Template Structure ...1277

XSD Data Type ...1278

HTML Template Structure ...1282

Tools Infrastructure ..1284

Building the Menu..1284

Tools Menu Example ..1286

Operation Commands ..1287

Global Parameters Information......................................1296
Reference Guide xxvii

 Automatic Processing..1299

Monitor Utility ..1300

Enterprise Servers...1300

Contexts ..1301

Requests..1301

Statistics..1302

Applications..1302

Window Displays ...1302

Monitoring Servers ..1303

The Documentation Template Facility1303

Producing Template Documentation1303

Syntax - Documentation Template File1305

Documentation Report Sections.....................................1309

Keywords ...1313

 21 Simple Network Management Protocol
SNMP Implementation...1372

eDeveloper Requester Settings......................................1372

Magic Request Broker Settings1373

Environment Settings...1374

SNMPNotify Function..1374

Other Traps ..1374

Network Management Station Query from eDeveloper1375

Enterprise Servers (QUE=RT)..1375

Requested Query (QUE=QUE)1376

Loaded Query (QUE=LOAD)..1376

NMS Management Options ...1377

Installation and Configuration...1379

Supported SNMP Agents...1380
Reference Guide xxviii

 22 J2EE Integration
Terminology...1382

The Component Builder ...1383

Defining the EJB..1383

EJB Component Builder Screen......................................1385

EJB Settings ...1388

Creating the JAR file ..1389

EJB Configuration ...1390

EJB Environment Definitions ...1390

Resources ..1391

eDeveloper Configuration and Deployment.............................1391

Environment...1391

Runtime...1392

Generic Messaging Layer (mgrqgnrc.dll)1393

Broker Configuration and Deployment1395

Query-Only Enterprise Servers1395

Termination..1395

Loading enterprise servers..1395

Command Line Requester ..1395

Termination..1395

Queries ..1395

Remote calls from other requesters (not EJBs)1396

J2EE and eDeveloper Installation ..1396

Connection Difficulties..1396

 23 Multi-User Considerations
Definitions ...1399

Isolation Level ..1399

Locks...1401
Reference Guide xxix

Process ..1401

Transactions ...1401

Concurrency ..1401

Locking ..1402

Identify Modified Row ..1402

Transactions ...1404

Locking Strategy ...1406

Task Nesting and Locking ...1408

Isolation Level ..1409

Differential Update ..1409

Table Modes ..1410

Access Mode...1410

Share Mode ..1411

Multi-User Considerations When Defining Table Modes......1411

How to Define Table Modes...1413

Table Sharing Interaction ...1413

Setting the Multi-User Environment.......................................1414

 24 Workgroup Development
Workgroup Options ...1418

Activate Team Development ...1418

MVCS Snapshot File ...1418

MVCS Lock File Path ..1418

The Workgroup (MVCS) Menu1421

Team Development...1422

Requirements for Team Development.............................1422

Activation of Team Development1422

Snapshot File..1423

Concurrence ...1423
Reference Guide xxx

Modifications to the Program Repository1423

Lock File ..1424

The Synchronization Process ...1426

Application Access and Share Modes1427

Station Lock File..1428

 25 SQL Considerations
Configure and Define the eDeveloper Environment1430

Windows Operation Systems...1430

Unix Operating Systems ...1430

Naming Conventions - eDeveloper Gateways..........................1431

Gateway Name Structure ...1431

eDeveloper’s API Implementation and Versions1432

Data Definition Rules ...1434

Configuration and Performance...1435

Transactions ...1435

Locking ..1436

Null Value ..1443

Index Definition and Usage...1444

Range Definition..1447

Sorting ..1448

Stored Procedures ...1448

Reducing Network Traffic..1449

Incremental Locate..1450

Direct SQL..1450

String Time Attribute Mapping.......................................1450

Properties Supported by Various Gateways1451

The eDeveloper Database Gateway for Oracle.........................1453

eDeveloper Data Types ..1453
Reference Guide xxxi

Blob Mapping Flag ...1456

Oracle Data Types ...1456

Long and Long RAW Data Types1457

Hints ...1457

Database Information ..1458

Table Locking..1459

Physical Locking ..1459

Views ..1459

Unique Identifier ...1460

NLSSORT Support ...1460

Stored Procedures ...1461

MSSQL Server Database Gateway...1461

eDeveloper Data Types ..1461

MS-SQL Data Types...1464

Text Data Type ...1466

Physical Locking ..1466

Hints ...1466

Identity Column ..1467

Views ..1468

Temporary Tables..1468

Cursors and DB Commands ..1470

Database Information ..1471

Informix Database Gateway ...1473

eDeveloper Data Types ..1473

Informix Data Types ..1476

Views and Fragmented Tables1477

Table Locking..1477

Physical Locking ..1478

Text and Byte Data Types...1478
Reference Guide xxxii

DB2 Database Gateway ...1478

eDeveloper Data Types ..1478

DB2 Data Types ..1481

Views ..1482

Physical Locking ..1482

Using DB2 Handles ..1483

ODBC Database Gateway...1484

eDeveloper Data Types ..1484

ODBC Data Types..1487

Locking ..1489

Troubleshooting ..1489

Database Default Values...1489

Sort/Temporary Database ..1489

Direct SQL..1490

ODBC Check Driver Utility..1490

ODBC Gateway - Data Source Information1491

 Index
Entries ..1515
Reference Guide xxxiii

Introduction 1
elcome to eDeveloper Version 9, Magic’s rapid development and
deployment tool for enterprise applications. To get started, install
eDeveloper and then familiarize yourself with eDeveloper’s dynamic

interface, as described in this chapter.

In this chapter:

• Documentation

• Online Support

• Installation

• Typographical Conventions

• Key Combinations

• eDeveloper Workspace

W

Reference Guide 34

Documentation
In addition to the Reference Guide, eDeveloper comes with the following
documentation provided in PDF format:

• How To Speak eDeveloper - A glossary of eDeveloper terminology.

• How To... Working with eDeveloper - A hands-on users guide for
developing eDeveloper Version 9 applications.

• iSeries Guide - A guide to deploying eDeveloper applications for iSeries.

Online Resources
eDeveloper includes the following online resources:

Books Online displays the complete documentation set in PDF format. Online
books can be read and printed by using Adobe Acrobat Reader. Check Magic’s
web site, www.magicsoftware.com, for updates to eDeveloper online
documentation located under Services/Downloads/More Downloads.

eDeveloper Context Sensitive Help provides immediate information about
the fields in eDeveloper repositories, dialog boxes, and property sheets.
Glossary and How To Help topics are also included.

Technical Support Online enables you to browse the knowledge base and
add your own articles, post to and search user discussion forums, and submit
support requests. You can access these services from the Magic web site under
Services/Support.

Installation
The Guide to Installation & License Management is included with eDeveloper to
provide information on different issues of installation and licensing procedures.
Reference Guide 35

http://www.magicsoftware.com

Typographical Conventions
The typographical conventions used throughout this book are described in the
table below.

Type Style Used for...

italic Menu or folder paths. For example: Workspace/
Switch Panes

New term introduced for the first time.

Names of publications, such as the Reference
Guide.

courier Any value that you must enter into a field, syntax,
warnings or error messages, or environment
settings. For example, Appl=applic 1 or
Connection to Broker Refused.

bold Menu names and Option names. For example,
select the Cancel option from the Edit menu.

Buttons, such as OK, Delete, or Save.

SMALL CAPS The names of keys on your keyboard or keyboard
combinations, such as ENTER or CTRL+P.

KEY1+KEY2 A plus sign (+) between key names means hold
down the first key while you press the second key.
Then release both keys. For example, press ALT+F4
to exit eDeveloper and return to the Operating
System.

KEY1, KEY2 A comma (,) between key names means press and
release each key, one after the other.
Reference Guide 36

Key Combinations
eDeveloper supports key combinations for all F keys, F1 to F12. Supported
combinations are: CTRL+F[X], ALT+F[X], and SHIFT=F[X]. Key combinations are
used for:

• Keyboard mapping

• System handlers

• User event triggers

• KDB literals

• Shortcuts

eDeveloper Workspace
eDeveloper Version 9 provides dynamic development repositories, a navigator,
property sheets, and comments, as displayed in Figure 1-1.

Figure 1-1 Navigator and Workspace Panes
Reference Guide 37

eDeveloper uses a graphical user interface that is fully compatible with
Microsoft Windows 95, 98, 2000, or NT.

Navigator and Workspace Panes

The Navigator pane is a Multiple Document Interface (MDI) screen that lets
you navigate through the application.

You can click Workspace/Navigator to either open or close the Navigator pane.
The Navigator pane automatically closes when you switch from toolkit to
runtime, or when you invoke a program.

The Navigator pane displays four sections:

• Repositories - The main repositories of the application.

• Tasks - The tasks of a selected program.

• X-ref - The result list of the most current cross-reference search.

• Bookmarks - Objects that have bookmarks in an application.

Multiple Document Interface (MDI) Client Edge

The Multiple Document Interface (MDI) client appears with the Client Edge
style, a 3D display with a border and a sunken edge. In some screen designs
where the form is fitted to the MDI and the form contains 3D controls that are
closely positioned to the form border, having the Client Edge style may result
in excessive borders. You can use this environment setting to turn the Client
Edge style on or off.

This environment setting should be defined in the [MAGIC_ENV] section of the
Magic.ini file: MDIClientEdge = [Y/N]. The default value for this setting is Yes.

When you enter Yes, the MDI is displayed with a 3D style frame. When you
enter No, the MDI will not have its 3D style frame.
Reference Guide 38

Property Sheets

From the Workspace menu, click Property Sheet to display the specific
properties alphabetically and by category of the selected object. Property
sheets are available for fields, local variables, forms, controls, and help
screens.

Comments

From the Workspace menu, click Comments or press F10 to attach a
comment box to an object in the application. You can attach a comment to the
object types listed below:

The comment is displayed in the Comment pane. Click ALT+F10 on the
repository entry to open the Comment pane.

Comments have the following characteristics:

• The Comment box can be resized to hold up to 1,000 characters.

• Comments for the object are stored in the eDeveloper Control File. The
Comment text cannot be exported in the binary file of an eDeveloper Flat
File.

Checker Results

From the Workspace menu, click Checker Result or press ALT+F3 to display
the current checker results generated by the Check Syntax utility. You can

Columns Helps Ranges

Components Indexes Rights

Direct SQL I/O files Tables

Events Local Fields Tasks

Foreign Keys Models

Handlers Programs
Reference Guide 39

specify the error level and how messages are grouped from the Toolkit
Checker Minimal Level and Group Checker Messages environment settings.

The Checker Result pane can be attached to the eDeveloper MDI screen,
displayed as an independent floating window, or combined in a window with
the navigator, property sheet, and comment box.

For more information about checker results, see the Checker Syntax Utility
section in Chapter 20, Utilities.

Switch Panes

Select the Workspace/Switch Panes to move the cursor from the Navigator
pane to the Workspace pane.

You can click CTRL+TAB to cycle through every opened pane and the
eDeveloper workspace. The cycle order is navigator, property sheet, comment
box, and workspace.

When panes are placed together, only the front pane is in focus.

Combined Panes

The navigator, property sheet, and comments box can either appear as
attached to the Workspace pane or as detached.
Reference Guide 40

You can combine the objects by dragging them on top of each other, as shown
in Figure 1-2. Alternately, you can select the objects from the Workspace
menu.

You can move from object to object by clicking:

• ALT+F1 for the navigator

• ALT+F2 for the property sheet

• ALT+F10 for the comment box

To separate combined objects, simply drag the title of the current option while
pressing the CTRL key.

The combined window can either be attached to one of the eDeveloper window
borders or kept as a floating window.

You can close an object by pressing the object’s key combination, such as
ALT+F1, when the object is selected.

Figure 1-2 Combined Objects
Reference Guide 41

Repositories

A repository is eDeveloper’s basic screen. Each eDeveloper repository is
divided into a grid, similar to a spreadsheet. Every repository has columns and
rows. From certain columns, you can zoom to an option list or a details window
to select data options. When the insertion point is positioned on a zoomable
field, the word ZOOM appears on the message line. Figure 1-3 shows an
example of an eDeveloper repository and its property sheet.

You can type a data option directly into a field rather than selecting it from a
list. The insertion point shows where the next text character will be placed.

Figure 1-3 Repository and Property Sheet
Reference Guide 42

Moving the Insertion Point

Information of how to move the insertion point in a repository is described in
the table below.

Command Options

eDeveloper provides line editing capabilities for you to enter and update data
in your repositories. Whenever your insertion point is positioned on a line that
can be edited, you can access the Edit menu or press ALT+E to see the line
editing items available.

To Move To... Press...

The beginning of the column HOME

The end of the column END

The previous page PGUP

The next page PGDN

The top of the repository or
dialog

CTRL+HOME

The bottom of the repository or
dialog

CTRL+END

The end of the row ALT+→

The beginning of the row ALT+←

Edit Option Key Means

Cancel F2, ESC Cancel the previous edits. The
extent of this cancellation is
context-dependent. Cancel also
closes the repository.

Undo Editing ALT+BACKSPACE Cancel edit while in the column
editor.
Reference Guide 43

Zoom F5 An action that lets you jump
from a cell to a selection list,
dialog, combo box, details
window, or property sheet. A
zoomable cell is indicated on the
status bar.

Wide F6 Opens a window wide enough to
view the entire column.

Go to Top CTRL+F9 Go to the top of the
development area. A
development area is either in
the Program repository or in the
Table repository, explained in
later chapters.

Jump to Row CTRL+J Jump to the repository row
entered in the Jump dialog box.
Jump to Row is useful when
editing large repositories.

Create Line F4 Add a line after this one. If your
insertion point is positioned just
above the first line of a
repository, this will create a first
line. Lines below the created line
are renumbered.

Delete Line F3 Delete this line. Confirmation
will be requested. Lines below
the deleted line are renumbered.

In Development mode, the
Create Line command also adds
a line after the last line in a file.

Properties CTRL+P Display the property sheet for
the selected repository, form, or
control.

Edit Option Key Means
Reference Guide 44

Comment F10 Display a text box that can be
used for internal messages
about a selected object. You can
open created comment boxes by
pressing ALT+F10.

Find Text Lets you search for text in a
repository.

Replace Text Lets you find and replace text in
a repository.

Repeat Entry CTRL+R With the insertion point
immediately above the target
line position, you can duplicate
the entry of a row. Lines below
that point will be renumbered.

Move Entry CTRL+M When the insertion point is
immediately above the target
line position, you can move a
row from one entry line to
another. Lines will be
renumbered.

Overwrite Entry CTRL+W Replace the current entry with a
copy of the line with the number
you have entered in the
Overwrite Entry dialog box. The
original line is not changed.

Table Locate CTRL+L Find the first row with entries
that match the search mask you
have entered in the template
row. You can use an asterisk (*)
as a wildcard to represent any
number of characters, and a
dollar sign ($) or question mark
(?) as a wildcard for a single
character.

Edit Option Key Means
Reference Guide 45

Table Locate
Next

CTRL+N Continue searching the
repository using the same
template defined with the Table
Locate command.

Next Checker
MSG

CTRL+Y Jump to the next checker
message. eDeveloper highlights
the current message in the
Checker Results window and
selects the field where the
syntax error is located.

Cut Text SHIFT+DEL Cuts selected text.

Copy Text CTRL+INS Copies selected text.

Paste Text SHIFT+INS Pastes selected text at the
current insertion point position.

Select All CTRL+A Select all objects.

Edit Option Key Means
Reference Guide 46

Column and Key Internal Sequence Numbers (ISNs)

eDeveloper lets you determine how the internal sequence numbers (ISNs)
should be calculated for an overwritten table entry as displayed in Figure 1-4.

When you click the Advanced button, the following fields appear:

• Keep references of - You can select either Overwritten table or Overwriting
table.

• Overwritten table - Keeps the ISNs that have already been defined
in the overwritten table. The existing ISNs will be set for the column
and indexes of the overwriting table by the value option selected
from the Match columns and indexes by field.

• Overwriting table - Keeps the ISNs of the overwriting table.

• Matched columns and indexes by - The options listed below affect how
ISNs are set.

• Sequential order - ISNs are set for overwriting columns and indexes
by the overwritten counter-objects matched by their sequential
order.

Figure 1-4 Overwrite Tables Advanced Options
Reference Guide 47

• DB name - ISNs are set for overwriting columns and indexes by the
overwritten counter-objects matched by their DB name. This option
is available for SQL tables only.

• Description - ISNs are set for the overwriting columns and indexes
by the overwritten counter-objects matched by their Description
field.

Folders

Folders are displayed under their repository in the Repository section of the
navigator. Each folder represents a group of related repository objects. You
can create a folder for a selected repository, by pressing F4.

The navigator lets you:

• Display or hide folders

• Enter a folder name

• View the number of objects in a folder

A folder is an object that lets you organize entries in a repository. For example,
a folder may contain tables 10 to 13, and another folder may contain tables 14
to 27.

Each repository can have numerous folders. Each folder must represent a
sequential range of entries in the repository. When a user drags and drops an
entry from one folder to another, eDeveloper automatically renumbers the
tables to maintain an unbroken sequence of listed entries.

Figure 1-5 The Folder Tree for the Program Repository
Reference Guide 48

An entry does not need to be stored in a folder. Individual entries appear at
the top of the entry list and are visible when the entire repository is visible.

You can create folders for the following repositories:

• Table

• Program

• Help

• Rights

• Models

• Components

Click the Folder column in the selected repository to specify the folder where
the entry is stored.

Folders have the following characteristics:

• You can create (F4), delete (F3), or rename a folder by parking the cursor
on a folder in the Navigator pane. eDeveloper does not allow duplicate
folder names.

• You can move an item from one folder to another by clicking the folder
name displayed in the Folder column. Choose another folder from the list
box.

• When you open the Locate dialog within a folder, eDeveloper prompts you
to enter the name of the program, its folder, public name, and so on.

Figure 1-6 Programs Displayed by Folder Category
Reference Guide 49

• Selecting an entry in another folder does not change the current folder. You
must select another folder from the Folder column to change folders.

• When you generate a program from the Table repository, the Folder
property lets you specify the folder where the program is placed.

Bookmarks

You can create a bookmark for an entry, shown in Figure 1-7, by clicking
Bookmark from the Options menu or press CTRL+B.

Bookmarks appear in the Navigator when the Bookmark option from the
Navigator pane is selected.

Bookmarks have the following characteristics:

• They appear in the order of their creation.

• Selecting an object moves the bookmark to the top of the list.

• You can limit the number of bookmarks created in the application by
setting a value in the Maximum Number of Bookmarks environment
setting under the Preferences in the Environment dialog.

• Delete a bookmark by pressing F3.

Figure 1-7 Bookmarks for an Application
Reference Guide 50

Cross-References

The Navigator pane has a X-ref section that lets you display multiple sets of
cross-reference results. Each list displays all objects found during the cross-
reference search, as displayed in Figure 1-8.

From the Options menu, click Cross Reference or press CTRL+X to open the
Cross Reference dialog. The cross-reference results list the objects that were
selected in the Cross Reference dialog.

You can click the result to display the corresponding repository and the
selected entry.

Cross references have the following characteristics:

• You can delete a cross reference by pressing F3.

• You can store multiple result sets in the X-ref section.

For a full description, see Cross References in Chapter 20, Utilities.

Find and Replace

In Toolkit mode, you can automatically find and replace any repository object
with another object of the same type. Highlight the object you wish to replace
and select Find and Replace from the Options menu.

Figure 1-8 Results of a Cross-Reference Search
Reference Guide 51

Settings 2
ou can change eDeveloper’s default settings for property values that
affect the toolkit and the runtime environments both through options
on the Settings menu and directly in the files described below. You can

change the names of most of these files by setting the corresponding
properties in the Environment dialog. You can also use other Settings menu
utilities to directly edit their content.

eDeveloper relies on several configuration files for its interface and operational
profile. Some of that information is constant, while other areas are user-
configurable. The main configuration file is the Magic.ini file. The Magic.ini file
also holds pointers to other configuration files.

All of the configurable information of eDeveloper can be updated dynamically
from the command line when you start eDeveloper. The relationship between
the properties that are physically written in the Magic.ini file and those
received via the command line is described in the Command Line section.

In this chapter:

• Settings Menu

• New Applications

• Application Settings

• Environment Settings

• Colors

• Fonts

• Keyboard Mapping

• Servers

Y

Reference Guide 52

The Settings Menu
The Settings menu includes the following repositories:

• Services

• Visual Connection

• Communications

• DBMS

• Databases

• Logical Names

• Languages

• Printers

• HTML Styles

• Print Attributes

• Magic.ini File

• Command Line Options

Repository For editing properties related to...

Application The list of applications

Environment eDeveloper’s configurable environment
properties

Colors eDeveloper’s interface and application
Color repository

Fonts eDeveloper’s Font Definition file

Keyboard Mapping eDeveloper’s reconfigurable keyboard
interface

Servers Available remote eDeveloper host servers’
properties (for Client/Server)
Reference Guide 53

Some Settings items are available only when no application is open and some
are available only when the user is logged on as Supervisor.

Services Available applications on a server

Visual
Communication

A display of the service connection on a
server

Communications Available communication drivers

DBMS Available Database gateways

Database Available physical databases

Logical Names Logical file name translation

Languages Available multi-lingual support

Printers eDeveloper logical printers

HTML Styles Available HTML styles

Print Attributes A file that defines the connection between
logical print attributes and actual printer
control codes

Checker Messages Lets you customize the level of each
message for the checker

Secret Name Protected access keys and other secure
names

User Group Definition of categories of users for
security purposes

User ID Definition of individual users for security
purposes

Logon (dialog) User ID, Password, and date

Repository For editing properties related to...
Reference Guide 54

New Applications
You can create new eDeveloper applications by clicking New from the File
menu. The New Application dialog appears, as shown in Figure 2-1.

The New Application fields are:

• Application Type - Select the application type you want to create.

• Empty Application - eDeveloper creates a new and empty
application for you to start and define the application structure and
logic.

• XML Component - eDeveloper creates a new application and
automatically activates the XML Component Generator, which helps
you create an application that easily handles XML documents.

• JAVA Component - eDeveloper creates a new application and
automatically activates the Java Component Generator, which helps
you create an application that easily accesses Java objects.

• Application Name - Enter a name for the new application.

• Application Database - Select a database from a list of current databases
defined in your eDeveloper environment.

Figure 2-1 New Application
Reference Guide 55

• Table Name - An eDeveloper application is stored as a database table. Set
the name of the database table where the application information will be
stored.

• Show Initial Help at Startup - Select to display the Getting Started help
page after the application opens.

Click OK to confirm the new application details, and create and open the
application.

Any new application created from the New Application dialog is added to the
Application repository, which can be opened by clicking Applications from the
Settings menu. The details of all applications that have been defined can be
viewed and modified from this repository.

 Application Settings
There are a number of locations where you can set Application settings for a
specific application. These locations are the Application repository, the
Application Properties dialog accessed from the Application repository, and the
Application Properties dialog accessed when an application is open.

Application Repository

When all of the applications are closed, you can click Settings/Applications to
access the Application repository. The Application repository is used to
maintain the list of applications available for toolkit and runtime. eDeveloper
allows access to multiple applications for toolkit and at runtime. Entries in this
repository may be existing applications or declarations of new applications for
toolkit.
Reference Guide 56

Each entry in this repository also appears in the Application list.

Application declarations are stored in the [MAGIC_SYSTEMS] section of the
Magic.ini file.

The Application repository contains the columns described below:

#

This column contains an automatically generated sequential number. You
cannot edit this column.

Name

A free-text description of the application. This description will appear in the
Application list, and on the message bar when the application is open for
toolkit or runtime.

Figure 2-2 The Application Repository
Reference Guide 57

Application names should be unique. eDeveloper allows duplicate names, but
the use of duplicate names can lead to serious confusion in development,
maintenance, and deployment.

Note: Commas are not allowed in Application names because they are
reserved for use as separators in the Magic.ini file.

Prefix

A 2-letter code is used as an Application identifier. The developer defines the
2-letter prefix. All default application-related repository names will be
constructed using this same prefix. Some of these files are the Magic Flat File
(MFF), Report files (RPR.Mcf), and all data files. For example:

The prefix may also contain default location specifications indicating where all
the application files will reside (i.e. (server)path). If a location is not specified,
application files will be opened in the current directory.

Prefix examples:

If you want to override the default location for the Application or Report files,
see the descriptions of the Application file and Report file properties,
immediately below. You can override the default name for data tables in the
Table repository.

Prefix eDeveloper-
Generated
File Name

File Contents

pp ppCTL.MCF The eDeveloper Application file
holding all application definitions

DM DMFIL001.DAT The first data table in the Table
repository

Prefix Location

DM Current directory

C:\APPL\DM On a Windows PC, directory APPL on drive
C:
Reference Guide 58

Application (MCF) file

There is an explicit file name and location specification for the Application file.
This property will override the default file name derived from the prefix. The
Application file contains all of the application’s elements, including all its
repositories. Each application has its own MCF. If this column is blank, the
Application file name will be ppCTL.MCF, where pp is the prefix specified in the
Prefix property. The Application file name may include an optional location
specification formatted as follows:

(server)pathname

where:

server - The eDeveloper host database server name enclosed within
parentheses. This server is one of the servers in the Settings/Server repository
described below.

pathname - The directory in which the MCF file will reside.

Zooming from the Application File property will open an Open File dialog.

Database

The access information to the physical database that stores the application’s
tables. eDeveloper uses the setting of the Default Database property in the
Environment dialog as the default database name. To select a different
database for the application’s tables, select Edit/Zoom from the Database
column to open the Database list. The Database list displays all the databases
of the DBMS type selected for the application that are available to your
installation.

If the Database entry shows Unknown, then the proper database gateway
module was not loaded. An attempt to open an application without first loading
its proper database gateway will fail.

For more information on databases, refer to the Database Settings section.

Note:

• The DBMS repository provides eDeveloper with the needed connection to
the database gateway. The database gateway stores all the storage
Reference Guide 59

information required for table definition. The Database repository provides
eDeveloper with access information to the physical table during runtime.

• Pervasive SQL is not supported as a database for the MCF application.

Application Properties - Outside the Application

From the Application repository, you can set additional file entry information
for each application, by selecting Edit/Properties. The Application Properties
dialog will appear. The properties specified here are saved into the Magic.ini
file. In this dialog, you can set the properties explained below.

Flat MFF Deployment

The eDeveloper Flat File (MFF) Deployment property lets the end user access
and run specified applications that have been stored as database-independent
binary files. This property is relevant only for runtime purposes because you
cannot open a flat eDeveloper deployment file in toolkit mode. If the user
selects this check box, the Magic.ini file is modified accordingly and
information can be read from the MFF file.

Compressed

Activating the Compressed feature significantly reduces the size of the MCF of
your eDeveloper application, which creates a lighter application when stored to
your hard disk. An application that is to be compressed must be defined as
such at the very beginning of application development, when the MCF is new
(you cannot compress an existing MCF file). Compression, however, can lead
to degraded application performance, and should be used only when space
efficiency is a high priority.

Force MVCS Disable

The Force MVCS disable property tells eDeveloper whether or not to disable
the MVCS commands that allow for workgroup development for this specific
application.

Selecting this check box limits the eDeveloper application to one developer at
a time.
Reference Guide 60

Leaving the check box blank allows multiple developers to work concurrently
on the eDeveloper application.

Access Key

The Access Key property specifies a password to be used for every access to
the application control file (MCF). The content of the access key is passed to
the underlying database’s security mechanism to actually handle file security.
When you specify an access key for an application control file, update access
to that file from external applications or from other eDeveloper systems will
require that the program trying to access the table specify the same access
key. If the access key is not provided by the requesting program, the
underlying database will bar access to the Application repository. The access
key is also used as an encryption seed for the Application repository
encryption.

Whenever an editing session on the Application repository terminates,
eDeveloper scans the Application repository for possible changes to an access
key in any of the entries. If such a change is detected, eDeveloper will prompt
for confirmation of the addition or modification of the access key. In case such
confirmation is given, the Application repository is encrypted immediately,
using the new access key value. Note that this feature is dependent on the
support of the underlying database.

Because the Application repository is stored in the Magic.ini file, which is an
unsecured file, you should use a secret name for the access key. Using a secret
name protects the contents of the access key from unauthorized users. For
more information on secret names, refer to the Secret Names section in
Chapter 13, Authorization System.

Browser Client Task Cache

The Browser Client Task Cache improves the performance of the browser client
application by caching logical segments of the XML page on the client side,
minimizing the data transmission from the server to client.

For every browser-client task, the engine generates an XML file describing the
task's logic. The result page of the task includes a link to the task logic XML
file.
Reference Guide 61

As long as the application or revision number is not modified, the name of the
XML file of each task remains the same. This way the end-user's browser
caches the logic segment of each task as it activates that task for the first
time. Consecutive executions of the browser-client application retrieves the
logic segments of each task from the browser's local cache.

Cached File Revision

Any modification of a deployed application including its components may result
in changes of the logic segments of the tasks. The XML name of each task logic
segment should be modified to differentiate it from the already cached files to
enable the end-user's browser to load the new logic segments of the modified
application.

One of the elements that construct the name of each XML file is the revision of
the application. The revision of the application is part of the application
environment settings and can be accessed through the Application properties
dialog of an entry in the Applications list.

Whenever any part of a deployed application and its components is modified,
the revision setting of that application should be modified as well. Failing to
modify the revision may cause a mismatch in the logic segments cached on
the browser.

Note: There is no need to modify the revision for every modification in
development time. In development time, a file is created using a new name for
every single execution.

Browser Client Cache Path and Alias

The XML files that keep the logic segments of each task are created and stored
in the path set by the Browser Client Cache path environment setting. This
setting can be found under the Server tab of the Environment dialog.

A corresponding web alias should be set on the web server and in the
eDeveloper environment. The typical installation of eDeveloper automatically
sets proper values for these settings. This setting can be found under the
Server tab of the Environment dialog.
Reference Guide 62

Application Properties - Within the Application

When an application is open, you can set additional property settings in
another Application Properties dialog, by selecting File/Appl. Properties.

These properties are saved into the specific eDeveloper application file and
override the system-wide eDeveloper environment settings, specified in the
Environment dialog.

Figure 2-3 The Application Properties Dialog
Reference Guide 63

The Application Properties dialog contains four tabs as described below:

StartUp Tab

StartUp Mode

This property is used to override the Application Startup Mode setting,
specified in the Environment dialog, which indicates whether an eDeveloper
application will open in runtime, toolkit, or background mode. Use this
property to specify a different startup mode for a given application.

The default value is None.

Null Arithmetic

This property setting is used to modify eDeveloper’s Null support. Some
databases, especially SQL, allow parameters and arguments with null values.
This setting indicates how expressions involving one or more null-values are to
be computed:

• NULLify - the result will also be a null value.

• Use Default - the result will be computed with the Null property’s assigned
default values.

The eDeveloper defaults can be overridden at the Model and Column levels.

Base Currency

Zoom from the Base Currency property to access the Currency list. This list, as
shown in Figure 2-4, displays all currencies entered in the European Currency
table. Euro is the Base Currency default.
Reference Guide 64

Workgroup Tab

Activate Team Development

Checking this field activates the Team Development property, which ensures
concurrence among developers working on the same application.

MVCS Snapshot File

This property tells eDeveloper to write any modification to a temporary file
that holds all the changes until the object (the basic unit for manipulating an
application) is checked back in. This temporary file lets the rest of the
development team continue developing without interference.

MVCS Lock File Path

Zoom from this property to select the MVCS Lock File path. Locking can only
be performed when the Activate Team Development check box has been
selected. For more information, see the Workgroup Development chapter.

Figure 2-4 The European Currency List
Reference Guide 65

External Files Tab

Print Attribute File

This property allows you to alter logical printer attributes defined in the file
specified in the Environment dialog, and to save the new printer attributes in a
different file. This property ensures that within a multi-application
environment, an application-specific printer attribute file is created.

HTML Style File

This property allows you to alter HTML Style tags defined in the file specified,
and to save the HTML style tags in a different file. This property ensures that
within a multi-application environment, an application-specific HTML Style file
is created.

Color Definition File

This property allows you to modify the color settings of the Color Definition file
specified in the Environment dialog, and to save the new color settings in a
different file. This property ensures that within a multi-application
environment, a color definition file is created.

Font Definition File

The Font Definition File property allows you to modify font settings defined in
the file specified in the Environment dialog, and to save the font settings in a
different file. This property ensures that within a multi-application
environment, a font definition file is created. For a full explanation of the Font
Definition file, refer to the Font section in the Settings chapter.

Keyboard Mapping File

The Keyboard Mapping File property allows you to specify alternate keyboard
mapping in the Application Properties, and to override the Keyboard Mapping
file, if any, specified in the Environment dialog. To create an alternate
keyboard mapping file, use the Keyboard Mapping utility. In the Keyboard
Mapping utility, when basing new mapping configurations on previous ones,
Reference Guide 66

save the new configuration under a new file name in the File Save dialog’s
Save As property.

Internet Development File Root

This property specifies the location of the Internet Development file.

European Currency Conversion File

Zoom from the European Currency Conversion File property to access an Open
File dialog. Then specify the European Currency file.

Security Tab

Application Access Key

The Application Access Key property appears only when the Application
Properties dialog is accessed by owners of this key. This property setting holds
the name of the application access key. If such a key has been declared,
access to the application for development or for runtime purposes is restricted
to owners of the key. Other users or developers will not be able to open the
application.

Public Rights Access Key

The Public Rights Access Key parameter appears only when the Application
Properties dialog is accessed by the owner of this key. This setting holds the
name of the public rights access key.

By creating a public rights access key, a developer can improve security for a
given application. The supervisor’s ownership of this key frustrates any
attempt by an unauthorized user to remove system password protection by
destroying the security file (user_std.eng), which contains all user passwords,
and then to login as the supervisor. A bogus supervisor, without this key, will
not be able to find out which rights are associated with which keys in a
particular application. After zooming from the Rights column of the User ID
repository, a bogus supervisor will not be able to see the Rights Name field,
which describes the rights associated with given keys, nor be able to zoom
from the Key field into the full Rights list.
Reference Guide 67

Super Right Key

The Super Right Key property appears only when the Application Properties
dialog is accessed by the owner of the Super Right Key. This property holds the
name of the Super Right Key.

The Super Right Key is created by the supervisor for an application to give
rights to all of the application’s activities, for both development and runtime
purposes. Therefore, a holder of the Super Right Key does not need to hold
separate rights to individual activities within the application.

See Application Security Issues in the Authorization System chapter for more
detailed information.

Force MVCS Key

The Force MVCS Key property appears only when the Application Properties
dialog is accessed by the owner of the Force MVCS Key. This field holds the
name of the Force MVCS Key.

The supervisor can create a Force MVCS Key for an application, giving holders
the rights of limiting access of a Workgroup transaction to one user.

Remote Flow Monitor Right

You can restrict Remote Flow Monitor access at runtime by specifying flow
monitor rights. Zoom from the property to select rights from the Allowed
Rights list.

PPD (Programmable Protection Device)

The Programmable Protection Device button is a zoom point to the PPD dialog.
The PPD dialog provides the facility to program a password into a special
protection module. Using this password in conjunction with a protection device
lets you create applications that have an additional measure of protection,
beyond what the authorization system provides.

A confirmation dialog appears when the insertion point leaves the PPD Content
field on the PPD dialog. Select No to cancel the changes entered in the PPD
dialog.
Reference Guide 68

Selecting Yes in the Save Changes dialog causes the updated PPD information
to be written into the PPD plug, and the insertion point returns to the
Application Properties dialog.

Environment Settings
The Environment dialog contains all of the global configurable eDeveloper
properties. These properties reside in the [MAGIC_ENV] section of the
Magic.ini file. You can use Environment properties to customize eDeveloper
according to the specific needs of the installation. All changes made to
properties in the Environment dialog are registered in the Magic.ini file. Some
of the properties take effect immediately, while others will be effective from
the next eDeveloper session.
Reference Guide 69

Note: eDeveloper Environment properties are not related to Operating System
Environment variables.

When activating eDeveloper, it is sometimes desirable to use environment
variables as parameter values on the command line. To achieve this,
eDeveloper must be activated from a batch file. For example, to pass the
Terminal environment property value to eDeveloper using the command line,
create a batch file using the following command:

mggenw /terminal=%terminal%.

Run this batch file instead of running the eDeveloper executable.
If eDeveloper is invoked with Command Line properties, the values that
appear in the Environment dialog will reflect the Command Line properties for
the respective components. Command Line entries take precedence over the
Magic.ini values. However, any modifications you make to the Environment
dialog during a toolkit session will also automatically update the Magic.ini file,
and will override any corresponding, previously entered Command Line values.

Figure 2-5 Environment Dialog
Reference Guide 70

Refer to the Command Line section for a complete description of Command
Line effects. A full description of the Environment properties dialog follows
below. The table at the end of this chapter lists all the Environment properties
with their corresponding Magic.ini and Command Line names.

The Environment dialog is organized by six tabs:

• System

• Multi-User

• Preferences

• International

• External

• Server

Note: The setting shown in parentheses is the default setting.

In addition to the properties you can set in the Environment dialog, you can
define NULL display strings and a default date value, but only in the
‘MAGIC_DEFAULTS’ section of the Magic.ini, as described on page page 124.

System

The environment settings below appear under the System tab of the
Environment dialog.

Owner Name: (Magic Software Enterprises Ltd)

A string of up to 30 characters, intended to contain the Owner Name of the
eDeveloper application. This value can be queried by the Owner function.

Change effective: Immediate

Magic.ini and Command Line name: Owner

System Logon

eDeveloper lets you select from the following System Logon options:
Reference Guide 71

• None - eDeveloper does not prompt the user for a logon name and
password.

• User Name - eDeveloper prompts the user for a user name and password.
eDeveloper checks the user name with the names entered in the Security
file (usr_std.eng), and applies the rights assigned to the user. Note that
the user name can be up to 20 characters.

• Active Directory - eDeveloper uses the logon name and password entered
when logging onto Windows to retrieve the user’s rights as defined in the
Active Directory. The main benefit to using the Active Directory is that the
supervisor no longer has to maintain the user names and rights in the
eDeveloper security file.

• LDAP - eDeveloper uses LDAP (Lightweight Directory Access Protocol) to
authenticate the user's identity by using an LDAP server. eDeveloper
automatically locates the groups, which the user is a member of, in the
LDAP server database. These same groups should be defined in the
Security file (usr_std.eng), so that eDeveloper can apply the rights of
these groups to the user. For more information, see LDAP Address and
LDAP Connection environment settings.

The user password in the eDeveloper user file does not have to correspond to
the operating system password. The password can be up to 30 characters.

It is best to keep a unique eDeveloper password for each user to prevent users
from trying to log on as different users.

Change effective: Next Session

Magic.ini and Command Line name: SystemLogin

Magic Date: (System Date)

eDeveloper provides access to two date settings. One of them is the operating
system date, referred to as System Date. The other is a user-provided date
and is stored by eDeveloper. This date is the Magic Date. The Magic Date may
be queried by the MDate function. This setting may also be changed in the
Logon dialog.
Reference Guide 72

Set and use the Magic Date value whenever you need to use a past or future
date for the execution of a program. In these cases the Magic Date will be
stored in the Magic.ini file.

Change effective: Immediate

Magic.ini and Command Line name: Date

User’s ID: (None)

The User’s ID setting holds the ID of the current eDeveloper operator. This ID,
in conjunction with the operator’s password, is used to verify the operator’s
access rights and privileges within the application. The User’s ID property can
be queried in the application by the USER function. The User ID value may be
changed in the Logon dialog.This setting does not have a Magic.ini and
Command Line name.

Input Password: (No)

Valid values: Yes, No

Yes means eDeveloper will prompt for a User ID and Password at logon time,
in the Logon dialog.

No means that User ID and Password prompts will not appear in the Logon
dialog at logon time.

Change effective: Next session

Magic.ini and Command Line name: InputPassword

Input Date: (No)

Valid values: Yes, No

Yes means eDeveloper will prompt for a date at logon time, in the Logon
dialog. This date is the Magic Date described above.

No means that the date prompt will not appear in the Logon dialog at logon
time.

Change effective: Next session
Reference Guide 73

Magic.ini and Command Line name: InputDate

Default Application: (0)

A number identifying an application in the Application list, to be started
automatically upon entry to eDeveloper. If a valid application number is found
while eDeveloper starts up, the Startup screen will be bypassed and the
application will be opened.

Change effective: Next session

Magic.ini and Command Line name: StartApplication

Application Startup Mode: (Toolkit)

Valid values: Toolkit, Runtime, Background

This setting defines the mode eDeveloper will use when opening an
application. The possible modes are:

Toolkit - Open the application ready for toolkit work. This setting has no effect
in the Runtime version of eDeveloper.

Runtime - Open the application in the Runtime environment in order to use it
as an end-user application.

Background - This mode allows the execution of a batch program without any
interaction with the user. In Background mode, eDeveloper will not open any
windows but will execute the program “silently”. For text-based applications
only, if an error occurs while the program is executing in Background mode,
the error message is written to the Operating System’s standard output
device. On termination of the program, eDeveloper returns to the operating
system.

Change effective: Next Session

Magic.ini and Command Line name: ApplicationStartup

Screen Mode Prompt

The Screen Mode Prompt setting defines the default for variable prompts in
screen mode forms. The setting value’s syntax is
Reference Guide 74

Suffix

where suffix is a string to be appended to the variable’s description when
eDeveloper creates a screen mode display. For example, the variable
Customer Number with Picture N,5 will get the following screen mode prompts
based on the settings shown. Space characters are shown as ^. If a blank is
required as

the first character of a setting value, it needs to be explicitly declared using a
backslash (\), as in the following example:

Change effective: Immediate

Magic.ini and Command Line name: ScreenModePrompt

Century Start: (1920)

The Century Start setting enables eDeveloper to interpret all dates that are
input using a two-character mask for year component in pictures of date fields,
such as MM/DD/YY.

The Century Start setting specifies the year that serves as the crossing
between centuries when interpreting date settings. Any two-digit value of a
year component less than the year represented by the Century Start setting
causes the date to be interpreted as a 21st century date. Any value of a year
component greater than or equal to the year represented by the Century using
a two-character mask for the year component in pictures of date setting
causes the date to be interpreted as a 20th century date. For example,

For Century Start = 1960,

01/20/70 is interpreted as 01/20/1970

01/20/50 is interpreted as 01/20/2050

 for Century Start = 1980

Screen Mode
Prompt

Form Display

: Customer Number:

\^: Customer Number^:
Reference Guide 75

01/20/70 is interpreted as 01/20/2070

01/20/50 is interpreted as 01/20/2050

01/20/90 is interpreted as 01/20/1990

Change effective: Immediate

Magic.ini and Command Line name: Century

Batch Event Interval: (1000)

The time interval during a batch task execution in which the eDeveloper
engine checks the event queue and handles pending events. This setting is
given as the number of milliseconds of the interval. When a Record Event
Interval has been set for a task, the eDeveloper engine will check for pending
events for each record interval and for each time interval as set by the Batch
Event Polling Interval setting.

Change effective: Immediate

Magic.ini and Command Line name: BatchPaintTime

Task Cache Size: (0)

The task cache is memory storage used to store tasks read from the database.
Using the task cache is recommended to speed up the process for commonly
used tasks.

You can specify the cache size (KB) in the Environment dialog. The value 0
renders the task cache inactive.

Change effective: Immediate

Magic.ini and Command Line name: TaskCacheSize

Allow Create in Modify Mode: (Yes)

Valid values: Yes, No

To allow the creation of new records when operating in Modify mode. Yes
allows the end-user to create new records. No blocks the end-user from
creating new records.
Reference Guide 76

Change effective: Immediate

Magic.ini and Command Line name: AllowCreateInModify

Allow Update in Query Mode: (No)

Valid values: Yes, No

To allow the update of existing records when operating in Query mode. This
refers to an update by the Update operation within the task, and not to an
update by the end-user at the keyboard. No blocks the updating of existing
records. Yes allows the updating of existing records while in Query mode.

Change effective: Immediate

Magic.ini and Command Line name: AllowUpdateInQuery

Query Mode Locate Warning: (Yes)

Valid values: Yes, No

In ISAM and SQL databases, when performing a query mode locate on non-
key properties in runtime, the message “Locate on non-index columns...”
appears. Note that this message appears for ISAM databases when the
number of records exceed 5,000.

Yes preserves backward compatibility. No means that the message never
appears.

Change effective: Immediate

Magic.ini and Command Line name: LocateModeQueryWarning

Allow Access to Application: (Yes)

Valid values: Yes, No

Controls access to the Application repository.

Change effective: Immediate

Magic.ini and Command Line name: AccessApplications
Reference Guide 77

Allow Access to Environment: (Yes)

Valid values: Yes, No

Controls access to the Environment dialog.

Change effective: Immediate

Magic.ini and Command Line name: AccessEnvironment

Allow Access to Colors: (Yes)

Valid values: Yes, No

Controls access to the Color repository.

Change effective: Immediate

Magic.ini and Command Line name: AccessColors

Allow Access to Fonts: (Yes)

Valid values: Yes, No

Controls access to the Font repository.

Change effective: Immediate

Magic.ini and Command Line name: AccessFonts

Allow Access to Keyboard Mapping: (Yes)

Valid values: Yes, No

Controls access to the Keyboard Mapping repository.

Change effective: Immediate

Magic.ini and Command Line name: AccessKeyboardMapping

Allow Access to Servers: (Yes)

Valid values: Yes, No

Controls access to the Server repository.
Reference Guide 78

Change effective: Immediate

Magic.ini and Command Line name: AccessServers

Allow Access to Services: (Yes)

Valid values: Yes, No

Controls access to the Services repository.

Change effective: Immediate

Magic.ini and Command Line name: AccessServices

Allow Access to Visual Connection: (Yes)

Controls access to the Visual Connection display.

Change effective: Immediate

Magic.ini and Command Line name: AccessVisualConnection

Allow Access to Communications: (Yes)

Valid values: Yes, No

Controls access to the Communication Driver repository.

Change effective: Immediate

Magic.ini and Command Line name: AccessCommunications

Allow Access to DBMS: (Yes)

Valid values: Yes, No

Controls access to the DBMS repository.

Change effective: Immediate

Magic.ini and Command Line name: AccessDBMS

Allow Access to Databases: (Yes)

Valid values: Yes, No
Reference Guide 79

Controls access to the Database repository.

Change effective: Immediate

Magic.ini and Command Line name: AccessDatabases

Allow Access to Logical Names: (Yes)

Valid values: Yes, No

Controls access to the Logical Name repository.

Change effective: Immediate

Magic.ini and Command Line name: AccessLogicalNames

Allow Access to Languages: (Yes)

Controls access to the Language repository.

Valid values: Yes, No

Magic.ini and Command Line name: AccessLanguages

Allow Access to Printers: (Yes)

Valid values: Yes, No

Controls access to the Printer repository.

Change effective: Immediate

Magic.ini and Command Line name: AccessPrinters

Allow Access to HTML Styles: (Yes)

Valid values: Yes, No

Controls access to the HTML Style repository.

Change effective: Immediate

Magic.ini and Command Line name: AccessHTMLStyles
Reference Guide 80

Allow Access to Print Attribute: (Yes)

Valid values: Yes, No

Controls access to the Print Attribute repository.

Change effective: Immediate

Magic.ini and Command Line name: AccessPrintAttributes

Allow Access to Logon: (Yes)

Valid values: Yes, No

Controls access to the Logon dialog.

Change effective: Immediate

Magic.ini and Command Line name: AccessLogon

Allow Access to Toolkit: (Yes)

Valid values: Yes, No

This setting controls the availability of the eDeveloper Toolkit. If Yes is
specified for this setting, access to the eDeveloper Toolkit for toolkit purposes
is allowed.

No will prevent access to the eDeveloper Toolkit.

eDeveloper will start an application in Runtime mode whenever this setting is
set to No, overriding the value of the Application Startup Mode setting.

Change effective: Immediate

Magic.ini and Command Line name: AccessToolkit

Allow Testing Environment: (No)

Valid Values: Yes, No

A Yes value tells eDeveloper to interface with the testing environment to
report all information on controls.

Change effective: Next Session
Reference Guide 81

Magic.ini and Command Line name: AllowTesting

Allow Access to Checker Messages: (Yes)

Valid Values: Yes, No

Controls access to the Checker Messages table.

Change effective: Immediate

Magic.ini and Command Line name: AccessCheckerMessages

Temporary Tables Path

eDeveloper uses temporary files to store intermediate values during its
operation and then automatically clears them. The size of the temporary files
may, in rare cases, be up to several hundred kilobytes, causing I/O operations
on a standard disk to be slower than you want. Use this setting to specify an
alternative path, such as a RAM drive, for better performance. If no value is
specified, temporary files are written to the current directory.

Note: In operating systems without memory constraints, eDeveloper keeps
the temporary information in memory instead of writing it to temporary files.

Change effective: Next session

Magic.ini and Command Line name: TempPath

Maximum File Handles: (0)

Setting Maximum File Handles to a value greater than 0, changes the number
of file handles allowed by the operating system.

Change effective: Next session

Magic.ini and Command Line name: FileHandles

License

This setting controls the behavior of the eDeveloper engine according to the
properties found on the license server or license file. If eDeveloper does not
find the appropriate feature name in the license file, it will issue an error
message and abort the session.
Reference Guide 82

The default is set by the installation program.

Change effective: Next session

Magic.ini and Command Line name: LicenseName

License file

This setting specifies the location of the license server, through a Host/Port
combination, and also provides an alternate license file that can be found on
an accessible file system. In the event that eDeveloper cannot locate the
primary License file, it will use the alternate License file specified. If
eDeveloper does not find a license file, it will issue an error message and abort
the session.

The default is set by the installation program.

Change effective: Next session

Magic.ini and Command Line name: LicenseFile

Load Monitor

When set to Yes, the Flow monitor will be loaded on opening an eDeveloper
application. This setting enables you to open the Flow monitor upon executing
an eDeveloper application from a background enterprise server.

Change effective: Next session

Magic.ini and Command Line name: LoadMonitor

Flow Monitor Output File

When the Flow monitor is loaded through a background server, the entire log
of the application activities may be outputted to a given file. Use this setting to
set the path and name of the Monitor Output file.

Change effective: Next session

Magic.ini and Command Line name: Monitor2File
Reference Guide 83

Remote Flow Monitor

When the Remote Flow Monitor is set to Yes, in runtime the engine can be
viewed by a remote flow monitor. The engine sends messages to the monitor.

Change effective: Next Session

Magic.ini and Command Line name: RemoteFlowMonitor

Remote Flow Monitor Port

This setting specifies the port number used by the engine to process incoming
connection requests from a remote flow monitor.

Change effective: Next Session

Magic.ini and Command Line name: RemoteFlowPortNumber

Multi-User

The environment settings below appear under the Multi-User tab of the
Environment dialog.

Terminal: (0)

This setting is relevant in a multi-user environment, where it is used to assign
a unique numeric identifier to each end-user terminal. This setting may be
queried from within a program, using the Term function. For more information
on the Term function, refer to Chapter 8, Expression Rules. The Terminal value
can be used by programs wherever there is a need to create some unique
resource for the user, such as a disk file. The Terminal number may then be
used for generating a resource name unique to the user.

The default value of zero for the Terminal setting instructs eDeveloper to
resolve unique resource allocation automatically.

Change effective: Immediate

Magic.ini and Command Line name: Terminal
Reference Guide 84

Multi-User Access: (Yes)

Valid values: Yes, No

The Multi-user access setting enables the SQL gateway to perform locks in the
underlying database (in addition to eDeveloper locks if requested). It is
advisable to set the Multi-user Access setting to Yes, especially when
eDeveloper locks are not used or when applications other than eDeveloper are
accessing the database.

The Multi-user access setting is also used to enable Team Development.

Yes means that eDeveloper will implement concurrency controls on all
database table access, allowing table-sharing while maintaining database
integrity.

No instructs eDeveloper to open all tables for exclusive use (overriding task
table open mode), assuming that this is the only session accessing the table,
hence database locks are not issued.

For more information on the multi-user environment, refer to Chapter 24,
Workgroup Development.

Change effective: Immediate

Magic.ini and Command Line name: MultiUser

ISAM Transactions: (No)

Valid values: Yes, No

eDeveloper always uses the services of the underlying database for
transaction processing. When ISAM files are utilized, however, transaction use
is optional. Whenever a transaction is defined in the program, eDeveloper
checks the database of each table participating in the program. If the table
originates from an ISAM database, then based on this setting, eDeveloper
decides whether or not to apply transaction processing. The recommended
value setting is Yes.

Change effective: Immediate

Magic.ini and Command Line name: ISAMTransaction
Reference Guide 85

Deadlock Prevention: (No)

Valid values: Yes, No

eDeveloper provides a built-in mechanism for deadlock prevention, which is
implemented for the ISAM-type databases that do not feature a deadlock
detection or prevention feature. Deadlock situations occur when two users are
each waiting for a resource held by the other. For example:

Station A holds table x in a transaction and tries to read table y held by station
B. Station B is doing the same in reverse order.

Yes in the Deadlock Prevention setting will prevent such deadlocks.

No in the Deadlock Prevention setting will not take any special action to
prevent deadlocks.

Using Deadlock Prevention is recommended for databases that do not have
built-in detection or prevention facilities. Refer to the relevant eDeveloper
Database Gateway documentation for specific information on the database
used by your system. Note that deadlock prevention can cause performance
degradation.

Change effective: Immediate

Magic.ini and Command Line name: DeadlockPrevent

Server Communication Interval: (0)

The interval, in seconds, during which eDeveloper will perform a
communication check with all of its eDeveloper servers for tables being
accessed by the Client/Server.

This check is required. The eDeveloper server will remove the process serving
the client after a predefined period of inactivity.

This setting should be coordinated with the timeout values of the eDeveloper
Server so that communication will occur before the server times out.

Station A Station B

Locks table x Locks table y

Tries to read table y Tries to read table x
Reference Guide 86

A value of 0 means that no communication checks will be carried out.

Magic.ini and Command Line name: ServerTimeout

Lock File: (mglock.dat)

This setting specifies the name of the file eDeveloper uses to implement the
lock mechanism. Do not use path names for the Lock File setting, because
they are supplied automatically. For more information about the lock file, refer
to Chapter 24, Workgroup Development.

Change effective: Next session

Magic.ini and Command Line name: LockFile

ISAM - Force Locking Within Transaction: (Yes)

Valid values: Yes, No

The flag is relevant for toolkit behavior only and for ISAM files.

When the flag is set to Yes the following behavior occurs:

In the import phase, if the lock issued in the task is not within a transaction,
the Transaction Begin property is changed to enforce the locking within an
open transaction.

The default setting of the transaction in a task with an ISAM file will be
changed as described in the table below:

Note: This table is relevant only for physical transactions. When the task
transaction mode is changed from deferred to physical, the Transactions Begin
property value changes according to the table.

Force Locking
Within
Transaction

Batch Task Online Task

Yes Task Prefix On record lock

No None Before record update
Reference Guide 87

When the ISAM - Force Locking Within Transactions property is set to Yes, the
table below describes how the Transaction Begin and Locking Strategy
property values coincide.

Change effective: Immediate

Magic.ini and Command Line name: LockWithinTran

Resource Lock File: (mgres.loc)

This Environment property specifies the path of the lock file to be used by the
resources locking utility lock file. eDeveloper cannot use any of the database
lock files because there is one for each database definition.

Change effective: Next session

Magic.ini and Command Line name: ResourceLockFilePath

Preferences

The environment settings below appear under the Prefences tab of the
Environment dialog.

Default Database

The name of the database to be used by eDeveloper as the system default.
This default is used for application, report, and database tables, and can be
overridden at these levels. This name must be selected from among the
databases defined in the Database repository for this installation. For more

Prefix Suffix Update None On Lock

Immediate X X

On Modify X X

After
Modify

X X

Before
Update

X X X X

None X X X X X
Reference Guide 88

information on the Database repository, refer to the Database Properties
dialog section in this chapter.

Change effective: Immediate

Magic.ini and Command Line name: DefaultDatabase

Database for Sort/Temporary

The name of the database to be used by eDeveloper for creating sort tables or
other temporary database tables needed as temporary storage, such as the
Direct SQL result table. For example, a fast ISAM database that uses memory
for storage may be used to provide improved performance for sorts, when the
original tables are stored in a traditional disk-based database. This name must
be selected from the databases defined in the Database repository for this
installation. To see the Database list, select Edit/Zoom (F5). DB2 and ODBC
cannot be a sort database.

Note that if a location for a sort table’s database has been specified in the
Location setting of the Database repository, it will always be used. The path
specified in the Database for Sort/Temporary setting will be used only if the
Location setting in the Database repository is blank.

Change effective: Immediate

Magic.ini and Command Line name: TempDatabase

Range/Locate Box Popup Seconds: (10)

The duration, in seconds, to elapse before the initial display and then the
subsequent update of the Range or Locate Popup window. Range or Locate
popup windows appear whenever a sequential search is performed on a
database table, and they display the number of records already searched.
Specify 0 for this setting if you want to prevent the window from appearing at
all.

Change effective: Immediate

Magic.ini and Command Line name: RangePopTime
Reference Guide 89

Sort /Temp Box Popup Seconds: (10)

The duration, in seconds, to elapse before the initial display and then the
subsequent update of the Sort/Temp Box popup window. The Sort/Temp Box
popup window appears whenever a Sort operation is performed on a database
table. The Sort/Temp Box popup window displays the number of records
already sorted. Specify 0 for this setting if you want to prevent the window
from appearing.

Change effective: Immediate

Magic.ini and Command Line name: TempPopTime

Keyboard Idle Seconds: (1)

The duration, in seconds, between idle signals when there is no keyboard
activity. During interactive sessions, eDeveloper awaits user input. If no such
input is available, an idle signal is raised to allow other processes to take
place. The Keyboard Idle Seconds value is the inactivity time before an idle
signal is raised.

This setting affects the intervals of the Idle function returned value.

Change effective: Immediate

Magic.ini and Command Line name: IdleTime

Pulldown Menu Close Timeout: (0)

The Pulldown Menu Close Timeout setting determines whether the pulldown
menus, when opened, will remain open until the user executes a user action, a
selection or subsequent close, or will automatically close after a predefined
timeout. The setting specifies the duration, in seconds, that pulldown menus
will remain displayed. A value of 0 means the pulldown menu will wait
indefinitely for the next user action.

If a non-zero value is set, then pulldown menus will close automatically after
the specified number of seconds, if there is no user activity.

Pulldown menus, when open, halt the execution of other processes in the
system, such as events. Give the Pulldown Menu Close Timeout setting a non-
zero value when you do not want this effect.
Reference Guide 90

Change effective: Immediate

Magic.ini and Command Line name: MenuCloseTimeout

Confirm When Auto-Exiting: (No)

Valid values: Yes, No

When you modify any of eDeveloper’s dialog settings or repository columns
and you Exit the dialog or the repository, eDeveloper will display a Save
Changes? dialog. In some situations, the Exit action is implied by some other
choice you make. For example, while editing an Operation repository in a task,
you may select Workspace/Tables (Shift+F2) to switch to the Table repository.
In this case, eDeveloper receives an internal Exit request from the Task
Operation repository. If you have already modified the Operation repository,
the Save Changes? dialog will be displayed before control is passed to the
Table repository. Such an internal Exit action is called an Automatic Exit.

No in this field means that eDeveloper will not display the Save Changes?
dialog when in an Auto Exit mode due to a user request. In such a case, the
changes are automatically accepted without interruption.

Yes in this field means that eDeveloper will display the Save Changes? dialog
whenever an automatic exit occurs, to request explicit user confirmation for
every modified dialog or repository along the path between the current
context, repository, or dialog being modified, and the requested context. For
example, suppose the current context is a Task Event repository that was
invoked as an object while the Operation repository was being edited, and
both the Task Event and Operation repositories have been modified. If at this
point you want to edit the Table repository, by selecting Workspace/Tables,
eDeveloper will first pop up the Save Changes dialog for the Event repository
and then the Save Changes dialog for the Operation repository. eDeveloper will
move to the Table repository only after you have responded to both of these
dialogs.

Change effective: Immediate

Magic.ini and Command Line name: ConfirmAutoExit
Reference Guide 91

Task Flow Modification: (Free)

Valid values: Free, Safe

This setting affects the behavior of eDeveloper during the editing of the Task
Operation repository.

Free means a user can modify any operation line freely. In this mode, if an
operation code is unintentionally overwritten, the setting values of the
operation are blanked. Free mode allows faster editing of the Operation
repository.

Safe mode of operation will not allow any modification of an operation code
after it has been accepted, although any of the operation’s properties can be
modified. When in Safe mode, the only way to change an operation itself is to
delete it and then to re-enter it.

Change effective: Immediate

Magic.ini and Command Line name: FlowModify

Display Copyright Messages: (Yes)

Valid values: Yes, No

The Display Copyright Messages setting controls the display of the eDeveloper
copyright messages, and can be used for customizing the deployed runtime
application.

Yes in this field will display all the eDeveloper copyright messages, as
published by Magic Software Enterprises.

No has the following effect, depending on whether eDeveloper is running in
toolkit mode or runtime mode:

• In the toolkit mode, all logos still appear.

• In the runtime mode, all notices of eDeveloper are removed. These
include: status line, menu bar, registration screen, loading
message.
Reference Guide 92

Note: The message in the Help/About dialog remains the eDeveloper message
unless the Deployment Custom Copyright, described next, is used to replace
it.

Change effective: Next Session

Magic.ini and Command Line name: CopyrightMessages

Deployment Custom Copyright: (none)

The Deployment Custom Copyright setting contains a text message to be
displayed to the user of the runtime mode of eDeveloper when running
applications. The text value of this setting will be displayed in the following
places:

• The eDeveloper registration dialog, which appears immediately
when eDeveloper loads, replacing the eDeveloper copyright
message.

• The Help/About dialog, replacing the eDeveloper copyright
message.

Note: the copyright message may span over several lines. Use the ‘\’ sign to
indicate a new line within the message text.

Change effective: Next session

Magic.ini and Command Line name: RTUserCopyright

Resident Magic.ini: (No)

Valid values: Yes, No

Yes means that the Magic.ini file contents will be resident in memory at all
times. The amount of memory needed to keep the Magic.ini file resident is
roughly equal to its operating system size. When resident, read access to
Magic.ini variables is faster. Updates to the Magic.ini file will be written directly
to disk, even if the file is resident, after the user exits from eDeveloper.

No means that every query or update of the Magic.ini file involves reading and
writing it to disk.

Change effective: Next session
Reference Guide 93

Magic.ini and Command Line name: ResidentINI

Display Toolbar: (Yes)

Valid values: Yes, No

This setting controls the appearance of the Toolbar in runtime. If Yes is
specified for this setting, the Toolbar will be visible.

No in this setting will prevent appearance of the Toolbar in runtime.

Change effective: Next session

Magic.ini and Command Line name: RtToolBarGUI

Load Resident Tables: (No)

Valid values: Yes, No

This setting is a global setting that enables or disables the loading of resident
tables. If this setting is defined as No, the loading of resident tables is
disabled. If the setting is defined as Yes, the loading of resident tables is
enabled, but it is still necessary to specify for each table if it is to be loaded as
a resident table.

Change effective: Next session

Magic.ini and Command Line name: LoadResidentTables

Display Full Messages: (Yes)

Valid values: Yes, No

The underlying DBMS may return errors, such as constraints violations, during
the application execution. eDeveloper keeps a buffer containing the last error
received from the DBMS.

Setting Display Full Messages to Yes causes eDeveloper to display the error
message in Runtime, and to clear the buffer.

If you do not want the end-user to see the error messages, change Display
Full Messages to No. You can then use DbERR or ErrDbmsMessage functions to
Reference Guide 94

put the error message into a variable as a string, and to manipulate the error
message in the program.

Change effective: Immediate

Magic.ini and Command Line name: DisplayFullMsgs

Center Screen in Online: (No)

Valid values: Yes, No

The Center Screen in Online setting enhances performance in online tasks with
a table control that accesses database tables.

• This setting affects tasks where the Main table is browsed using a two-way
index or no index.

• Only online tasks that have a Table control on the form are influenced by
this setting.

When performing the operations described below, eDeveloper in earlier
versions would redraw the screen by positioning the current record in the
center of the screen, reading records before and after this record to fill the rest
of the screen. This resulted in the opening of two cursors; one to read forward
and one to read backward from the current record position. The Center Screen
in Online setting will instruct eDeveloper to position the current record in these
situations at the top of the screen, eliminating the need to open a cursor
backward from the now current record position, as these records will no longer
be displayed in the refreshed screen.

This setting will affect the behavior in the following situations:

• Changing the task mode from Modify, Query, Locate, Index, or Sort
to Modify or Query.

i Setting Display Full Messages to Yes causes the DbERR
function to return an empty string, because the error
messages buffer is cleared when messages are
displayed. The recommended setting value depends on
the application.
Reference Guide 95

• After a Locate Next operation.

• After a successful Query mode Locate.

• Behavior Exceptions:

• Changing from Range mode with or without a new range parks on
the first record of the range.

• Changing from Sort mode with a new sort parks on the first record
of the range.

• Changing from Create mode parks on the first record of the range.

The changed behavior is driven by the eDeveloper engine itself, and should be
the same for different gateways.

Change effective: Immediate

Magic.ini and Command Line name: CenterScreenInOnline

Reposition After Modify: (No)

Valid values: Yes, No

Only online tasks that have a table control on the form are influenced by this
setting.

When you enter Yes:

When changing the value of a setting that is one of the segments of the main
index of the task, or when inserting a single new record in Modify mode only,
the following actions occur on exiting the record:

• eDeveloper writes the record back to the database.

• eDeveloper rereads the records of the current screen from top to bottom.
This causes the changed record to be redisplayed in its new position, or to
disappear from the screen if it was outside the screen.

• eDeveloper parks on a new record according to the action, such as Down
Arrow, PgDn, etc., that was used to exit the record.
Reference Guide 96

When you enter No:

The second operation, rereading the screen, does not occur. This causes the
record to remain in its old position, even though it is now out of sequence. The
record will maintain its position until scrolled outside the screen.

The Refresh Task Window setting overrides the value of this setting. If the
setting is set to Yes, the screen will be reread from the database every time a
record is updated, whether or not the main index values change.

Note: This setting can cause the same physical record to appear twice on the
same screen due to lack of refresh.

Change effective: Immediate

Magic.ini and Command Line name: RepositionAfterModify

Indent Character: (0)

This setting defines the indent spacing for the indentation in HTML pages and
RTF controls.

Change effective: Immediate

Magic.ini and Command Line name: IndentCharacters

Default Color

This setting determines the colors of new entries you create in the Color
repository and the colors that will be used during deployment when a color
defined in an application is not found.

When you create a new entry in the Color repository, eDeveloper assigns the
values you have specified in the Default Color setting. If no Default Color has
been specified, eDeveloper assigns the following colors:

• Foreground color: System color - Window Text

• Background color: System color - Window Background

When deploying an application, if a color defined in the application does not
exist, eDeveloper uses the colors specified in the Default Color setting. If no
Default Color has been specified, eDeveloper uses the above colors.
Reference Guide 97

Change effective: Immediate

Magic.ini and Command Line name: Default Color

Default Font: (0)

When you create a new entry in the Font repository, eDeveloper uses the value
you have specified in the Default Font setting. If no value has been specified,
eDeveloper assigns the MS Sans Serif 8 point font.

When deploying an application, if a font defined in the application does not
exist, eDeveloper uses the font specified in the Default Font setting. If no
value has been specified, eDeveloper uses the Windows default font.

Change effective: Immediate

Magic.ini and Command Line name: DefaultFont

Tooltip Timeout: (5)

The Tooltip Timeout setting determines the number of seconds that a tooltip is
displayed, either on expressions while you are developing an application or on
controls during deployment. The maximum value is 31 seconds. For values
over 31 seconds, the behavior of Windows is unpredictable.

Change effective: Immediate

Magic.ini and Command Line name: TooltipTimeout

Maximum Number of Bookmarks: (10)

This setting defines the number of kept bookmarks. All bookmarks for each
application are stored in the Windows registry according to the application
name. The bookmarks are available when the toolkit is closed and then
reopened.

Change effective: Next session

Magic.ini and Command Line name: Bookmarksnumber
Reference Guide 98

Maximum Number of X-refs: (5)

This setting defines the maximum number of kept cross references. All cross
references for each application are stored in the Windows registry according to
the application name. The cross references are available when the toolkit is
closed and then reopened.

Change effective: Next session

Magic.ini and Command Line Name: MaxCrfResults

Retry Operation Time Interval: (600 seconds)

This setting specifies the time, in seconds, in which eDeveloper will retry a
defined operation.

The default retry time is 600 seconds (10 minutes).

The value 0 in this setting represents None, that is no retry.

Change effective: Immediate

Magic.ini and Command Line name: RetryOperationTime

IO Device Open Timing

Valid values: Immediate, On Demand

The timing of opening an IO device can be controlled in two ways: immediately
as the task that defines it is opened, or on Demand, when the first output or
input operation to the IO device occurs or when an IO-device-related function,
such as EOF, EOP, Line, or Page is used. The default option is Immediate.

Immediate – When set to Immediate, any IO device will be opened when the
task that defines the IO is opened.

On Demand – When set to On Demand, an IO device will be opened at the
first execution of an output or an input operation that is set for the IO or for
the evaluation of an IO-device-related function, such as EOF, EOP, Line, or
Page.
Reference Guide 99

Floating Palettes Always On Top: (Yes)

When set to No, eDeveloper’s floating palettes (the Navigator, Property sheets,
and the Comments box) will close when you press ESC or ENTER. The cursor
returns to the eDeveloper workspace.

When several palettes are located on the same floating window. ESC or ENTER
from one of the palettes closes the entire palette window.

When set to Yes, eDeveloper’s floating palettes remain open even when you
press ESC or ENTER. The cursor returns to the eDeveloper workspace.

This option does not affect docked palettes.

Change effective: Immediate

MAGIC.INI and Command Line name: PalettesAlwaysOnTop

Dockable Palettes: (Yes)

When set to Yes, you can drag-and-drop a floating palette to a border of the
eDeveloper workspace to dock the palette.

When set to No, a floating palette cannot be docked to the border of the
eDeveloper workspace.

This option does not affect already docked palettes. Once a docked palette
becomes undocked, however, and Dockable Palettes is set to No, the palette
cannot be docked again until Dockable Palettes is set to Yes.

Change effective: Immediate

MAGIC.INI and Command Line name: DockablePalettes

Single Expand Palettes: (No)

When set to No, you can have all sections of the property sheet expanded at
the same time.

When set to Yes, only one section in the property sheet can be expanded.
Expanding a collapsed section will collapse the currently expanded section.

Change effective: Immediate
Reference Guide 100

MAGIC.INI and Command Line name: SingleExpandPalettes

Property Sheet Automatic Handling: (Close)

This setting determines whether eDeveloper automatically opens or closes the
property sheet that relates to a specific eDeveloper repository.

The options are:

• None - eDeveloper does not automatically open or close the property
sheet.

• Open - eDeveloper automatically opens the property sheet when a relevant
eDeveloper repository is accessed. However, eDeveloper does not
automatically close the property sheet.

• Close - eDeveloper closes the property sheet when eDeveloper returns to a
location where the property sheet is no longer relevant. The property
sheet remains closed even when eDeveloper returns to a repository that is
relevant to the property sheet.

• Full - eDeveloper opens the property sheet whenever it becomes relevant
and closes the property sheet when it is no longer relevant.

When the property sheet is opened automatically, the focus remains on the
workspace and does not return to the property sheet.

Change Effective: Immediate

MAGIC.INI and Command Line Name: AutomaticPropertySheet

Image Cache Size: (0)

This setting lets you control the maximum memory size for caching the
displayed images of an application.

The Image Cache Size is displayed in kilobytes. Zero kilobytes means that
there is no limit to the Image Cache Size.

When the image cache is about to exceed the defined limit, the least used
images are removed from the cache to make room for new images.

Change Effective: Next session
Reference Guide 101

MAGIC.INI and Command Line name: ImageCacheSize

Check Image Change Time: (No)

This setting determines the method of how an image is cached.

When Check Image Change Time is set to Yes, the image cache method is able
to detect image file modifications by creating a time stamp for each image file.
Before a cached image is displayed, eDeveloper checks the time stamp. If the
time stamp differs from the currently cached image, the image is reloaded.

If Check Image Change Time is set to No, the time to display the cached image
is much quicker because eDeveloper does not perform any additional disk I/O
operations.

Change effective: Next session

MAGIC.INI and Command Line Name: ImageCacheCheckTime

Toolkit Checker Minimal Level

Choose the minimal level by which the syntax checker will check your
application.

• Error - The checker will display only the error messages.

• Warning - The checker will display only the error and warning messages.

• Recommendation - The checker will display the error and warning
messages, and recommendations.

Change Effective: Immediate

Magic INI and Command Line Name: CheckerLevel

Group Checker Messages By

This setting determines how checker messages are grouped in the Checker
Results window. The checker message types are:

• Object - Grouped by eDeveloper object. For example: Models, Tables, and
Programs. Checker messages are sorted by the order in which they are
found by the Syntax Checker.
Reference Guide 102

• Type - Grouped by checker message type: Error, Warning, or
Recommendation. Checker messages are sorted by the order in which they
are found by the Syntax Checker.

• Object and Type - Grouped by eDeveloper object and then by checker
message type.

Change Effective: Immediate

Magic INI and Command Line Name: CheckerGroups

Jump Automatically to First Item in Checker List

This setting determines if eDeveloper automatically highlights the first checker
result message entry and parks in the field where the error occurred.

Change Effective: Immediate

Magic.ini and Command Line Name: CheckerJumpAuto

International

The environment settings below appear under the Prefences tab of the
Environment dialog.

Date Mode

Valid values: American, European, Scandinavian, Buddhist

This setting specifies the default mode of the date used throughout the
system, according to the following scheme, using the example February 1,
1993:

• American date format is MM/DD/YY, displays as 02/01/93

• European date format is DD/MM/YY, displays as 01/02/93

• Scandinavian date format is YY/MM/DD, displays as 93/02/01

• Buddhist date format is DD/MM/YY, displays as 01/02/36, because the year
is increased by 543.

Change effective: Immediate
Reference Guide 103

Magic.ini and Command Line name: DateMode

Thousands Separator (,)

This setting defines the character eDeveloper will use at runtime as the
delimiter between the thousands in a displayed numeric variable. The default
character is a comma. When in toolkit mode, eDeveloper expects a comma as
the thousands separator in picture definitions, regardless of the definition of
this setting.

Change effect: Immediate

Magic.ini and Command Line name: ThousandSeparator

Decimal Separator (.)

This setting defines the character that eDeveloper will use at runtime as the
delimiter between the whole and decimal parts in a displayed numeric value
containing decimals. The default character is a period. When in toolkit mode,
eDeveloper expects a period as the decimal separator in picture definitions,
regardless of the definition of this setting.

Change effective: Immediate

Magic.ini and Command Line name: DecimalSeparator

Date Separator (/)

This setting defines the character that eDeveloper will use at runtime as the
divider between month, day, and year, of displayed date settings. The position
of the date components is defined by the Date Mode setting, explained above.
When in toolkit mode, eDeveloper expects a slash (/) as the date separator in
picture definitions, regardless of the setting’s value.

Change effective: Immediate

Magic.ini and Command Line name: DateSeparator

Time Separator (:)

This setting defines the character that eDeveloper will use at runtime as the
delimiter between the hours, minutes, and seconds parts of a time value in
Reference Guide 104

displayed values. The default character is a colon. When in toolkit mode,
eDeveloper expects a colon as the time separator in picture definitions
regardless of the setting’s definition.

Change Effective: Immediate

Magic.ini and Command Line Name: TimeSeparator

External

External files for an application can now be saved and retrieved from a server
by entering the name of the external file in the required External Files
environment settings.

Logo File: (None)

This file is optional and specifies the location and filename where the system
logo data, displayed in the opening screen, is saved. The file should be a
bitmap file.

Change effective: Next session

Magic.ini and Command Line name: LogoFile

Const File: (mgconstw.eng)

The Const file is a required file.

The Const File setting specifies the location and filename where all
eDeveloper’s constant data is stored. The Const file includes all the user
interface and language information for eDeveloper.

Change effective: Next session

Magic.ini and Command Line name: ConstFile

Help File: (mghelpw.hlp)

This file is optional. The setting specifies the location and filename where all
the eDeveloper system (not Application) help text is stored.

Change effective: Next session
Reference Guide 105

Magic.ini and Command Line name: HelpFile

Color Definition File: (clr_std.eng)

The Color Definition file is required.

This setting specifies the location and filename of the file where eDeveloper’s
color definitions are saved. Zooming from this entry will open a Color
Definition repository, showing the definitions stored in the named Color
Definition file.

Refer to the description of the Color Definition file for more information.

Change effective: Next session

Magic.ini and Command Line name: ColorDefinitionFile

Font Definition File: (fnt_std.eng)

This setting specifies the location and filename of the file where eDeveloper’s
font definitions are saved. Zooming from this entry will open a Font Definition
repository, showing the definitions stored in the named Font Definition file.

For more information, refer to the description of the Font Definition repository.

Change effective: Immediate

Magic.ini and Command Line name: FontDefinitionFile

Keyboard Mapping File: (act_std.eng)

The Keyboard Mapping file is required.

The Keyboard Mapping File setting provides the location and filename of the
file where eDeveloper’s keyboard assignment definitions are saved.

Select Edit/Zoom To view the Keyboard Mapping repository.

Refer to the description of the Keyboard Mapping file for more information.

Change effective: Immediate

Magic.ini and Command Line name: KeyboardMappingFile
Reference Guide 106

Documentation Template File: (doc_std.eng)

The Documentation Template file is required.

This setting specifies the location and filename of the file where eDeveloper
can find the templates for the application documentation utility. eDeveloper
provides extensive self-documentation of all its repositories. The format and
content of the output is controlled via the template file. Two templates are
supplied with eDeveloper. The standard template (doc_std.eng) provides an
abbreviated output with essential information about the documented object.
The extended template (doc_ext.eng) provides full information about the
documented object.

Change effective: Immediate

Magic.ini and Command Line name: DocumentTemplateFile

HTML styles file: (html_stl.eng)

This setting specifies the location and filename of the file containing the HTML
style templates for the HTML documentation utility.

Change effective: Immediate

Magic.ini and Command Line name: HTMLStyles

Print Attributes File: (prn_std.eng)

The Print Attributes file is optional. This setting provides the location and
filename of the file containing the definitions of the logical print attributes used
within eDeveloper applications. A printer attribute is a logical object that may
be used on eDeveloper output forms and where used, translates to a sequence
of printer control codes during output in runtime. The Print Attributes file
defines the connection between the logical attributes and the actual escape
codes defined in external printer command files. For more information, refer to
the sections on Print Attributes and Printers in this chapter.

Select Edit/Zoom to reach the Print Attribute repository, where you can define
logical print attributes.

Change effective: Immediate
Reference Guide 107

Magic.ini and Command Line name: PrintAttr

Security File: (usr_std.eng)

The Security file is required. If not specified, or if it does not exist, eDeveloper
will create a default empty file.

This setting specifies the location and file name of the file holding all of the
secure system information, including:

• User IDs, passwords, and their rights

• User Groups and their rights

• Secret Names

The security file is encrypted to prevent unauthorized entry into the system. If
the property is set to ANSI, then the file is considered ANSI and no conversion
is done. If the property is set to OEM, then the file is considered as OEM, and
the data is converted from screen to screen.

Note: The security file must reside in a shared directory when in a multi-user
environment because it contains global information for all users.

Change effective: Next session

Magic.ini and Command Line name: UsersFile

Startup Security File

This setting specifies the name and operating system location of an
eDeveloper security file to be loaded upon the initialization of eDeveloper.
After initialization is complete, the file is replaced in memory by the file
specified in the Security File setting. The reason for the seeming duplication is
in Client/Server considerations. It may be necessary for the Security file in a
Client/Server environment to reside on the server where it can be common to
all the users.

The Security file (as opposed to the Startup Security file) contains the Secret
Name repository. The Secret Name repository may include the definitions of
the User ID and Password logical names specified in the Server Properties. The
User ID and Password are required to logon to the server. The Security file,
Reference Guide 108

however, is not accessible before logon. The Startup Security file is designed
therefore to provide the information required for the logon.

If eDeveloper is not running in Client/Server mode, or if the User ID and
Password are not specified in the Server Properties dialog, leave this field
empty.

Change effective: Next session

Magic.ini and Command Line name: StartupUsersFile

The OEM2ANSI Translation File

This file maintains the location and file name of the external file that holds the
translation table for eDeveloper internal character symbols and the character
table of the platform. The OEM2ANSI Translation file lets the user translate
from OEM to ANSI and from ANSI to OEM, or for whatever character set
translation the user requires. If this file is not set, then the default function for
conversion is from OEM to ANSI. The default filename is OEM2ANSI.

The OEM2ANSI Translation setting appears in the Column properties sheet and
in the I/O repository. When the user clicks Yes, any external update to the
object is translated from OEM to ANSI and any export of this object is
translated from ANSI to OEM. When the user clicks No, no translation occurs.

Change effective: Next session

Magic.ini and Command Line name: OEM2ANSIFile

ANSI to Unicode

Use this setting to define the name of the encoding table to be used by the
HTML page of a browser task. When this setting has a defined value, each
HTML page created by a browser task instructs the page to use the defined
character set by embedding a META tag:

<META HTTP-EQUIV="Content-Type" content="text/html;
charset=XXX">
where XXX is the string taken from the Environment setting.
Reference Guide 109

This information is also used to instruct the browser client module to use the
defined encoding table for translating the entered data that has been passed
to the eDeveloper enterprise server engine.

If your HTML page already has a META tag, this tag remains unchanged.
However, the browser client module will still be instructed to use the encoding
table defined by the Environment setting.

Note: The encoding table defined in this setting is case sensitive.

Change effective: Immediate

Magic.ini and Command Line name: Ansi2Unicode

Alternate Collating Seq File

This setting specifies the location and filename of the file that holds an
Alternate Collating Sequence file. A Collating Sequence file holds information
required for sorting values, such as an alphabetical sequence. An Alternate
Collating Sequence file may be used to alter the default table used by an
underlying database manager. Therefore its use is dependent on the
underlying database support of such a switch. Refer to your database gateway
documentation for more information.

You can also define separate Alternate Collating Sequence (ACS) files for
specific database management systems (DBMSs) or individual databases, if
they support the feature. A database-specific ACS file can be declared in the
Alternate Collating Sequence setting of the DBMS and Database dialogs of the
DBMS repository and the Database repository. Any database for which no
database-specific Alternate Collating Sequence file has been defined will use
the ACS file defined in the Magic.ini file.

Note that if an ACS file is defined for a database but the ACS file is not
present, the database will use the ACS file defined in the Magic.ini file.
eDeveloper does not support two different ACS files for one DBMS.

Change effective: Next session

Magic.ini and Command Line name: CollatingFile
Reference Guide 110

Starting Language

In a Multi-lingual Support (MLS) environment, this setting should specify the
language to be used at startup. An MLS environment does not support multi-
line edits and rich text controls.

Valid values: Empty, or a language selected from the Language repository.

Change effective: Immediate

Magic.ini and Command Line name: StartingLanguage

Checker Messages Table File

This setting lets you specify the file path for the Chk_std.dat file.
The Chk_std.dat file provides information displayed in the
Check Messages table.

Change effective: Immediate

Magic.ini and Command Line name: CheckerMessageTable

European Currency Conversion File

This setting contains the location of the European Currency Conversion file, if
there is one. Zoom from the European Currency Conversion File setting to the
European Currency Conversion Table. This table is an external ASCII file that
holds currency values based on the euro currency.

Valid values: Empty or a valid path name

Change effective: Immediate

Magic.ini and Command Line Name: EuropeanCurrencyConversionFile

Drop Data Supported User Formats

To handle drop data of user-defined formats, you must first set the user-
defined format names. This setting instructs the eDeveloper engine to retrieve
drag-and-drop operation data in user-defined formats, separated by a comma.
For example, if your user-defined formats are ABC and EFG, you should enter
ABC,EFG.
Reference Guide 111

Change effective: Immediate

Magic.ini and Command Line Name: DropUserFormats

Command Processor: (command.com)

This setting, using a full OS directory path, specifies the program used to
execute user exits - the command processor. The default setting is given
according to the operating system on which eDeveloper was installed.

Change effective: Immediate

Magic.ini and Command Line name: CommandProcessor

HTTP Proxy (address:port)

This setting specifies the location of your HTTP proxy. The HTTPPost function
can connect through a proxy server.

Change Effective: Immediate

MAGIC.INI and Command Line Name: HTTPProxyAddress

HTTP Timeout

This setting determines the time, measured in tenths of a second, which the
HTTPGet and HTTPPost functions will wait for a response. If the value is 0, the
HTTP Timeout will be two minutes. The timeout cannot exceed two minutes.

Change Effective: Immediate

Magic.ini and Command Line Name: HTTPTimeout

Print Data HTML Template

This setting lets you specify an HTML template that is used when generating
an HTML file from the Print Data Wizard.

Change Effective: Immediate

Magic.ini and Command Line Name: PrintDataHtmlTemplate
Reference Guide 112

Print Data XML Template

This setting lets you specify an XML template that is used when generating an
XML file from the Print Data Wizard. The XML template should be an
XSL file.

Change Effective: Immediate

Magic.ini and Command Line Name: PrintDataXmlTemplate

WSDL Files Path
(Program Files/Common Files/Magic/WSDL file.wsdl)

This setting is used to enter a location where the WSDL file will be saved. The
WSDL file describes the Web Services provided. The WSDL file is only created
when an eDeveloper application provides Web services. eDeveloper will use
Program/Files/Common Files/Magic as a default value if no other location is
entered.

A WSDL file is created through the Component Builder, as described in Chapter
14, Components.

Change effective: Immediate

Magic.ini and Command Line name: WSDLFilesPath

Mail Connection Timeout (default: 0)

This setting defines the timeout duration in seconds for connecting to a mail
server from the MailConnect function. If eDeveloper cannot connect to the mail
server within the defined timeout duration, the MailConnect function will fail.

Change effective: Immediate

Magic.ini and Command Line name: MailConnectionTimeout

Mail Operation Timeout (default: 0)

This setting defines the timeout duration in seconds for any mail operation
using the various mail functions described in Chapter 8, Expression Rules,
Expressions. If eDeveloper does not complete the mail function within the
defined timeout duration, the function will fail.
Reference Guide 113

Change effective: Immediate

Magic.ini and Command Line name: MailOperationTimeout

SNMP Database Connections Utilization Threshold
(default: 0)

This setting lets you enter a percentage number that determines the number
of exceeded open connections permitted for a DBMS, as specified in the DBMS
Maximum Connection property, before eDeveloper sends a trap message.

Change Effective: Immediate

Magic.ini and Command Line Name:
DatabaseConnectionsUtilizationThreshold

LDAP Address:Port

This setting lets you enter the LDAP directory address and port number.
For example, 127.0.0.1:389

Change Effective: Immediate

Magic.ini and Command Line Name: LdapAddress

LDAP Connection String

When a user binds to an LDAP server (System Logon = LDAP), a Distinguished
Name (DN) and password is sent. The LDAP Connecting String is used to
specify the user's DN, which is a unique entry identifier in the LDAP server
database, for example: cn=John, ou=users, dc=mycompany, dc=com. You
can use the $USER$ string as an alias for the user name entered in the Logon
screen or the user name value returned by the Logon function, for example:
cn=$USER$, ou=users, dc=mycompany, dc=com. The $USER$ string is
automatically replaced by the user name. The password entered in the Logon
screen or the password value returned by the Logon function will beused for
authentication as well.

Note: You can choose to define two secret names, LDAP_USER and
LDAP_PASS, for the user name and password. The $USER$ alias in the LDAP
Connection String will be substituted with the value of the LDAP_USER secret
Reference Guide 114

name and the LDAP_PASS secret name will be used for the password when
authenticating the user's identification on the LDAP server without using the
Logon screen or the Logon function.

Change Effective: Immediate

Magic.ini and Command Line Name: LdapConnectionString

LDAP Domain Contexts

Use this setting to specify the search base that would be used to locate the
groups where the LDAP user is a member of. for example:
ou=groups,dc=mydomain. For accessing the Microsoft Active Directory, use one
of these naming contexts, for example, dc=mycompany,dc=com.

Change Effective: Immediate

Magic.ini and Command Line Name: LdapDomainContext

LDAP Timeout

This setting is used to specify the number of seconds eDeveloper waits when
trying to access the LDAP server. If eDeveloper does not receive an answer
from the LDAP server before the timeout interval expires, an error message is
displayed. The default value is 120 seconds.

Change Effective: Immediate

Magic.ini and Command Line Name: LdapTimeout

SSL CA Certificate Files

Use this environment setting to determine the intermediate Certificate
Authority (CA), such as Certificates Service of Microsoft (CertSrv), used for all
HTTP interactions. Certificate authorities are separated by the semi-colon
symbol (;).

The SSL CA Certificate doesn’t exist: [Name of the SSL CA Certificate]
error message appears, during the first access to the client certificate, when
the delimited SSL CA Certificate doesn’t exist.

Change Effective: Next Session
Reference Guide 115

Magic.ini and Command Line Name: SSLCACertificateFile

SSL Client Certificate Files

Lets you browse for a PKCS12 certificate (*.pfx). The selected client certificate
will also be assigned to every Call Web Service and HTTP Call.

The following client certificate errors can appear on the status bar for an open
application:

• Certificate does not exist.

• Certificate is not in PKCS12 format.

• Password is incorrect.

The ClientCertificateDiscard function discards the certificate during runtime.
When switching from runtime to toolkit, the application will again register the
certificate, making it part of every Web Service and HTTPS call in runtime.

Change Effective: Next Session

Magic.ini and Command Line Name: SSLClientCertificateFile

SSL Client Certificate Password

You should enter a password for a private key in a client certificate.

Change Effective: Next Session

Magic.ini and Command Line Name: SSLClientCertificatePassword

Server

The environment settings below appear under the Server tab of the
Environment dialog.

Activate Enterprise Server: (No)

Valid Values: Yes, No
Reference Guide 116

This setting controls whether eDeveloper will try to connect to a request
broker as an enterprise server. If set to Yes, eDeveloper will register itself with
the broker and accept requests for program execution.

Change effective: Next session

Magic.ini and Command Line name: ActivateRequestsServer

Messaging Server (Default Broker)

This setting specifies the location of the Request Broker to connect to when
eDeveloper is used as an enterprise server. When specifying only a port
number, the broker is assumed to reside on the same host as the eDeveloper
engine.

An enhanced Client/Server interface called the Generic Messaging Layer
provides greater flexibility for the calling application to connect to a variety of
heterogeneous networks. The Generic Messaging Layer allows the Request
Client to issue the same call through either the eDeveloper Broker, The
MQSeries Manager, or other defined messaging servers.

Change effective: Next session

Magic.ini and Command Line name: MessagingServer

Enterprise Server Can Change Application: (Yes)

Valid Values: Yes, No

If set to Yes, the enterprise server will be able to service requests for program
execution of multiple applications. When a request for an application that is
not open is received, the current open application will be closed, and the
requested application will open.

If set to No, a request for an application that is not the active application will
fail.

Change effective: Next session

Magic.ini and Command Line name: RequestsServerCanReplaceCtl
Reference Guide 117

HTTP Requester

This field contains the URL and the name of the eDeveloper Internet requester
module. This URL hyperlinks to an eDeveloper Program to specify the name
and location of the eDeveloper Internet Requester module.

The default is set by the installation program.

Change Effective: Immediate

Magic.ini and Command Line name: InternetDispatcherPath

Web Document Alias

This setting is used to define the alias to use for creating temporary files on
the Internet server. This alias will be added to all of the URL’s temporary files
so that the Web server can access them in its own address space.

The default is set by the installation program.

Change Effective: Immediate

Magic.ini and Command Line name: WebDocumentAlias

Web Document Path

This path is used to select images, Java, and ActiveXs, in a location that
relates to the runtime Web server root. It is also used for creating an HTML file
for the View in Browser option in the HTML Form Command palette.

The default is set by the installation program.

Change effective: Immediate

Magic.ini and Command Line name: WebDocumentPath

Requester Timeout: (0)

This setting specifies the time within which the broker returns a signal to the
requester. When the time between signals exceeds the maximum time set, an
error message appears. The default value of 0 implies an infinite timeout.

Change effective: Next session
Reference Guide 118

Magic.ini and Command Line name: RequesterTimeout

Maximum Number of Concurrent Requests

This setting specifies the maximum number of threads that the enterprise
server will be allowed to create. The number of threads is limited only by the
licence and machine capacity.

Change effective: Immediate

Magic.ini and Command Line name: MaxConcurrentRequests

Load Balancing Priority

This setting defines the priority of the eDeveloper engine as an enterprise
server. You can select a numeric value from 1 to 5, where 5 is the highest
priority and 1 is the lowest priority. A request is directed to idle engines
assigned with a higher priority.

Change effective: Next Session

MAGIC.INI and Command Line name: LoadBalancingPriority

Web Authoring Tool

The Web Authoring Tool setting specifies the path of an external Web
Authoring Tool that is used to edit HTML Merge forms.

Change effective: Immediate

Magic.ini and Command Line name: AuthoringToolPath

Context Inactivity Timeout: (600)

This setting determines the time, measured in tenths of a second, that a user
who is executing a browser-based program will stay connected to the
eDeveloper application while actually being inactive. A value of 0 means that
there is no limitation on being connected while inactive.

Change effective: Immediate

Magic.ini and Command Line name: ContextInactivityTimeout
Reference Guide 119

Post Context Unload Timeout: (1200)

This setting determines the timeout of a context when the task page is
switched to another page using the browser (such as Back, Forward, or a new
URL). If the timeout has not expired, returning to the previous page reloads
the last positioned context. If the timeout value has expired, the context for
the previous task page is terminated.

The timeout value increments are defined in tenths of seconds. The default
value is 1200 tenths of seconds. If you set the value as 0, no timeout duration
is set and the context is cleared immediately.

Change effective: Immediate

Magic.ini and Command Line name: ContextUnloadTimeout

Persistent Browser Client Module

Activating a browser client application while keeping the browser client module
persistent on the end user machine improves the time required to load the
browser client module.

Set this property to Yes to let the end user keep the browser client module
persistent on the local hard disk.

Set this property to No for a new browser client to be downloaded for every
initialization of a browser application.

Change effective: Immediate

MAGIC.INI and Command Line name: UseSignedBrowserClient

Browser Client Sub-Version

Use this property to modify the expected names of the browser client module
file (e.g. MGBC920_01.cab & MGBC920_01.js)

The string defined in this setting will be added as the suffix of the expected
browser client module file names.

For example: if set to 'xyz' then the expected file names in version 9.20 SP1
will be MGBC920_01xyz.cab & MGBC920_01xyz.js.
Reference Guide 120

This option should be used when you wish to use different names for your
browser client module files.

Change effective: Immediate

MAGIC.INI and Command Line name: BrowserClientSubVersion

Browser Client Technology

You can configure the enterprise server to execute browser client applications
using one of the following client-side technologies:

• Microsoft .NET

• Microsoft JVM

You can configure the server to support either one or both technologies by
choosing one of the available options:

• Java: Browser Client applications will be executed using Microsoft JVM only.

• .NET: Browser Client applications will be executed using the Microsoft .NET
framework only.

• Java and .NET: Browser Client applications will be executed using either the
Microsoft JVM or the Microsoft .NET framework. The application will first
attempt to execute the application using the Microsoft JVM.

• .NET and JAVA: Browser Client applications will be executed using either
the Microsoft JVM or the Microsoft .NET framework. The application will
first attempt to execute the application using the Microsoft .NET
framework.

If a client does not have the expected framework technology, the client will be
unable to run the application and the Missing browser client technology error
page will be displayed.

Change Effective: Next Session

Magic INI and Command Line Name: BrowserClientTechnology
Reference Guide 121

Missing Browser Client Technology Error URL

In this setting, you can define the error page URL to be opened when a client
does not have the framework technology specified by the Browser Client
Technology environment setting.

Change Effective: Immediate

Magic INI and Command Line Name: BrowserClientTechnologyErr

Browser Client Network Error Recovery Timeout

it is recommended to set a recovery timeout when running a browser client
application on a slow or disruptive network. By setting this timeout, the client
tries to recover unprocessed requests within a designated timeout. The
recovery mechanism is disabled when set to 0 seconds (default).

Change Effective: Next Context

Magic.ini and Command Line Name: BrowserClientRecovery

Browser Client Cached Path

The Browser Client Task Cache improves the performance of the browser client
application by caching XML’s logic segments of the page on the client-side,
minimizing the data transmission from the server to client.

This setting lets you specify the physical path in which the engine creates the
cached files.

Change effective: Immediate

MAGIC.INI and Command Line Name: CTLCacheFilesPath

Browser Client Cached Alias

The browser task’s result page requires a URL reference to the browser client
cached file. You can specify the browser client cached alias from this
environment setting.

Change effective: Immediate

MAGIC.INI and Command Line Name: CTLCacheFilesAlias

Reference Guide 122

Foreground Generator Context Management

From this environment setting, you can set the foreground engine to handle
requests As background engine or Single common context.

When you select Single common context, the engine handles all requests
within the same single context. This mode of operation resembles a
foreground runtime engine.

When you select As background engine the following engine behavior
occurs:

When switching to Runtime mode, the Main Program’s Task Prefix operations
are not executed.

The Menu system displays limited built-in options for closing the application
and switching back to Toolkit mode. The user-defined pulldown menu is not
displayed.

Main Program events are not activated at idle time.

For every explicit request:

• the Main Program’s Task Prefix operations are executed.

• a new context is created.

• When the request is completed or when exiting from the top-level browser
task, the Main Program Task Suffix operations are executed and the
context is cleared.

Opening a new context for every explicit request means that:

• All Main Program variables are reset.

• All memory tables are reset.

• All global values are reset.

• All environment settings are reset.

Change effective: Next session

MAGIC.INI and Command Line name: ForegroundContextManagement
Reference Guide 123

eDeveloper Defaults

You can define NULL display strings and a default date value for the entire
application in the ‘MAGIC_DEFAULTS’ section of the Magic.ini file. These
settings can only be defined by editing the Magic.ini text file. They are not
available in eDeveloper’s Environment dialog box.

These settings will be regarded as the system default values for:

• The default value of a date field definition.

• The NULL display string for all other fields’ attributes.

If these settings do not exist in the Magic.ini, eDeveloper uses its own pre-
defined defaults.

The following are the entries in the ‘MAGIC_DEFAULTS’ section:

[MAGIC_DEFAULTS]

DefaultDate = [date value]

NullAlphaDisplay = [string value]

NullNumericDisplay = [string value]

NullLogicalDisplay = [string value]

NullDateDisplay = [string value]

NullTimeDisplay = [string value]

NullMemoDisplay = [string value]

NullBLOBDisplay = [string value]

Note: The DefaultDate value format should correspond to the format of the
Magic Date setting of the Environment/System tab.
Reference Guide 124

Advanced Toolkit Settings
The Magic.ini options below let the developer create user-defined utility
applications that enhance the capabilities of eDeveloper’s development
environment.

JAVA Settings
The developer can load and activate Java classes without setting the operating
system’s environment variables. Java class settings can be designated for the
eDeveloper environment.

The MAGIC_JAVA Section

The [MAGIC_JAVA] section is displayed in the Magic.ini file. The following Java
settings can be entered:

• JAVA_HOME - This setting points to the Java Virtual Machine stored in the
client’s operating system.If JAVA_HOME is set to Yes, eDeveloper overrides
the JAVA_HOME’s operating system variables for the variables designated
in the eDeveloper environment.

• CLASSPATH - This setting determines the path for locating additional
classes stored for the Java Virtual Machine. If CLASSPATH = Yes, an
eDeveloper prefix is added to an operating system’s CLASSPATH setting.
Reference Guide 125

Color Settings
The Color repository defines the identifying foreground and background colors
for 14 entries that represent preset, user-defined, reserved color assignments,
and operation repository colors.

The Color Repository Settings

#

This column contains an automatically-generated sequential number used by
eDeveloper as a mapping identifier. You cannot edit this column.

Figure 2-6 The Color Repository
Reference Guide 126

Name

The Name column of the Color repository contains a textual description of the
color’s function. Use it to give meaningful names to colors for ease of selection
and maintenance.

FG and BG

The Color repository, shown in Figure 2-6, assigns a foreground (FG) color and
a background (BG) color value for each of the display entities, one per row.

You can enter a new color value after the last row. The Color repository stores
an unlimited number of color values.
Reference Guide 127

The Color Assignment Palette

To change the color of a foreground or background component, place the
cursor on the FG or BG you want to change. Then zoom F5 to the Color
Assignment palette. An example of a Color Assignment palette is shown in
Figure 2-7. A color can be selected from the Basic Colors shown by clicking a
color. The selected color will display a heavy border.

A color can also be selected or modified by changing the numeric values for
Red, Green and Blue, and for Hue, Saturation, and Luminescence (Hue, Sat,
Lum). The name value from the current row of the Color repository will appear
on the Title Bar of the Color Assignment Palette window.

A System Color combo box appears on the Color Assignment Palette window. A
system screen’s logical background or foreground color definitions can be
specified using this combo box.

Figure 2-7 The Color Assignment Palette
Reference Guide 128

You can define a color background as transparent by selecting the Transparent
check box, which is enabled only when the System Color combo box is empty.

Clicking OK will accept the new color assignment and will close the Color
Assignment Palette window.

Clicking CANCEL will undo all changes to the color assignments made in the
current entry to the Color Assignment palette, and will close the Color
Assignment Palette window.

Be careful not to choose the same values for both FG and BG of a display
entity, because the resulting display will not be readable.

Sample

The Sample setting provides a visual representation of the selected foreground
and background colors.

Saving Changes to the Color Repository

From the Color repository, click OK to accept the changes and to end the color
editing session. The color settings you edit are saved in a special color file. The
file eDeveloper uses is set in the Color Definition File setting in the
Environment dialog. The default name for this file is CLR_STD.ENG. You can
create and use various color files. When you end an editing session in the
Reference Guide 129

Color repository, eDeveloper prompts you to save the changes with the Save
File dialog, as shown in Figure 2-8.

It is possible to save these changes to a file different from the one currently
used by eDeveloper, by specifying a different name in the Save As field. The
changes made to the color repository will take effect the next time you load
eDeveloper from the operating system, unless Yes is specified in the Effective
Immediately prompt of the Save File dialog.

If Effective Immediately is requested, eDeveloper will load the new color
repository, and every new window painted on the display will use the new
settings. However, the current display will not be not changed until it is
refreshed in a proper context.

Within a particular application, it is possible to replace the default color file of
the Environment with an application-specific file.

Figure 2-8 Saving Edited Colors
Reference Guide 130

Note that if you change system colors and color schemes in your operating
system, these changes are not reflected immediately in eDeveloper. These
changes will take effect in the next activation of eDeveloper.

Font Settings
The Font repository, shown below, associates specific fonts to each kind of
output available. The bulk of the entries in the Font repository are for user-
defined font assignments.The Font repository can store an unlimited number
of font values.

The Font repository is stored in the Font Definition file specified in the
Environment dialog, in the Font Definition File setting.

Figure 2-9 The Font Repository
Reference Guide 131

The Font Repository Settings

#

A line number assigned by eDeveloper. You cannot edit this column.

Name

The description of the kind of output. You can change this description by
simply overwriting the name in the repository.

Font

The name of the font, such as MS Sans Serif or Helvetica. You can change the
font by double-clicking on it. This will open a font assignment window as
shown in the figure below. You can select a type face, a size, a font style such
as Bold or Italic, and an effect such as Strikeout or Underline in this window.

Style

If the font style is either Bold or Italic, or both, and if Strikeout or Underscore
effects are selected, these conditions are noted in the Style column.

Size

The typeface size is shown in the Size column.

Orientation

This column shows the angle at which the font displays.

Using fonts with display orientation is limited to the Tab control and the Text
control only. Using such a font in another control may lead to unpredictable
results. When applying a font to a Text control it is not possible to edit the text
directly from the Form editor. The text must be edited from the Text Control’s
Control Properties dialog.

The Font Style Window

The font style from the current row of the Font repository appears in the Font
Style window.
Reference Guide 132

Font Assignment Window

The name value from the current row of the Font repository will appear in the
caption of the Font Assignment window.

Click OK to accept the new font assignment, close the Font Assignment
window, and return to the Font repository.

Click CANCEL to undo all changes to the font assignment made in the current
entry, and close the Font Assignment window.

Saving Changes to the Font Repository

From the Font repository, click OK to accept the changes and to end the Fonts
editing session. The font settings you edit are saved in a Font Definition file.
The file eDeveloper uses is set in the Font Definition file setting in the

Figure 2-10 The Font Assignment Window
Reference Guide 133

Environment dialog. You can create and use various font files. On conclusion of
an editing session in the Font repository, eDeveloper prompts you to save the
changes with the Save File dialog, as shown in Figure 2-11.

Keyboard Mapping Settings

eDeveloper Actions

eDeveloper’s internal commands are referred to as eDeveloper Actions or
Actions. An eDeveloper Action is the lowest level command that eDeveloper
can understand. Every action has a well-defined function, which means all user
interaction with eDeveloper is translated into Actions that invoke some internal
process. For example, the Exit Action will cause the current process to
terminate, while the About Action will open the About dialog. Because many
end-users interact with eDeveloper using the computer’s keyboard, keystrokes
must be able to trigger internal eDeveloper Actions to achieve results. The

Figure 2-11 Saving Changes to the Font Definition File
Reference Guide 134

Keyboard Mapping repository contains the assignments of keystrokes to
eDeveloper Actions.

eDeveloper has a large set of internal actions, each of which performs a
unique function. Some of these functions are global, and may be performed
from anywhere in eDeveloper, while others are context-specific and can only
be invoked in context. Because certain functions are context-specific, it is
possible to assign the same keyboard sequence to more than one action,
provided that the actions are not available in the same context.

State Qualifications to eDeveloper Actions

You can refine the keystroke-action relationship further by adding state
qualifications to the assignment of a keystroke to an Action. Each assignment
can have up to four state qualifications. The logical condition between the 4
keyboard state conditions is an AND condition. In other words, all the
keyboard state conditions have to occur for the key to invoke the assigned
action. These state qualifications are related to the two different editing
contexts - the Form level, Record level, or the Control level. The indicators that
display whether an action is for a form, record, or a control are:

• The Tbl prefix to a keyboard state condition name in the Keyboard States
list refers to an action for the form or record.

• The Edt prefix to a keyboard state condition name in the Keyboard States
list refers to an action for a control.

Two examples of different keyboard state conditions are:

• The Tbl:Not Screen Top keyboard state condition means that the key
activates the action only if the insertion point is not placed at the top of
the screen or table.

• The Edt:Not Form Top keyboard state condition means that the key
activates the action only if the insertion point is not parked on the first
value of a Choice control or the first line of a Multi-Edit control.

Reference Guide 135

eDeveloper Action Example

While editing a repository, CTRL+PGDN is assigned to the End of Repository
Action, which tells eDeveloper to move to the end of the last row of repository
data. CTRL+PGDN is also assigned to the End of Screen Action, which tells
eDeveloper to move to the last row of the repository displayed on the screen.
Both actions are active in the same context, Repository Editing, and have the
same keystroke assignment CTRL+PGDN. The ambiguity is resolved by
qualifying the assignment of CTRL+PGDN using eDeveloper States. The End
Repository Action is qualified by the Tbl:Screen End state, which means it will
only be invoked when CTRL+PGDN is pressed and the insertion point is
positioned at the last visible row of the repository. The End Screen Action is
qualified by the Table Not Screen End State, which means it will only be
invoked when CTRL+PGDN is pressed and the insertion point is not positioned
at the last visible row of the repository. Because the two states are mutually
exclusive, eDeveloper has no problem determining which action should be
invoked. The result of these settings is that the first pressing of CTRL+PGDN
will move the insertion point to the last visible row of the repository. The Table
Screen End State is then turned on, and the second pressing of CTRL+PGDN
will move the insertion point to the last row of repository data.

The Keyboard Mapping Repository

The Keyboard Mapping repository is made up of a main screen and the
Keyboard States window. The screen title at the top of the screen contains the
file name of the current Keyboard Mapping. Each entry in the repository
represents one assignment of a keyboard value to an eDeveloper Action. While
scrolling the repository lines, the display of the keyboard states changes to
reflect the states conditioning the assignment of the highlighted line.

In this repository it is possible to change, delete or add action-keystroke
assignments. It is not possible to delete the last keystroke assignment of an
Reference Guide 136

action. When adding a new line to the repository, the action is copied from the
line preceding it, without the key assignment.

The Keyboard Mapping Repository Settings

#

This column contains an automatically-generated sequential number used by
eDeveloper as a Mapping identifier. You cannot edit this column.

Action

This column contains the eDeveloper Action name. You cannot edit this
column. Action names are fixed and are provided by eDeveloper. The same
Action may appear on more than one row, meaning the Action has multiple
key assignments. Pressing any of the keys assigned to the Action will invoke it.

Figure 2-12 Keyboard Mapping Repository
Reference Guide 137

Key

The key column displays the key assigned to the action of the current row.
From this column it is also possible to define the key. Select Edit/Zoom F5 to
access the Key Definition dialog. In the Key Definition dialog, just press the
key you want assigned to the action and it will register on the screen. Click OK
to accept the definition, or ESC to cancel the operation. The space bar will
clear the current value in the Key Definition dialog. If accepted, the key will be
copied to the Key column and assigned to the key.

NOTE: If the word Internal is displayed in the Key column, then no operations
are allowed on this Action. Internal Actions may not be redefined.

States

The States column displays the number of states conditioning the
assignments. All states have to be satisfied to invoke the Action when the Key
is pressed. From the States column select Edit/Zoom or press F5 to zoom into
Reference Guide 138

the Keyboard States window, as shown below. In this window, define the
conditions for the assignment of the Key to the Action.

State 1 to State 4
While the insertion point is positioned at one of the state settings, select Edit/
Zoom F5 for a list of states. It is possible to add up to four states to condition
the Key assignment to the Action. All the states have to be on at once for the
Key to invoke an action.

The States list constitute 24 states that can help you condition the key
assignment to the action. The Tbl prefix means that the state refers to the
Form or Record level. The Edt prefix means that the state refers to editing
inside a control.

The Keyboard Mapping settings you edit are kept in a special file. The
eDeveloper file is named in the Keyboard Mapping File setting in the
Environment dialog. By default this file is ACT_STD.ENG. You can create and
use different mapping files. On conclusion of an editing session on the

Figure 2-13 The Keyboard States List
Reference Guide 139

Keyboard Mapping repository, eDeveloper prompts you to save the changes
with the Save File dialog. You can save these changes to a file different from
the one currently used by eDeveloper, by specifying a different name in the
Save As dialog. The changes made to the Keyboard Mapping repository will
only take effect the next time you load eDeveloper from the operating system,
unless Yes is specified in the Effective Immediately prompt of the Save File
dialog.

If Effective Immediately is requested, eDeveloper will load the new Keyboard
Mapping repository and change the Key assignments accordingly.

Servers Settings
eDeveloper Servers are the basis for the Client/Server capabilities built into
eDeveloper. The eDeveloper server is a File Management and Server Type
program, capable of performing Database and File I/O for remote eDeveloper
applications. Any eDeveloper installation can access many such servers,
residing on various hardware platforms and operating systems, via different
communication protocols. From the Server repository you can define the
remote eDeveloper servers accessible for database and file I/O services to the
current installation. The Server repository also defines the means by which the
local eDeveloper software communicates with its host server.

The Server repository, Figure 2-14, defines the remote eDeveloper servers
accessible for database and file I/O services to the current installation. The
Server repository also defines the means by which the local eDeveloper
software communicates with the host server.

For more information, refer to Chapter 19, Distributed Application
Architecture.
Reference Guide 140

The Server Repository Settings

Name

The Name field defines the server name for the local eDeveloper. The Server
name, when used within parentheses in any file name, will cause automatic
redirection of any input or output request for the file to the Server.

Server Type

Server Type identifies the Server types available to transfer and receive data
from the host Server. You can update this setting only by selecting Edit/Zoom
(F5) from a list of available servers: Magic Request Broker, and MQSeries. The
Server Types in the list are only those loaded before eDeveloper itself was
loaded. The local eDeveloper and the Server must use the same

Figure 2-14 The Server Repository
Reference Guide 141

communication protocol. If a previously defined server has a type that is not
recognized, the server type setting is “Unknown”. Trying to open a server
without first loading its proper communication driver will fail.

The available server types are:

Magic Request Broker: The Magic Request Broker (MRB) implements a
Requester-Broker connection. The MRB appears in the Server Type list only if
the MRB is defined in the appropriate Magic.ini section, and communication
support is installed.

MQSeries Server: The MQSeries server implements an MQSeries Messaging
server. The MQSeries appears in the Server Type list only if the MQSeries
Messaging gateway is defined in the [MAGIC_MESSAGING_GATEWAYS]
section of the MGREQ.INI file, loaded into memory, and the appropriate
communication support is installed.

SOAP Server: The SOAP server lets you send a SOAP type Web service
request to a Web Service Provider.

Server Address

In the Server Address column, specify the Server’s address on the network
connecting it to the local eDeveloper installation. The Address is made up of
two parts, separated by a / symbol.

The Server repository must contain at least one entry. This entry is named
DEFAULT and cannot be deleted. Other rows can be added or deleted, and all
of the settings except # can be edited. The DEFAULT server is the “local”
server of the local installation. No communication driver or address is
necessary.

Server repository information is contained in the [MAGIC_SERVERS] section of
the Magic.ini file.

Properties

The optional Properties dialog for the current line in the Server repository is
accessed by selecting Properties from the Server’s context menu.

The Properties dialog contains the following settings:
Reference Guide 142

• User Name

• Password

• Timeout

• Alternate Server

The Timeout setting defines the duration of time, in seconds, of no response
from the server before the driver reports a failure to eDeveloper.

You may optionally enter, in the Alternate Server setting, the name of an
alternative server that eDeveloper can use if the selected server is unavailable.

Communication Manager

The Communication Manager setting identifies the Communication protocol
used to transfer and receive data from the host Server. You can update this
setting only by selecting Edit/Zoom F5 for a list of available Communication
drivers. The Communication drivers in the list are only those loaded before
eDeveloper itself was loaded. The local eDeveloper and the Server must use
the same communication protocol.

If the Communication Manager entry shows Unknown, then the proper
communication driver module was not loaded. Trying to open a Server without
first loading its proper communication driver will fail.
Reference Guide 143

Services Settings

The Service Repository Settings

#

This column contains an automatically-generated sequential number used by
eDeveloper as a mapping identifier. You cannot edit this column.

Name

The unique name of the service displayed.

Figure 2-15 The Service Repository
Reference Guide 144

Server

The Server entry from the Servers list. Zoom from this field to select the
appropriate server.

Remote Application

The name of the eDeveloper application. Zoom from this field to select an
application from the Application list.

When you select a SOAP server for a Web Service request, enter the SOAP
request identifier from the Web Service Provider’s Web Service Description
Language (WSDL).

The Services Properties Dialog

Access the Services Properties dialog by selecting Properties from the Services
context menu.

The Service Properties dialog contains the following settings:

User Name

The user name that will be used to perform the eDeveloper logon, when a
request is sent for a particular eDeveloper application.

Password

The password associated with the user name when a request is sent for a
particular eDeveloper application.
Reference Guide 145

Filter

In the Magic.ini file, the filter values are displayed in the [MAGIC_SERVICES]
section, as shown below:

Default Service = Default Broker, <application>, <username>,
<password>, <filter>

The filter value is sent to the broker with each request.

Refer to MRB Filters on page 1167 for a full explanation about filters.

Visual Connection Settings
The Visual Connection display is a virtual representation of the connection
between a particular eDeveloper Service and the list of servers available. You
Reference Guide 146

can also modify server connections by changing the lines displayed in this
visual connection.

Figure 2-16 The Visual Connection Display
Reference Guide 147

Communication Settings

The Communication repository is generated automatically by eDeveloper at its
initialization stage. The Communication repository lists all the communication
drivers loaded prior to eDeveloper. These drivers will also appear in the
Communication list selection window. The communication drivers are used to
connect the local eDeveloper to host eDeveloper Servers.

The Communication Repository Settings

#

This column contains an automatically generated sequential number used by
eDeveloper as a Communications Driver identifier. You cannot edit this column.

Figure 2-17 Communication Repository
Reference Guide 148

Name

The Communications Driver name. This setting is provided by eDeveloper
according to the communication drivers supported by eDeveloper.

Timeout

The Timeout setting defines the duration of time, in seconds, of no response
from the receiving end before the driver reports a communications failure to
eDeveloper.

Parameters

The Parameters column contains customization information that is transferred
to the Communications driver at runtime.

Communication repository information is contained in the [MAGIC_COMMS]
section of the Magic.ini file.

ID

The ID field should not be modified. The ID setting lists the internal code used
by eDeveloper for identifying the communication protocol.

DBMS Settings
The DBMS repository lists all the DBMSs that are supported by eDeveloper or
will be supported by eDeveloper in the future. Information included in the
DBMS repository as opposed to the Database repository, described in the
following section, is generic to the DBMS type and not specific to the database
based on that DBMS. An eDeveloper database gateway product must be
loaded prior to loading eDeveloper in order to provide the physical access to
any database of any of the specific DBMS types. Database gateways provide
an interface for eDeveloper with its underlying Database Management
Systems. For example, in order to access Microsoft SQL Server or Oracle
Reference Guide 149

databases, eDeveloper needs the eDeveloper database gateways for Microsoft
and Oracle to be loaded before eDeveloper is loaded.

eDeveloper supports connectivity to the following databases:

• AS/400 ISAM and SQL interface

• Pervasive.SQL 2000 ISAM engine

• Cache

• DB2

• Informix

• Microsoft SQL Server

• Oracle

Figure 2-18 The DBMS Repository
Reference Guide 150

• eDeveloper also supports connectivity to various databases by using ODBC
(Open Database Connectivity)

The eDeveloper installation provides the following bundled databases:

• MSDE – The Microsoft® Database Engine.

Pervasive.SQL™ 2000:

1. The Pervasive.SQL 2000 Workgroup engine (relational and
transasctional) is bundled with eDeveloper's development
environment. This product is intended solely for development
purposes and is restricted to usage under this environment.

2. The Pervasive.SQL 2000 server engine (relational and transactional) is
bundled with eDeveloper's deployment environment. This engine has
a license that expires after three months.

To obtain a permanent license either:

• call TOLL FREE 0080012123434 (For BE, DK, NL, SE, UK, DE, CH,
FR, IT)

• call +32/70/233761

• or send an email to cic@pervasive.com

The DBMS Repository Settings

#

This column contains an automatically-generated sequential number used by
eDeveloper as a DBMS identifier. You cannot edit this column.

Name

The Name column contains the name of the DBMS. The name can be modified.

2 Phase

Not applicable. This option is no longer supported.
Reference Guide 151

Nulls

If the underlying DBMS supports NULL values and the eDeveloper applications
are to attach to tables with NULL values, set this field to Yes. Use the No
setting if the DBMS does not support NULL values, or if the DBMS supports
NULL values, but that support is not required in eDeveloper.

This setting controls the default behavior of the eDeveloper toolkit when
creating new columns or field models. When this property is set to Yes, all
columns or field models are created with Allow Null=Yes. If the property is set
to No, then all settings or models are created with Allow Null=No. If this
setting is set to Yes, the gateway creates nullable columns when issued in the
CREATE TABLE statement. It is advisable to set the Nulls setting to No and
change the setting in the Column properties sheet when a nullable column is
required.

Excl Trans

Not applicable. This option is no longer supported.

Parameters

The Parameters column contains customization information that is transferred
to the RDBMS at runtime. Refer to Chapter 25, SQL Considerations for
information on customizing the database gateway. Also see the section below
on Variable MCF record length.

Float (Default Float Picture)

When the Table Definition is uploaded from the DBMS’s repository (when using
the Get Definition utility), most of the settings can be matched into eDeveloper
attributes with proper pictures. However, in the case of floating point types of
settings, it is not possible to tell what the picture of the resulting eDeveloper
setting or type should be. The Default Float Picture setting provides a default
picture template that will be used for all floating point type setting definitions
uploaded into eDeveloper Model and Table repositories. A sample value is
10.3.
Reference Guide 152

ID

The ID setting should not be modified. The ID setting lists the internal code
used by eDeveloper for identifying the DBMS.

DBMS repository information is contained in the [MAGIC_DBMS] section of the
Magic.ini file.

DBMS Properties

The DBMS Properties dialog box provides access to additional settings required
by some database entries and not required by others. The settings in this
dialog do not change frequently

Figure 2-19 DBMS Properties
Reference Guide 153

Log Level

The Log Level is the level of the log to be generated by the Magic Database
Gateway for your RDBMS. The possible values are:

• None - No log file will be generated

• Customer - Log only the SQL commands generated

• Support - Additional information for the developer

• Developer - A full log to be generated for use by the MSE Technical Support
department.

Note: The Log Level property affects performance. Therefore, it is
recommended to use the Log Level property only during debugging.

It is advisable to verify that the Log Level property is disabled (= None) in
your customer’s environment.

Log Name

The Log Name is the name of the log file, including its path. If a path is not
specified, the log file is created in the eDeveloper directory.

Log Synch

The Log synch property controls the synchronization between the Log file and
the application execution.

'Selected' - When this check box is selected, the log is synchronized with the
application execution.

'Not selected' - When this check box is not selected, there is a delay between
the application execution and the log.

If eDeveloper is terminated improperly you may not see the last application
execution in the log.

Note: When the Log Synch check box is not selected, the Log is saved into a
buffer and written to the Log file every several records.
Reference Guide 154

Note: This property is mainly useful when debugging your application. This is
because you want to see all of the operations, especially the last ones, when
eDeveloper has terminated improperly.

Show Plan

Not applicable. This option is no longer supported.

Alternate Collating Sequence

Zoom from the Alternate Collating Sequence (ACS) setting to an Open File
dialog. Select the ACS file. The file name appears in the ACS properties
setting.

Maximum Connections

Some RDBMSs such as MS-SQL use different numbers of connections in their
internal implementations.

Setting the Max. connections property controls the maximum number of
connections the gateway can use.
The default value is 3 connections.

The Max. connections property applies to each line in the Database repository.

The greater the number of connections the gateway uses, the better the client
concurrency
However, at the same time, RDBMS resource requirements increase while
server performance decreases.

Specify 0 to use the default number of connections.

Specify a number greater than zero to limit the number of connections to the
databases.

In ISAM and SQL/400 DBMS, you must specify the number of allowed
connections to AS/400. This number depends on the number of AS/400
licenses.

For more information, refer to Chapter 25, SQL Considerations.
Reference Guide 155

Isolation Level

Isolation levels determine the type of phenomena that can occur during the
execution of concurrent transactions.
eDeveloper sets this property only for the following databases: MSSQL,
Informix and DB2.

Three phenomena define SQL Isolation Levels for a transaction:

Dirty Reads returns different results within a single transaction when an SQL
operation an uncommitted or modified record created by another transaction.
Dirty Reads increase concurrency, but reduces consistency.

Non-Repeatable Reads returns different results within a single transaction
when an SQL operation reads the same row in a table twice. Non-Repeatable
Reads can occur when another transaction modifies and commits a change to
the row between transaction reads. Non-repeatable reads increase
consistency, but reduces concurrency.

Phantoms returns different results within a single transaction when an SQL
operation retrieves a range of data values twice. Phantoms can occur if
another transaction inserted a new record and committed the insertion
between executions of the range retrieval. Each Isolation level differs in the
phenomena it allows:

Read Committed: Specifies that shared locks are held while the data is being
read to avoid dirty reads, but the data can be changed before the end of the

Phenomenal/
Isolation Level

Dirty
Reads

Read
Committed

Repeatable
Read

Can be
Serialized

Dirty Read
Allowed

Yes No No No

Non-
Repeatable
Read Allowed

Yes Yes No No

Phantoms
Allowed

Yes Yes Yes No
Reference Guide 156

transaction, resulting in nonrepeatable reads or phantom data. This option is
the SQL Server default.

Can Be Serialized: Places a range lock on the data set, preventing other
users from updating or inserting rows into the data set until the transaction is
complete. This is the most restrictive of the four isolation levels. Because
concurrency is lower, use this option only when necessary. This option has the
same effect as setting HOLDLOCK on all tables in all SELECT statements in a
transaction

For more information about Isolation Levels, see Chapter 23, Multi-User
Considerations.

Check Existence

This property determines if eDeveloper will check the existence of every table
it tries to access in runtime, and if the table does not exist, eDeveloper will
create it.

Clearing this check box will enhance performance and will prevent eDeveloper
from creating tables in the database. If a specific table does not exist, an error
will be issued by the underlying RDBMS.
This option is recommended for the Runtime environment.

Selecting this check box will decrease performance, since eDeveloper will have
to send extra SELECT statements to the DMBS each time the table is accessed.
If the table does not exist, eDeveloper will attempt to create the table in the
database.
This option is recommended for the Toolkit environment

Note: This property will be copied to any new database entry that belongs to
the specific DBMS in the Database repository.

For more information, refer to Chapter 25, SQL Considerations.
Reference Guide 157

Variable MCF Record Length

All components of an eDeveloper application reside in an eDeveloper
Application file. Each component is stored in a logical record in the file. A
component can be a task, help screens, global types, and so on.

The physical structure of the eDeveloper application file consists of two parts.
The first is the index, in order to access a certain component, and the second
is the actual data on the size of the component. The size of the data portion is
predetermined by default, with different values for each DBMS.

Why Change the MCF Record Length?

Invoking an eDeveloper task involves reading several logical records.
Therefore we should attempt to reduce the elapsed time for reading data and
to load the task faster. Because MCF records are a fixed length, if our tasks are
small and do not include many occurrences of the components of a task, we
might be reading more data than we actually need to construct the eDeveloper
component. On the other hand, if we have large tasks with many occurrences
of eDeveloper components, we might be doing too many I/O operations to
load the task.

Defining the MCF Record Length

To override the default record length values, a new qualifier, in the setting
section in the DBMS repository can be used. The usage is MCFRECLen=x,
where x is a number. The default will only apply to new MCF files that are
opened, and will not affect existing MCF files.

The valid sizes for each DBMS are shown in the next table. If an invalid size is
given, an error message will be displayed and the eDeveloper application file
will be created in the default length.

A change is effective immediately.

Valid Sizes for MCFRECLen (Data Portion)

DBMS Default Minimum Maximum

Btrieve 1007 330 4076
Reference Guide 158

Note: The total MCF record length consists of the MCF record length (data
portion) plus 14 bytes (index).

Effects of Changing the MCF Record Length

After creating the MCF file, no additional definitions are needed, and
eDeveloper will be able to open all MCF files, regardless of their record lengths.

Changing the record length can also affect the size of the MCF. Because the
MCF record is a fixed length record, there is unused space in the file.

If the record length is enlarged the physical MCF file will grow, and there will
be more unused space.

Database Settings
The Database repository registers details about all the physical databases that
can be accessed by this installation of eDeveloper, as shown below. eDeveloper
is able to connect to multiple Database Management Systems (DBMSs). Some
of these DBMSs provide support for the distribution of data on different
physical locations on one machine, or even across several different machines.
Some of the DBMSs that eDeveloper supports maintain several separate

C-ISAM 1010 330 4082

DB2 214 214 214 (Fixed
Size)

Microsoft SQL 269 269 269 (Fixed
Size)

Oracle 269 269 269 (Fixed
Size)

Microsoft 269 269 269 (Fixed
Size)

Valid Sizes for MCFRECLen (Data Portion)

DBMS Default Minimum Maximum
Reference Guide 159

physical databases within the framework of one logical entity. Using the
Database repository, eDeveloper can gain access to these different physical
databases.

The Database repository contains basic information required by eDeveloper’s
Database object. You supply additional information about this object using the
Database Properties dialog. You access the Database Properties dialog by
selecting Properties from the DBMS context menu.

You can also define more than one eDeveloper database with different
properties to access the same DBMS.

In the Database repository, you can define multiple eDeveloper database
entries to point to the same SQL database.

For example:

Figure 2-20 The Database Repository
Reference Guide 160

If a set of tables in the database are accessed by one user and another set of
tables are accessed by a second user, then two identical definitions can be
defined by using a different user in each one.

The Database Repository Settings

#

This column contains an automatically-generated sequential number. You
cannot edit this column.

Name

The Name setting is a short description of the physical database. The Name
value is used as a label string that identifies the database anywhere in
eDeveloper where such a reference is required. For example, in the Table or
Application repository. By using a label instead of an index into the database
repository, eDeveloper makes the application more portable, because it is
unlikely that different developers will use the same label. The Name value is
case-sensitive.

The default databases available are:

Default - The default database used when creating a new application or a new
table within an application. This entry usually points to Pervasive DBMS, but
you can changed the entry to point to any supported DBMS system.

i Once the connection to a database is created, it is only
disconnected explicitly (using the eDeveloper DbDiscnt
function or by the DBA) or by exiting eDeveloper (exiting the
application will not close the connection). Therefore, the
changes made in the Database properties will take effect only
in the next connection to the database. It is recommended to
exit eDeveloper and launch it again whenever changing a
database property that affects the eDeveloper Gateway
behavior.
Reference Guide 161

Memory - This database points to a memory DB that is implement by
eDeveloper. This gateway is available as long as the engine is up. When
eDeveloper is closed, the memory database stops and all its data is cleared.

DBMS

The DBMS setting identifies the name and type of the underlying database.
This column can be modified only by selecting a value from the DBMS list
(zoom to the list).
When creating a new line, some of the properties are inherited from the DBMS
repository (properties that appear in the DBMS repository).

The DBMS setting is required.

Database Name

The Database Name setting identifies the database that you want to connect
to in the RDBMS.
RDBMSs can support and handle more than one database.
Some of the DBMSs that eDeveloper supports maintain several separate sub-
databases in the same RDBMS.
The Database Name is the name of the sub-database as defined by the
RDBMS.

In ODBC, the Database Name of the defined Data Source in the ODBC
administrator.

The Database Name setting is optional.

Magic Server

The Magic Server setting specifies the eDeveloper Server to be used to get to
the data. eDeveloper supports two methods for accessing remote data: the
eDeveloper Client/Server model or the DBMS’s Client/Server model.

eDeveloper’s Client/Server Model: Using this method, an eDeveloper Client/
Server setup should be implemented. eDeveloper will access the remote data
via the eDeveloper server on the host machine. Only an eDeveloper Definition
Database gateway is required for such access.
Reference Guide 162

DBMS’s Client/Server Model: If the DBMS provides Client/Server services,
eDeveloper can be used to take advantage of them. In this case, the database
appears to eDeveloper as though it were a local database, and it is accessed
through a full eDeveloper Database gateway. When the database is on the
same computer, or when the DBMS Client/Server architecture is used, do not
specify the eDeveloper server parameter.

The Magic Server setting is used only if the data resides on a remote machine,
and if the access to that machine is gained via an eDeveloper Client/Server
model.

The Magic Server setting is optional.

Location

The Location setting is optional and relevant for ISAM databases only.

The Location setting provides eDeveloper with information about the physical
location of the data file.

Files that are created by eDeveloper will be placed in the location specified in
this property.

A Logical Name may be used for this setting.

The Location setting is optional.
Reference Guide 163

The Database Properties Dialog

The Database Properties dialog provides access to additional settings required
by some databases entries but not required by others. The settings in this
dialog do not change frequently.

The Database Properties dialog tabs are:

• Login

• Options

• SQL

Login

The Login database properties are described below.

Figure 2-21 Database Properties Dialog
Reference Guide 164

Database Server

The Database Server setting specifies the name or the IP address of the
RDBMS server.

When you use DB2 and ODBC databases, there is no need to specify the
Database Server property, because the DB2 and ODBC databases have a DNS
(specified in the Database Name column in the Database repository).

When you using Oracle, you specify an Alias.

The Magic Server setting in the Database repository and this setting should
not both be used for the same database entry.

The Database Server setting is optional.

User Name

Certain databases require a User Name and Password. This is true for
databases accessed by an eDeveloper server or by the DBMS’s own Database
Server. When you use the eDeveloper Client/Server Model for accessing
remote host machines (usually mini-computers or workstations with a strict
security system built into their operating systems) a User Name and Password
are mandatory. If you leave the User Name setting blank in the Database
Properties dialog, eDeveloper will open a dialog requiring a User Name and
User Password on the first attempt to attach to a table accessed using this
Database entry.

Use this setting to specify a User Name recognized by the host security
system, where the table accessed, by this database entry, resides. A Secret
Name can be used for this setting, because the User Name setting is kept in
the unprotected Magic.ini file.

The User Name setting is optional.

User Password

Use this setting to specify a User Password recognized by the host security
system where the table accessed by this database entry resides. A secret
name can be used for this setting, because the User Name setting is kept in
the unprotected Magic.ini file. The User Password setting is optional.
Reference Guide 165

Connect String

The Connect String is only relevant for Oracle. Writing a string overrides the
database server definition, user name, and password.

Options

The Options database properties are described below.

Change Tables in Toolkit

This setting determines whether an eDeveloper application in Toolkit mode can
alter the table structure of an underlying database table.

The default for this setting depends on the type of database selected in the
Default Database setting of the Environment dialog. If the Default Database is
an SQL-type database, then the default for the Change Tables in Toolkit setting
will be a ‘not selected’ check box. The default may be set to a ‘selected’ check
box when building the table structure, before data is entered, and before the
application goes into production.

Note: Once data has been entered, and if the default is ‘selected’, eDeveloper
will drop the original table from the database, and re-create the table with the
new modifications. eDeveloper advises against making the default ‘selected’
once the application is in use. The ‘selected’ default in SQL-type databases,
unlike in ISAM-type databases, affects the underlying rules for the table
structure.

If the Default Database is an ISAM-type database, then the default for the
Change Tables in Toolkit setting will be ‘selected’.

Check Definition (required)

eDeveloper maintains its own Table repository, while providing access to data
stored in various DBMSs that maintain their own data dictionaries (all of the
DBMSs manage thier own data dictionaries). The data structure may be
modified both by eDeveloper (such modification is reflected automatically in
the DBMS’s data dictionary), and by external DBMS utilities (unknown to
eDeveloper). As a result, eDeveloper’s Table repository might not reflect the
current structure of the data that eDeveloper programs process. This may lead
Reference Guide 166

to abnormal behavior in eDeveloper programs. Not selecting the Check
Definition setting instructs eDeveloper to disable the file structure checking
when the file opens. Selecting the Check Definition setting, instructs
eDeveloper to check the data structure of the physical file against
eDeveloper’s Table repository definitions every time a data table is opened. If
the physical file structure and the eDeveloper Table repository definitions do
not match, an error message will be displayed by eDeveloper and processing
will be aborted. This feature is available for those DBMSs that can provide
table structure information. The extent of such information is also dependent
on the DBMS type.

Note: The method used by previous versions of eDeveloper for this feature,
specifying ‘CHKDEF=YES’ in the Database Information setting, is still
supported. However it is recommended that you use this new setting instead.

Check Index (required)

This property provides a useful method of maintaining data integrity. When
Check Index is enabled, eDeveloper tests the data table for the existence of a
unique index value as the end user inputs data into a record. If a duplicate
value is entered for an index that is defined as unique, eDeveloper issues a
Duplicate Index Error message and prevents further end-user processing until
the input is changed. This behavior requires no programming on the part of
the developer. However, for some DBMS systems, this check takes a toll in
performance and it is not recommended. In such a case, the developer may
decide to disable this check, and then the results of duplicate index value entry
will depend on the DBMS behavior.

Server Sort

This setting is available with AS 400 databases.

This setting indicates to eDeveloper whether or not to perform the task’s Sort
operation using the virtual indexes defined in eDeveloper to open a Query
Field. If the Server Sort setting is selected, eDeveloper will not perform its own
sort but will add a virtual index to the current table and use it as the current
cursor.
Reference Guide 167

eDeveloper Locking (None)

This property is mainly relevant for ISAM databases.

eDeveloper manages its own locking mechanism at the row and table levels
without transactions by using the MGLOCK file. These locks are referred to as
eDeveloper locks and can be enabled by setting the eDeveloper Locking
property to Record Lock or Table Lock. Because SQL RDBMS locking is always
invoked, there is usually no need for an additional locking mechanism when
accessing an SQL database in a physical or deferred transaction mode task.

Setting the eDeveloper Locking property to None implies that only the
underlying database’s concurrence controls will be in effect.

Lock Path

When using a Database server to access data, eDeveloper is not aware of the
physical location of this data: the data may reside on some remote host
machine, but it still appears to eDeveloper as though it were local. In this
case, the internal eDeveloper locking mechanism cannot operate, because this
mechanism requires all users accessing the same data to share the same
locking file.

Previously, table locking was determined only by the program’s Access and
Share mode settings in the Table repository. In Online programs with multi-
user access, the eDeveloper program, depending on the Access and Share
mode settings, caused the table to be locked for the duration of the task. This
situation can now be controlled in SQL databases, to allow the DBMS to handle
table locking and thereby reduce locking duration.

The default value for this setting is Yes. When Table Lock = No, eDeveloper
issues no table level locks, and the table’s Share mode is determined by the
type of transaction issued by the DBMS. It is useful to set Table Lock = No
when you want protected Write transactions to be issued by the underlying
DBMS.

If you set the eDeveloper Record Lock setting to Yes, eDeveloper’s internal
locking mechanism will be used in addition to the Database’s mechanism. In
this case, eDeveloper must have access to a disk directory that is shared by all
Reference Guide 168

the users of this database entry. Such a directory can be specified using this
Lock Path setting.

Setting the Database Lock Path in the Database Properties dialog in Settings/
Databases will override all other definitions.

If a database has a lock path defined in its properties, all locks regarding this
database will be performed on the lock file found in that path. Lock files will
not be opened in the directories in which the database files are opened. If you
define a database lock path, be sure the path is shared by all the users who
access the tables. Otherwise, you risk data corruption.

A Logical Name may be used for the Lock File Path setting.

The Lock Path setting is optional.

Common Data Dictionary

On some of the older platforms that eDeveloper supports, there are central
database information repositories. These common data dictionaries allow
different application programs to access the same data, and always remain
synchronized regarding the data structure.

Use the Common Data Dictionary setting to specify the name of a Common
Data Dictionary that will be referred to by eDeveloper.

In modern DBMSs this setting is not frequently used.

A Logical Name may be used for the Common Data Dictionary setting.

The Common Data Dictionary setting is optional.

SQL

The SQL database properties are described below.

Database Information

The Database Information setting lets you supply database-dependent
information for eDeveloper to pass to the underlying RDBMS. For more
information, refer to Chapter 25, SQL Considerations.
Reference Guide 169

Hint

Some RDBMSs such as Oracle and MSSQL, allow hinting the optimizer for
processing a query. In this field, the programmer can enter a string that will be
concatenated to the SELECT statement.

Check Existence

This setting specifies if eDeveloper is to check the existence of every SQL table
it attempts to access in deployment (runtime) mode, and to create that table if
it does not exist.

Selecting this check box enables eDeveloper to create tables in an SQL
database. This also directs eDeveloper to check for the existence of every
table it attempts to access. Note that checking for the existence of each table
may cause a performance degradation.

Not selecting this check box prevents eDeveloper from creating tables in the
database. If a specific table does not exist, an error is issued from the
underlying RDBMS.

Array Size

The eDeveloper gateways to SQL support array processing. When retrieving
rows from the database, the gateway does not retrieve one row at a time, but
retrieves a group of rows, which reduces network traffic.

Although eDeveloper uses its own array size of rows, these numbers can be
revised. When scanning a large table, increasing the array size can enhance
performance.It is recommended, however, to use the eDeveloper default. The
default should be changed only in special cases.

The array size is copied to the table property only when you create a new
table.

For more information, refer to Chapter 25, SQL Considerations.
Reference Guide 170

XA Transactions

Not applicable. This option is no longer supported.

Alternate Collating Sequence

Zoom from the Alternate Collating Sequence (ACS) setting to an Open File
dialog. Select the ACS file. The file name appears in the ACS properties
setting. Note that if no ACS file is specified in the ACS setting, eDeveloper will
look for an ACS string in Database Information. If no string is found, then
eDeveloper will access the ACS file defined in the Alternate Collating Sequence
File setting of the Environment dialog.

The ACS file that appears in this setting reflects the ACS file set for the DBMS.
When a new DBMS is selected for a specific database, the ACS file changes.

Once the connection to a database is created, it is only disconnected explicitly
or by exiting eDeveloper (only exiting the application leaves the connection
open). Therefore, the changes made in the database properties will take effect
only in

the next connection to the database. It is recommended to exit and re-launch
eDeveloper whenever change database properties that affect eDeveloper
gateway behavior.

For more information, refer to Chapter 25, SQL
Considerations.
Reference Guide 171

Logical Names Settings

eDeveloper’s Logical Names feature is a valuable facility for writing portable
applications. The Logical Names facility allows development

 of applications without any explicit relation to physical storage media or
operating system naming conventions. eDeveloper achieves such portability by
translating application Logical Names at runtime, according to the Logical
Name repository used as the translation table of the installation. A Logical
Name can be used whenever a file name or path is to be used.

Figure 2-22 The Logical Name Repository
Reference Guide 172

The Logical Name Repository Settings

#

This column contains an automatically generated sequential number used by
eDeveloper as a Logical Name identifier. You cannot edit this column.

Name

The Name to be used in the application. This name will be replaced with the
value entered in the Translation column at runtime. The Name is constant for
all installations of the same application.

Translation

The Translation column contains the actual string that should replace the
Logical Name during file access.

Logical Names Usage

At runtime, whenever eDeveloper compiles a file name in order to perform
some I/O process, the Logical Names algorithm is executed. File names are
scanned, from left to right, and any logical name is substituted with the
Translation from the Logical Name repository. Multiple Logical Names may be
used in one file name (for example, one for disk drive, a second for directory,
and a third for the file name).

Logical Names Syntax (in use from Version 5 and higher)

The syntax for Logical Names is:

%logicalname%

Where:

% means Start Logical Name.

logicalname is the Logical Name.

% means End Logical Name.
Reference Guide 173

Rules for using Logical Names:

1. The ‘%’ symbol is not allowed in any file name for purposes other than
delimiting logical names.

2. During translation, the logical name and its delimiters are replaced by
their Translation according to the Logical Name repository. If the
Logical Name is not found in the repository, it is cleared from the file
name.

3. If the closing delimiter is missing, all the text from the first delimiter
to the end of text is treated as the Logical Name.

Language Settings
The Language repository contains details of the translation files used by
eDeveloper’s Multi-lingual support feature.

Multi-lingual Support (MLS)

eDeveloper’s multi-lingual support allows developers to develop an eDeveloper
application in one language and then deploy it in other languages.

The following restrictions currently apply to this feature:

Figure 2-23 The Language Repository
Reference Guide 174

• MLS is available only in the Windows version of
eDeveloper. eDeveloper versions with a text-based user
interface do not support this feature.

• MLS works only for left-to-right languages.

• MLS does not support multi-line edits and rich text
controls.

The Language Repository Properties

#

This column contains an automatically generated sequential number
used by eDeveloper as a language identifier. You cannot edit this
column.

Language

The Language Name column contains the name of the target
language for the translation. This is a case-sensitive column for up
to 128 text characters.

Translation File

This column contains the full path and name of a language
translation file to be used when a language is selected. Zoom from
this column to open a Windows Open File dialog.

A Starting Language setting appears in eDeveloper’s Environment
repository.

Creating a Language Translation File

The command line utility MLS_BLD does not check for the existence
of a destination file, and will always overwrite an existing file with
the same name.

Using MLS at Runtime

You can specify a language for deployment by making an entry in the
[MAGIC_LANGUAGE] section of the Magic.ini file.

If you specify a deployment language, the contents of the following texts will
be translated automatically at runtime using the Language Translation file:

• Controls text property

• Menu entry text

• Prompt help text

• Verify expression operation text

• Window titles text

• Field names text

• Index names text

• Index segment names text

• I/O output file names text

• Choice controls (radio button, combo box, list, tab control) selection
value text

The Font property of each control can be defined as an expression that is
evaluated at runtime to select the appropriate language translation file. The
actual data value used to set the active selection will remain as defined in the
application, regardless of the displayed translation string.

During toolkit all operations that check the size of text in controls (Fit size,
APG on variable), create the control according to the original size of the text
and not according to the translated size of the text.

When using translation text for choice controls, make sure the number of
options in the translated text is exactly the same as the number of options in
the original text. Failure to do so may cause unpredictable results.

For related functions, see GetLang and SetLang in the Functions in Chapter 8,
Expression Rules.
Reference Guide 176

Printer Settings
The Printer repository lists the installation’s available printing devices and their
attributes. Each entry in the repository is a logical eDeveloper printer. Only
references to logical printers are allowed within an eDeveloper application. The
entries in the Printer repository make up the Printer list used for directing I/O
files (operating system text files) to a printing device. When output operations

to Printer Media are performed at runtime, eDeveloper consults the Printer
repository for the physical printer attributes.

In the Printer repository you can direct the output to local or remote printers.

Figure 2-24 Printer Repository
Reference Guide 177

The Printer Repository Properties

#

This column contains an automatically-generated sequential number. You
cannot edit this column.

Name

The Logical Printer’s name. This is the name that will appear in the Printer list
selection window. The printer name is the data string registered in the
eDeveloper program as the printer identifier. The printer name specified here
is searched for at runtime when the eDeveloper program tries to resolve the
logical printer name to get the actual printer data.

Queue

The Queue property specifies the physical printer that will receive all the
output directed to the current logical printer. You can specify either a local or a
remote printer. The Queue property is a string value. eDeveloper parses this
string and extracts valid information. If no valid printer information is found
the logical printer will default to the operating system’s default printer (such as
LPT1 for the Windows operating system).

Commands File

The Commands File property specifies the location and operating system name
of the file that contains the printer control codes that will be used to resolve
the logical eDeveloper print attributes. The Commands file contains both labels
and printer control codes. The eDeveloper print attributes are built using these
labels. When an eDeveloper form is printed, the logical print attributes are
translated according to the information found in the printer’s Commands file.
Commands files of different printers may contain the same labels. The same
program may output different results when the Commands file is different.

Translation File

The Translation File property specifies the location and operating system name
of a file containing a conversion table for converting eDeveloper’s internal
character codes to physical printer codes. The translation file may have 256
Reference Guide 178

entries, one per ASCII character code, which is the internal eDeveloper
character set. Each entry specifies the string substitute of the character that
will be sent to the printer. The printer strings may contain single or multiple
character codes. You may also include control codes in these strings.

Lines

The Lines property specifies the page size eDeveloper uses while printing to
the printer. This page size does not have to be identical to the physical
printer’s page size. Usually the Lines Property specifies a value less than the
number of lines per page of the physical printer. The Lines property value is
used for eDeveloper’s internal accounting while eDeveloper keeps track of
printer output. After sending a number of lines equal to the value of Lines,
eDeveloper will send a form feed signal to the printer. The Lines property is
used as the default for the current printer and may be overridden by the Rows
property in the particular I/O file used for an Output Form operation. Refer to
the I/O Files section of the Output Form discussion in Chapter 7, Operations.

Printer repository information is contained in the [MAGIC_PRINTERS] section
of the Magic.ini file.

HTML Style Settings
The HTML Style repository defines the HTML Style tags available to associate
with HTML forms generated in the HTML Form Editor.

 The HTML Style Properties

Name

A unique name representing an HTML style.

HTML Tag

An HTML tag or tags making up the HTML style, which is merged with an HTML
tag generated by eDeveloper.
Reference Guide 179

An example would be:
BORDER=0 to eliminate the border when displaying hyperlink objects.

Print Attribute Settings
The Print Attribute repository is explained in the Chapter 10, Output Forms.

Secret Name Settings
Secret names are intended for use where there is a need to hide Authorization
system implementation information from unauthorized users. For example,
Secret Names should be used for Application file access keys, User password
fields, Servers/DB properties and Data file access keys.

The Secret Name repository is basically identical to the Logical Name
repository, with the following exceptions:

• Access to the Secret Name repository is allowed to the Supervisor
only.

• Secret names are stored in the security file that is specified as an
Environment setting. This security file is encrypted. The secret
name for a server password is stored in the server settings.

A Secret Name can be used wherever a Logical Name can be used, using the
same syntax. Refer to the Settings/Logical Names section of this chapter for
an explanation of the association of Logical Names to Secret Names.
eDeveloper will attempt to resolve a logical name through the Secret Name
repository first, before looking for it in the Logical Name repository.

Connecting to an LDAP Server

eDeveloper uses the $USER$ and $PASS$ secret names in the LDAP
Connection String environment setting to bind to the Lightweight Directory
Access Protocol (LDAP) server. The $USER$ and $PASS$ tags are replaced with
the user’s name and password.
Reference Guide 180

If the user enters eDeveloper without providing a user name and password,
the LDAP_USER and LDAP_PASS secret names are used to bind to the LDAP
server. If the LDAP_USER and LDAP_PASS are not defined, the LDAP server
binds to eDeveloper as an anonymous user. Since the user has logged onto the
operation system domain, user authentication is not an issue.

User Groups Settings
The User Groups repository is where the supervisor declares groups and
defines their rights.

User ID Settings
The User ID repository lists the User’s ID, name, password, rights, and groups
in which the user is associated. Access the User ID Properties dialog to include
additional user information. For more information about User IDs, refer to
Chapter 13, Authorization System.

Logon Settings

The Logon dialog allows the entry of a User ID and Password of the eDeveloper
user. These values are checked against the User ID repository to determine

Figure 2-25 The Logon Dialog
Reference Guide 181

the user’s rights. If the User ID and Password do not match an entry in the
User ID repository, an error message is displayed and the dialog stays open. If
the User ID and Password combination are found in the User ID repository,
they are used to compile the rights of the user for later use within an
application. User ID and Password have both toolkit and runtime functions.
The Logon also provides access to the Magic Date property. The user may
change the Magic Date property for the specific session. The Logon dialog is
controlled by the following Environment options:

• Input Password

• Input Date

• Allow Access to Logon

These options are described in the Environment dialog section.

The Logon Properties

User ID

The name of the user. Any alphanumeric input is allowed. The User ID must
also be in the User ID repository. The Logon dialog will display the User ID
prompt if the Input Password property is set to Yes in the Environment dialog.
The user identification cannot be more than 30 characters.

Password

The Password to match the User ID. Any alphanumeric input is allowed. The
User ID-Password pair must be defined in the User ID repository. The Logon
dialog will display the User ID-Password prompt if the Input Password property
is set to Yes in the Environment dialog. The user password cannot be more
than 30 characters.

The User ID-Password check is case-insensitive. If the User ID-Password
prompt is displayed, the Logon dialog will remain open until both items are
entered correctly.
Reference Guide 182

Date

An alternative date to the System Date. This date may be queried by the
MDate function. Refer to Chapter 8, Expression Rules. Also see Magic Date in
the Environment dialog.

The Logon dialog will display the Date prompt if the Input Date property is set
to Yes in the Environment dialog.

System Logon Setting

The System Logon setting is located at Settings/Environment/System. This
setting determines the level of the eDeveloper environment integration with
the operating system. The valid values for this setting are:

• None – The Logon dialog may be opened either automatically, according to
the Input Password setting, or explicitly, by activating the Logon menu
option without using any default values as the user name.

• User Name – The Logon dialog may be opened either automatically,
according to the Input Password setting, or explicitly, by activating the
Logon menu option, and the default value for the Logon name will be the
current user who is logged on to the operating system.

Note: The user password in the eDeveloper user file does not have to
correspond to the operating system password.

The Magic.ini File
The Magic.ini file contains all of Magic’s variable configuration information. The
Magic.ini file must be present in the Magic working directory for Magic to start
up. Magic provides various facilities for editing the Magic.ini properties, in the
form of the Settings menu entries. Refer to the preceding sections in this
chapter for information about these facilities. The Magic.ini is a free format
text file that can be edited using any external text editor. eDeveloper also
provides the INIPut and INIGet functions for access to the Magic.ini file from
Reference Guide 183

within an application. For more information on the INIPut, INIGet functions,
refer to Chapter 8, Expression Rules.

The Magic.ini file is divided into sections. Each section contains a group of
related properties. Some Magic.ini file sections are used by eDeveloper and
some contain user information. The Magic sections of the Magic.ini file are:

• Environment - [MAGIC_ENV] - Global environment properties.

• Systems - [MAGIC_SYSTEMS] - Applications for the current installation.

• Servers - [MAGIC_SERVERS] - The list of all the remote Servers available
for the current installation.

• Services - [MAGIC_SERVICES] - The list of eDeveloper Applications
available per server.

• Communications - [MAGIC_COMMS] - The list of eDeveloper
communications drivers.

• DBMS - [MAGIC_DBMS] - The list of all the DBMSs supported by
eDeveloper.

• Databases - [MAGIC_DATABASES] - The list of all the Databases supported
by Magic.

• Logical Names - [MAGIC_LOGICAL_NAMES] - The Logical Name repository.

• Printers - [MAGIC_PRINTERS] - Printer information.

• Gateways - [MAGIC_GATEWAYS] - The list of eDeveloper database
gateways.

• Languages - [MAGIC_LANGUAGE] - The list of supported languages.

The User sections of the Magic.ini file can contain any information that you see
fit to store in it. Typical uses could be:

• Storage of intermediate values produced by the application, such as
last positions in different files and programs, or last customer
processed, and so on, without the overhead of using database
tables.

• Storage of global variables; values that may be shared by different
Reference Guide 184

programs within the application.

• Specific end-user applications, such as General Ledger -
[GENERAL_LEDGER].

• The Magic.ini file contains both installation-specific information, and
user sections with user-specific information. Therefore, in multi-
user installations of eDeveloper, each user should have a separate
copy of a Magic.ini file in a separate directory.

• There are no concurrency controls when accessing the Magic.ini file.
If in a Multi-user installation the Magic.ini file is shared by several
users, it should be used for read-only purposes. An attempt to write
to a shared Magic.ini file by more than one user at the same time
will result in one user overwriting the updates of the other.

The Magic.ini File Format

The Magic.ini is a free-format text file. Each setting value starts on a separate
line. Setting values may span more than one line. Settings are built from a
fixed identifier (name) and a variable part (value). Empty lines and remark
lines may be included. The format for the file is:

[SectionName]

SettingName = SettingValue

.

.

.

SettingName = SettingValue

[SectionName]

.

.

.

;This is a remark line
Reference Guide 185

Where:

[SectionName]

Sections are preceded by a section header line.

Section headers are placed within square brackets. Section headers should
carry unique meaningful names. Blanks are not allowed in a section header
name. The section header is used when accessing properties of the section.
Use long names in order to eliminate possible conflicts between sections
written by different applications. A section ends at the next section header or
at the end of the file.

SettingName

All the properties found after a section header belong to that section. Every
setting value occupies one or more lines. The SettingName is the fixed part of
the Magic.ini setting. It is used to identify and access the variable part of the
setting. Setting names must be unique within a section but not across
sections. Blanks are not allowed in a setting name.

The setting separator. The equal sign is the separator between the property
name and the property value. Every character in front of the separator
(excluding leading and trailing blanks) is part of the property identifier. Every
character after the separator (excluding leading and trailing blanks) is part of
the setting’s value.

SettingName=SettingValue

Any value is allowed for the setting. Setting values are determined by
eDeveloper for the Magic sections and by the developer for the application
sections. To span the parameter value over more than one line, append the +
sign to the end of the line. eDeveloper will treat the next line as a continuation
of the previous one. To explicitly specify the + symbol as part of a property,
use the \+ combination.

; Remark lines

The ; symbol at the beginning of a line will cause eDeveloper to ignore
whatever follows to the end of line.
Reference Guide 186

Saving Server Information to the Magic.ini File

Server information is saved to the Magic.ini file in the following format:
<server name>=<communication type number>, <server address>,
<username>, <password>, <timeout>, <alternate server name>, <server
type number>

Notes:

• The server type number is a unique number assigned to a server type. The
translation between a server type number and a server type is hard-coded
in eDeveloper.

• The eDeveloper server type number is 1. The server type number is 1 for
the Magic Request Broker. For a data server, the server type number is 0.

Command Line Options
Using Command Line options, you can set a session-specific configuration of
the eDeveloper installation. eDeveloper accepts all the configurable properties
from the command line using the same identifiers as used by the Magic.ini file.
Values received from the command line override those written in the Magic.ini
file.

Specifying Command Line Options

The syntax for eDeveloper command line properties is:

MGxxx /Property1=Value1 /Property2=Value2 ...

Where:

xxx - eDeveloper executable file extension:

• GENW for Windows toolkit

• RNTW for Windows for runtime

/ - The / symbol specifies the beginning of a new property.
Reference Guide 187

Property - The property identifier, as specified in the Magic.ini file. The
Property name may contain a file section name. If a section name is specified,
then the property is localized to that section. If no section name is specified,
the [MAGIC_ENV] section is assumed by default.

= - The separator between property identifier and its value. No spaces are
allowed between the property identifier, separator, and value.

Value - The value to be assigned to the property. Specify any of the valid
values. Refer to the sections for information about properties and valid values.

The Operating System command line may be too short to hold all the
necessary options. DOS, for example, allows only up to 128 characters in the
Command Line. eDeveloper, therefore will accept a file that contains all the
Command Line options.

When you want to include a comma (,), a backslash (\), a plus sign (+), or an
equal sign (=) as a literal part of your command line text, it should be prefixed
by a \ character. An example that includes commas is shown in the next
section. Alternatively, you can use a pair of single quote marks (‘) preceding
and following the value to instruct eDeveloper to accept the value as is. This
way, you can include a slash as a literal character. For example:

 /CommandProcessor = ‘%comspec%’

You can include an asterisk (*) in the command line property value to instruct
eDeveloper to take the entire value until the end, ignoring terminators and
quotes. This way you can build a clipboard, using the following expression:

 INIPut (‘clipboard=*’ & VarCurr (VarInp (1)))

This function will work on any alpha value, regardless of its contents. If you
want to use this clipboard concept for attributes other than alpha (such as
numeric, date, ...), you should use the VarAttr function and translate the
VarCurr function to string (using Str(), DStr()...) before concatenating. An
example of this can be seen in The eDeveloper Demo application.

The syntax for an eDeveloper Command Line file is:

MGxxx @filename

Where:
Reference Guide 188

xxx - eDeveloper executable file extension:

• GENW for Windows development,

• RNTW for Windows runtime

@ - The @ symbol instructs eDeveloper to treat the remainder of the actual
command line as a Command Line file.

filename - The location and operating system name of a Command Line
options file. The contents of the file should follow the rules set above for
command line settings. Different options may be on different lines in the file.

Command Line Options Examples

Following are some command line examples for Windows systems.

1. MGGENW /StartApplication=1 /StartProgram=6

This command starts the Development module of eDeveloper and
automatically opens the first application in the Application list, executing the
Task Prefix level of the Main Program and the 6th program of that application.

eDeveloper assumes that the settings belong to the [MAGIC_ENV] section,
because no section is specified in the identifier part of the property.

2. MGGENW /[MAGIC_LOGICAL_NAMES]Drive=C:

Will set the Logical Name Drive to have the Translation C:. If the Logical Name
Drive is not found in the [MAGIC_Logical_NAMES] section of the Magic.ini file,
a new temporary Logical name of these attributes will be created for the
duration of the eDeveloper session.

3. MGGENW @mycmdl

Will instruct eDeveloper to look for its Command Line Properties in a file
named mycmdl located in the current directory.

4. /StartApplication=1

 /[MAGIC_LOGICAL_NAMES]Drive=C:
Reference Guide 189

This file combines the command line settings shown in the first two examples
above.

5. MGGENW

/[MAGIC_PRINTERS]Printer1=LaserPrinter\,lpt1:\,lp.atr\, lp.eng\,66

Will override the settings of the first printer in the Printer repository with the
setting specified in the command line.

Application Launch via the OS Command Line

You can launch eDeveloper with an application physical filename or with an
application prefix as a command line property.

To use this feature, on the OS command line add the property /MCF= followed
by the application prefix or by the full path name of the application file (MCF).

If the property value passed to eDeveloper contains only two characters,
eDeveloper searches the prefix column first for an exact match. Note that the
search is case insensitive.

When the property value is longer than two characters, eDeveloper searches
the MCF name column in the Application repository first.

If an application matching the property is not found, one is created using the
default database.

After the application is either found or created, it is run as any eDeveloper
application.

Command Line Options and Magic.ini Values

Command Line options may be used to override any of the eDeveloper
configurable properties. The Command Line values are essentially temporary
and are only

in effect for the duration of the session. Sessions subsequent to a session that
was started with Command Line options will revert back to the Magic.ini
values.
Reference Guide 190

Command Line values are kept in memory and are not written to the Magic.ini
file, unless one of the Settings menu options is used to edit the eDeveloper
configuration values. When editing Magic.ini values and Command Line values
are also in effect, the resulting repository will reflect the combination of the
two. The actual repositories will contain the Magic.ini file values for all the
properties that were not specified in the Command Line. The Command Line
values will complete the rest of the property values. Note that in this case the
resulting repositories will not reflect all the actual Magic.ini values.

If any of the property values in one of the actual repositories is modified, the
section containing the property values will be written to the Magic.ini file with
the Command Line values. The original Magic.ini value will be overwritten. If
no modification is performed while in one of the repositories, the changes will
not be written into the Magic.ini file.
Reference Guide 191

Environment Properties and Command Line Values

Environment Property Name Command Line Name Values

System

Owner Name Owner string

System Logon SystemLogin string

Magic Date Date system date

User’s ID None string

Input Password InputPassword Y, N

Input Date InputDate Y, N

Default Application StartApplication numeric value

Application Startup Mode ApplicationStartup T, R, B

Screen Mode Prompt ScreenModePrompt string

Century Start Century numeric value

Batch Event Interval BatchPolling numeric value

Task Cache Size TaskCacheSize numeric value

Allow Create in Modify Mode AllowCreateInModify Y, N

Allow Update in Query Mode AllowUpdateInQuery Y, N

Query Mode Locate Warning LocateModeQueryWarnin
g

Y, N

Allow Access to Applications AccessApplications Y, N

Allow Access to Environment AccessEnvironment Y, N

Allow Access to Colors AccessColors Y, N

Allow Access to Fonts AccessFonts Y, N

Allow Access to KBD Mapping AccessKeyboardMapping Y, N

Allow Access to Servers AccessServers Y, N

Allow Access to Services AccessServices Y, N

Allow Access to Visual
Connections

AccessVisualConnection Y, N
Reference Guide 192

Allow Access to
Communications

AccessCommunications Y, N

Allow Access to DBMS AccessDBMS Y, N

Allow Access to Databases AccessDatabases Y, N

Allow Access to HTML Styles AccessHTMLStyles Y, N

Allow Access to Languages AccessLanguages Y, N

Allow Access to Logical
Names

AccessLogicalNames Y, N

Allow Access to Logon AccessLogon Y, N

Allow Access to Printers AccessPrinters Y, N

Allow Access to Print
Attributes

AccessPrintAttributes Y, N

Allow Access to Toolkit AccessToolkit Y, N

Allow Access to Checker
Messages

AccessCheckerMessages Y, N

Allow Testing Environment AllowTesting Y, N

Temporary Tables Path TempPath string

Maximum File Handles FileHandles numeric value

License LicenseName none

License File LicenseFile none

Load Monitor Load Monitor Y,N

Monitor Output File Monitor2File none

Remote Flow Monitor Port RemoteFlowPortNumber numeric value

Remote Flow Monitor RemoteFlowMonitor Y,N

Multi-User

Terminal Terminal numeric value

Multi User Access MultiUser Y, N

ISAM Transactions ISAMTransanctions Y, N

Environment Property Name Command Line Name Values
Reference Guide 193

Deadlock Prevention DeadlockPrevent Y,N

Server Communication
Interval

ServerTimeout numeric value

Lock File LockFile string

ISAM Force Locking Within
Transaction

LockWithinTra Y/N

Resource Lock File ResourceLockFilePath string

Preferences

Default Database DefaultDatabase string

Database for Sort/
Temporary

TempDatabase string

Range/Locate Box Popup
Seconds

RangePopTime numeric value

Sort/Temp Box Popup
Seconds

TempPopTime numeric value

Keyboard Idle Seconds IdleTime numeric value

Pulldown Menu Close
Timeout

MenuCloseTimeout numeric value

Confirm When Auto-Exiting ConfirmAutoExit Y, N

Task Flow Modification FlowModify F, S

Display Copyright Messages CopyrightMessages Y, N

Deployment Custom
Copyright

RTUserCopyright string

Resident MAGIC.INI ResidentINI Y, N

Display Toolbar RtToolBarGUI Y, N

Resident Load on Program
Init

ResidentLoadOnInit Y, N

Load Resident Tables LoadResidentTables Y, N

Display Full Messages DisplayFullMsgs Y, N

Environment Property Name Command Line Name Values
Reference Guide 194

Center Screen in Online CenterScreenInOnline Y, N

Reposition After Modify RepositionAfterModify Y, N

Indent Characters IndentCharacters numeric value

Default Color DefaultColor numeric value

Default Font DefaultFont numeric value

Tooltip Timeout TooltipTimeout numeric value

Maximum Number of
Bookmarks

Bookmarksnumber numeric value

Maximum Number of X-refs MaxCrfResults numeric value

Retry Operation Time
Interval

RetryOperationTime numeric value

IO Device Open Time IOTiming numeric value

Floating Palettes Always On
Top

PalettesAlwaysOnTop Y,N

Dockable Palettes DockablePalettes Y,N

Single Expand Palettes SingleExpandPalettes Y,N

Property Sheet Automatic
Handling

AutomaticPropertyHandli
ng

Open, Close

Image Cache Size ImageCacheSize numeric value

Check Image Change Time ImageCacheCheckTime numeric value

Toolkit Checker Minimal
Level

CheckerLevel Error,
Warning,
Recommendat
ion

Group Checker Messages by CheckerGroups Object, Type,
Object and
Type

Jump automatically to first
item in checker list

CheckerJumpAuto Y,N

Environment Property Name Command Line Name Values
Reference Guide 195

International

Date Mode DateMode A, E, S, B

Thousands Separator ThousandSeparator one character

Decimal Separator DecimalSeparator one character

Date Separator DateSeparator one character

Time Separator TimeSeparator one character

External Files

Logo File LogoFile string

Const File ConstFile string

Help File HelpFile string

Color Definition File ColorDefinitionFile string

Font Definition File FontDefinitionFile string

Keyboard Mapping File KeyboardMappingFile string

Documentation Template File DocumentTemplateFile string

HTML Styles File HTMLStyles string

Print Attributes File PrintAttr string

Security File UsersPath string

Startup Security File StartupUsersFile string

OEM2ANSI Tranlation File OEM2ANSIFile string

Browser Task ANSI to
Unicode Translation

Unicode2Ansi string

Alternate Collating Seq File CollatingFile string

Starting Language StartingLanguage none

Checker Messages table file CheckMessageTable string

European Currency
Conversion File

EuropeanCurrencyConver
sionFile

string

Drop Data Supported User
Formats

DropUserFormats string

Environment Property Name Command Line Name Values
Reference Guide 196

Command Processor CommandProcessor string

HTTP Proxy - Address Port HTTPProxyAddress string

HTTP Timeout HTTPTimeout numeric value

Print Data HTML Template PrintDataHtmlTemplate string

Print Data XML Template PrintDataXmlTemplate string

WSDL Files Path WsdlFilesPath path string

Mail Connection Timeout MailConnectionTimeout numeric value

Mail Operation Timeout MailOperationTimeout numeric value

SNMP database connections
utilization threshold

DatabaseConnectionsUtili
zationThreshold

numeric value

LDAP Address LdapAddress string

LDAP Connection String LdapConnectionString string

LDAP Domain Context LdapDomainContext string

LDAP Timeout LdapTimeout numeric value

SSL CA Certificate Files SSLCACertificateFile string

SSL Client Certificate File SSLClientCertificateFile string

SSL Client Certificate
Password

SSLClientCertificatePassw
ord

string

Server

Activate as Enterprise Server ActivateRequestsServer Y, N

Messaging Server MessagingServer Y, N

Requester Timeout RequesterTimeout numeric value

HTTP Requester InternetDispatcherPath URL address

Web Document Path WebDocumentPath path location

Web Document Alias WebDocumentAlias string

Maximum Number of
Concurrent Requests

MaxConcurrentRequests numeric value

Environment Property Name Command Line Name Values
Reference Guide 197

Enterprise Server Can
Change Application

RequestsServerCanRepla
ceCtl

Y, N

Load Balancing Priority LoadingBalancingPriority numeric value

Web Authoring Tool AuthoringToolPath path string

Context Inactivity Timeout ContextInactivityTimeout numeric value

Post Context Unload Timeout ContextUnloadTimeout numeric value

Persistent Browser Client
Module

UseSignedBrowserClient Y, N

Browser Client Sub-Version BrowserClientSubVersion string

Browser Client Technology BrowserClientTechnology Java,

.Net,

Java or .Net,

.Net or Java

Missing Browser Client
Technology Error URL

BrowserClientTechnologE
rr

path string

Browser Client Cached Path CTLCacheFilesPath string

Browser Client Cached Alias CTLCacheFilesAlias string

Foreground Generator
Context String

ForegroundContextManag
ement

As
background
engine

Single
common
context

Environment Property Name Command Line Name Values
Reference Guide 198

Models 3
model is a set of properties that can be inherited by an object. When
an object is associated with a model, the value of each property that
has not been defined inherits the value of the model. When a property

value of a property is defined for an individual object, the inheritance for that
value is considered “broken.” The defined value overrides the model’s property
value. When the properties of a model class are updated, the values are
reflected for each associated object for all property values except for those
that have been defined individually.

The use of model class definitions is optional, but using them will benefit you
throughout the development and maintenance of your applications. Some
advantages to using the Model repository are time savings for application
development, ease of maintenance, and matching field values in different
tables.

In this chapter:

• Model Repository

• Data Items

• Pictures

• Field Class Properties

• Controls

• Forms

• Help Screens

• Working with Models

A

Reference Guide 199

Model Repository
The Model repository displays the user-defined models for each object class.
The Type repository of earlier versions of eDeveloper has been replaced by the
Model repository.

You can select more than one model of the same object class. The Property
dialog will display property values that are shared for each selected model.

Columns

• Name - The name of the user-defined model

• Class - Model-assigned objects.

• Attribute - Property assigned to an object.

• Folder -Organizes objects in the repository.

• Public Name -Defines a unique name for this model that is used by another
eDeveloper application through an eDeveloper component.

Classes

Fields

Data items of previous versions of eDeveloper have been replaced with field
classes. Select the field model from the Model Class list, and the field attribute
from the Attribute list. The values of the system-based field model are used
when there are no changes to the system-based properties.

Controls

Controls can be assigned to the model classes listed below. Not all controls are
supported by each model class. The controls supported are displayed in the
Attribute column.

• Browser - For tasks executed on a browser
Reference Guide 200

• HTML - For tasks implemented in an HTML environment

• GUI Display - For online interactive tasks

• GUI Output - For online reports

• Text-based - For batch reports

Forms

A Form model can be assigned to the following model classes:

• Browser - For Browser forms

• HTML - For HTML forms

• GUI Display - For online forms

• GUI Output - For online reports

• Text-based - For printed reports

• Frame Set - For HTML Frame Set forms

• Merge - For HTML Merge forms

Help Screens

A help screen model can be assigned to one of the following classes:

• Internal - Helps defined within the eDeveloper application

• Windows - Helps defined outside of the eDeveloper application

Properties

For each model class, a default set of properties have been defined. A default
property value is displayed in italics. You can break the inheritance of a
property to an object model by clicking the Break Inheritance button that
Reference Guide 201

appears to the left, as displayed in Figure 3-1. A disinherited property value
does not appear in italics.

To assign a model with the system model settings of a specific model class,
click the System Model button. When a system model is assigned, you cannot
change the system’s property value defaults. You also cannot disinherit any
property from the model.

Figure 3-1 Breaking an Object’s Link to a Default Property
Reference Guide 202

The Set Inheritance, Break Inheritance, Go To, and System Model buttons are
displayed below.

When you click on the value field, eDeveloper prompts you to inherit any
broken properties. When you click Yes, the broken properties become
inherited, which is indicated by the property name appearing in italic.

Data Items
In previous eDeveloper versions, data items were defined in the Type
repository. In eDeveloper Version 9, the Type repository has been eliminated.
Data fields are now defined in the Model repository.

eDeveloper data items are:

Set
Inheritance
button

Break
Inheritance
button

Defines an
expression for
the entry

Ellipsis
button

System Model
button

Figure 3-2 Model Inherit Properties Prompt
Reference Guide 203

• Real Columns - components of data table rows that hold actual data
values. You define the real columns for an application in the Table
repository. When several different columns have the same characteristics,
you can define a field model for them in the Model repository. For more
information about defining columns and field models, refer to Chapter 4,
Models.

• Virtual Variables - local variables used by an eDeveloper task for
computation and temporary storage. Define the virtual variables you need
when you define the task. You can also use the field models you
predefined in the Model repository.

• Parameter Variables - local variables designated to receive values from a
called task or program. For more information, refer to Chapter 8,
Operations.

Data Item Qualifiers

Data items are defined in terms of attributes (required) and pictures
(required), as well as other optional properties such as ranges and storage
field models.

Attributes

The attribute of a Field model, which you enter in the Attribute property of
either the Model repository or the Column list, specifies the nature of the
information held. Attributes available in eDeveloper are shown in the table
below. Click the Attribute box to select the appropriate attribute.
Reference Guide 204

Attribute Represents

Alpha a string of alphanumeric characters. The maximum
length for virtual variables is either 32K, the amount
of available memory, or maximum column and row
lengths of the underlying database. For Btrieve™ this
may be 4096 bytes, assuming Btrieve was loaded
with the /P:4096 page size property.

Numeric an integer or decimal number. eDeveloper supports
up to 18 digits, with the condition that the number of
whole digits and decimal digits are each rounded up
to the nearest even number.

Logical a field usually stored internally as a single byte with
value either 0 or 1. Use logical attributes when you
are storing pairs of values, such as True/False, Black/
White, Yes/No. Logical attributes are usually
accessed more quickly than their equivalent Numeric
attributes. 0 represents False and 1 True.

Date an attribute that eDeveloper stores internally as
Numeric although it can also be specified as a String
attribute. The numeric date attribute is a counter of
days since 01/01/01 or since 01/01/1901, depending
on its storage field model. The fact that a Date
attribute is stored as a numeric value lets eDeveloper
perform calculations to create new date values. A
Date attribute is translated to its visible value only
when it is displayed.
Reference Guide 205

Time an attribute that eDeveloper stores internally as a
counter of seconds. You can use a Time attribute to
represent either a duration of time or an absolute
time value. Just as with Date attributes, Time
attributes can be subtracted from one another, and
values can be added to or subtracted from them. A
Time attribute is translated to its visible value only
when it is displayed.

Memo a variable length alpha attribute. eDeveloper
attempts to store this attribute in a varying length
format, utilizing the nearest equivalent attribute in
the underlying database. In Btrieve, this attribute is
stored after the fixed part of the record. If the
underlying database doesn’t support this attribute,
the attribute will be stored as Alpha. Once a Memo
attribute is read into eDeveloper, it behaves as an
Alpha attribute, including the consumption of internal
memory based on its maximum length. For this
reason, be careful when you allocate the maximum
size of a Memo attribute, and do not use a Memo
attribute when an Alpha attribute will suffice. A
Memo attribute cannot be part of an index.

BLOB a Binary Large Object. An attribute that contains
binary information not created in eDeveloper, and of
unknown size. eDeveloper stores this information as
is, without understanding the contents. A common
use for BLOB attributes would be to store OLE
objects or image bitmaps. Functions cannot act on
BLOB attributes with the exception of the NULL()
function that will return ‘True’ to signify an empty
BLOB.

Attribute Represents
Reference Guide 206

OLE A BLOB field that is used to create an instance of an
OLE COM object. For OLE field properties, see page
227.

ActiveX A BLOB field that is used to create an instance of an
ActiveX COM object. For ActiveX field properties, see
page 227.

Vector The eDeveloper Vector is basically an array that lets
you store and retrieve data from a specified cell
index. The Vector attribute is based on the BLOB
attribute with an additional cell model property.

The Vector cell must be specified from an eDeveloper
field model, as defined in the Models repository. The
model can be any field data attribute: Alpha,
Numeric, Logical Data, Time, Memo, BLOB, OLE,
ActiveX, or Vector.

Vector indexing starts from one. The Vector attribute
can only be selected from Virtual and Parameter
fields. You cannot directly store vectors in a table.

Recursive vector definitions are not supported. You
cannot put a Vector variable on a GUI or Browser
form. It is not recommended to store large amounts
of data in a vector because the array is stored in the
computer’s memory.

You can access and modify the vector cells by using
the vector functions described in Chapter 8,
Expression Rules.

Attribute Represents
Reference Guide 207

Storage Field Models

A Storage Field Model refers to the machine representation of a data item.
eDeveloper automatically associates a default optimized storage field model to
each attribute. If your application data files will not be shared with another
database, you can ignore storage field models. If you will be accessing files
previously created by a non-eDeveloper application, you may have to solve
compatibility problems by specifying particular storage field models for data
columns. To do this, you specify the required storage field Pictures

Each data item requires a picture qualifier that is strictly related to its
attribute. Picture qualifiers serve three purposes:

• Define the actual size and storage format of the data items

• Customize the default visual representation of a data item on screen forms
or reports (refer to Chapter 7, Programs).

• Define expressions that specify how to convert a data item from its current
attribute to another, for example from numeric to string. For more
information, refer to Chapter 9, Expression Rules.

Pictures
A picture is a string of characters that tells eDeveloper how to define the
format of an attribute. You can specify the picture format in the Picture dialog,
which is accessed from the Picture property in the Details section of the Field
Properties sheet. eDeveloper automatically defines the most commonly used
pictures for data items that have known attributes (for example, dates).

You may be required to specify a picture in three different situations:

1. To define the attribute’s size and default form in the Model or Table
repositories. This way you control the attribute’s data input and
Reference Guide 208

output representation.

2. To override the default format of an attribute to display it on a screen
or report form (refer to Chapter 7, Programs).

3. To specify data conversion rules for eDeveloper data conversion
functions. For more information, refer to the Expressions chapter. For
example, the Str function translates a numeric attribute to a string
representation. Therefore Str (712.93, ‘###.####’) returns the
string 712.9300.

The picture string is composed of three basic types of characters:

1. Symbolic characters interpreted as functional directives.

2. Symbolic characters interpreted as positional directives.

3. Characters used with their proper value as mask characters.

Attribute
Name

Attribute
Type

Picture Meaning

Title Alpha 15 A 15-
character
alphanumeric
attribute

ID Number Numeric ### or 3 3-digit
integer
numeric
attribute

Due Date Date MM/DD/YY Date attribute
format for
input and
output

Percent Numeric ###.## or
3.2

A number
attribute with
3 whole digits
and up to 2
decimals.
Reference Guide 209

Each eDeveloper attribute has its own set of picture directives.

A description of each of the functional and positional directives pertaining to
each attribute follows.

Functional Directives

A functional directive is a picture character that is interpreted the same way
regardless of its location in the picture. For example, in the following three
pictures: N####, ####N, ##N##

• Each defines a 4-digit numeric integer attribute that can hold positive and
negative values.

• N is the functional directive that specifies that the attribute may also
contain negative values. The exact location of N inside the picture string is
irrelevant, as is the location of any other functional directive.

eDeveloper adds functional directives to the picture string when you enter Y in
the relevant prompts in the Picture dialog, as explained below in Defining
Pictures, or when you insert functional directives manually by editing the
picture string in the Picture attribute.

Note that all functional directives must appear in upper case.

Functional and Positional Directive Defaults

eDeveloper allows you to shorten the definition of the most frequently used
attributes, Numeric and Alpha, whose pictures include only positional
directives.

If you start the picture for a Numeric or Alpha attribute directly with a count
value, eDeveloper assumes that the proper default positional directive should
be repeated. The default directive chosen depends on the attribute:

Attribute Default directive

Alpha X (a place holder for any character)

Numeric # (a place holder for a digit)
Reference Guide 210

This way you can easily define the picture used most, as illustrated in the
following table.

Functional Directives for Numeric Pictures

The functional directives are automatically added to the picture string if
required, according to the answers to the following prompts in that attribute’s
Picture dialog:

Attribute Actual Picture Equivalent
Picture

Alpha 7 XXXXXXX or X7

Alpha 3U2 XXXU2 or X3UU

Numeric 4 #### or #4

Directive Value Means

Auto skip: No
(default)

Select Yes to add the functional directive A to the
attribute picture. This directive instructs eDeveloper to
move automatically to the next field, without waiting
for a next field action, when the last character of the
field has been typed during the data entry.

Negative: No
(default)

 Select Yes to add the functional directive N to the field
picture. This directive tells eDeveloper that this field
may contain negative values. If Yes is specified,
eDeveloper automatically enlarges the display size of
the picture, as portrayed by the template, to enable a
sign to be displayed.

Commas: No
(default)

Select Yes to add the functional directive C to the field
picture. This directive instructs eDeveloper to insert
commas as thousands separators in the field. If you
specify Yes, eDeveloper automatically enlarges the
display size of the picture, as portrayed by the
template, to include positions for commas. Commas
may be replaced by any other character as specified in
the Thousands Separator field of the Environment
dialog. For more information, see Chapter 2, Settings.
Reference Guide 211

Synopsis of the Sign String - If you have specified an alternate setting for
the Negative or Positive sign strings in the Numeric Picture dialog:

• The functional directives - or + are added to the end of the picture
string.

Left justified:
No (default)

Select Yes to add the functional directive L to the field
picture. This directive instructs eDeveloper to left-
justify the field value when displayed. By default the
value is right-justified.

Pad fill: No
Character

Select Yes to add the functional directive P to the field
picture. This directive instructs eDeveloper to fill the
part of the displayed field that does not contain digits
with the character specified in “Character:” If you don’t
specify any character, the field is padded with blanks.

Zero fill: No
Character

Select Yes to add the functional directive Z to the field
picture. This directive instructs eDeveloper to fill the
entire displayed field with the Character value if its
value is zero. If you don’t specify any character, the
field is filled with blanks.

Negative sign:
- Suffix -

If you want to display a string instead of the
conventional minus sign (-) in front of a negative value,
override the - in the Negative Sign field with your own
string. To display a string at the end of a negative
value, type the string you want in the Suffix field.
These strings, called sign strings, are added to the
picture string according to the rules explained below in
Synopsis of the Sign String.

Positive sign:
Suffix

If you want to display a string instead of the
conventional blank for the positive sign, type your own
string in the Positive Sign field. To display a string at
the end of a positive value, type the string you want in
the Suffix field. These sign strings are added to the
picture string according to the rules explained below, in
the section Synopsis of the Sign String.

Directive Value Means
Reference Guide 212

• The sign directives are followed immediately by the new sign prefix,
a comma, the new sign suffix, and then terminated by a semicolon
(;). For example, 5.2-(,); is used to enclose a negative number
within parentheses. The picture 4.3+,CR;-,DB; specifies that
positive numbers should be suffixed with the string CR and negative
numbers with the string DB. The character used to split the string
into prefix and suffix is a comma.
The bottom area of the dialog shows the exact template of the field
as it will be displayed, that is, which mask characters are displayed
and how many positions the field will occupy on screen or report
forms.

Examples of Numeric pictures are displayed below.

Contents
of
attribute

Picture Result Comment

-1234.56 ######.#
#

^^1234.56 Negative
not allowed

-1234.56 N######.
##

^^-
1234.56

Negative
allowed

-1234.56 N######.
##C

^^-
1,234.56

Commas in
display

-1234.56 N######.
##L

-
1234.56^^

Left-
justified

-1234.56 N######.
##P*

-**1234.56 Pad fill with
asterisks

0 N######.
##Z*

********* Zero fill with
asterisks

-13.5 N##.##-
DB;

DB13.50 Sign of
negative
values is DB

45.3 N##.##+C
R;

CR45.30 Sign of
positive
values is CR
Reference Guide 213

The ^ symbol represents a one-space character.

Functional Directives for Date Pictures

The functional directives are automatically added to the picture string if
required, according to the properties selected below:

• Auto skip (Y/N): N (default) - Type Y to add the functional directive A to the
field picture. This directive instructs eDeveloper to move automatically to
the next field, without waiting for a next field action, when the last
character of the field has been typed during data entry.

• Zero fill: No Character - Select Yes to add the functional directive Z to the
field picture. This directive instructs eDeveloper to fill the entire displayed
field with the Character value if its value is zero. If you don’t specify any
character, the field field is filled with blanks.

• Trim text: No - Select Yes to add the functional directive T to the field
picture. This directive instructs eDeveloper to remove any blanks created
by the positional directives ‘WWW...’ (weekday name), ‘MMM...’ (month
name), or ‘DDDD’ (ordinal day, e.g. 4th, 23rd). Since these positional
directives must be specified in the picture string using the maximum
length possible, unwanted blanks may be inadvertently created for names
shorter than the specified length. The Trim Text directive will remove all
such blanks.

-13.5 N##.##-
(,);

(13.50) Negative
sign prefix
and suffix is

4055.3 $######.
##

$^^4055.3
0

Mask
character
used in
display only

Contents
of
attribute

Picture Result Comment
Reference Guide 214

If a space is required nevertheless, it must be explicitly inserted in the picture
string as a mask character, using the ^ symbol to indicate a blank character,
such as

TWWWWWWWWW^DDDD^MMMMMMMMM,YYYY

Sample - Because eDeveloper defines the default picture mask for a Date
attribute as ##/##/##, this area initially shows MM/DD/YY, DD/MM/YY or YY/
MM/DD according to the Date mode (American, European, or Scandinavian)
set in the Environment dialog, as explained in Chapter 2, Settings.

If you have changed the default picture, this area shows the exact template of
the attribute as it will be displayed; that is, which mask characters are
displayed and how many positions the attribute will occupy on screen or report
forms.

Examples of Date Pictures - The date used in the following examples is
March 21, 1997. The contents of the date attribute are therefore 729103,
which is the number of days from 01/01/0001.

Picture Result and Notes

MM/DD/YY 03/21/97

DD/MM/YY 21/03/97

YY/MM/DD 97/03/21

DD/MM/YY 21-03-97 when the Date
Separator attribute is set to -

DD-MM-YYYY 21-03-1997 where - is a mask
character

YY.DDD 97.081

##/##/## 03/21/97, when the Date Mode
attribute is set to American

21/03/97, when the Date Mode
attribute is set to European

97/03/21, when the Date Mode
attribute is set to Scandinavian
Reference Guide 215

The ^ symbol represents a one-space character.

Functional Directives for Time Pictures

The functional directives are automatically added to the picture string if
required, according to the answers to the following prompts.

• Auto skip: No (default) - Select Yes to add the functional directive A to the
attribute picture. This directive instructs eDeveloper to move automatically
to the next attribute field, without waiting for a next field action, when the
last character of the attribute field has been typed during data entry.

• Zero fill: No Character - Select Yes to add the functional directive Z to the
attribute picture. This directive instructs eDeveloper to replace any 0 of
the displayed attribute with the character value. If you don’t specify any
character, the blank character is used.

Sample - Because eDeveloper defines the default picture mask HH/MM/SS for
a Time attribute, this area initially shows HH/MM/SS also. If you change the
default picture, this area shows the exact template of the attribute as it will be
displayed, That is, which mask characters are displayed and how many
positions the attribute will occupy on screen or report forms.

MMMMMMMMMM^DDD
D, ^YYYY

March^^^^^^21st,^1997

MMMMMMMMMM^DDD
D, ^YYYYT

March^21st,^1997 with trimming
directive

WWWWWWWWWW^-
^W

Saturday^^^-^7

WWWWWWWWWW^-
^WT

Saturday^-^7 with trimming
directive

Picture Result and Notes
Reference Guide 216

Examples of Time Pictures are displayed below.

Functional Directive List

A functional directive may appear only once, in any position within a picture.

Content
(Number of
seconds since
00:00 hours)

Picture Result Comments

30000 HH:MM:SS 08:20:00 Time displayed on
a 24-hour clock.

60000 HH:MM:SS 16:40:00 Time displayed on
a 24-hour clock.

30000 HH:MM PM 8:20 am Time displayed on
a 12-hour clock.

60000 HH:MM PM 4:40 pm Time displayed on
a 12-hour clock.

60000 HH:MM PM 4-40 pm When Time
Separator is set to
- in the
Environment
dialog.

60000 HH-MM-SS 16-40-00 - is a mask
character.

Directive Attributes Usage

T D Trim MMM..., WWW..., or DDDD.

##/##/## D Display Date parameter
according to the definition in
the Environment dialog, either
American, European, or
Scandinavian.

N N Negative value is allowed.
Reference Guide 217

Positional Directives

A positional directive is a picture character that serves as a place-holder and is
then interpreted with respect to its position in the picture string. For example,
in the following three pictures:

UXX, XUX, XXU

• Each defines a different 3-byte Alpha attribute.

• The positional directive U for an Alpha attribute instructs eDeveloper to
convert the character corresponding to the U position to upper case during
data entry from the keyboard. The picture UXX causes the conversion of
the first typed character to upper case, while XUX causes the conversion of
the second typed character, and so on. Therefore, the position of any
positional directive is critical.

Note that all positional directives must appear in upper case.

+s{,m} N Add Prefix string s and Suffix
string m to positive number.

-s{,m} N Add Prefix string s and Suffix
string m to negative number.

C N Use commas, or the Thousands
separator specified in the
Environment dialog, where
appropriate in numeric
attributes.

L N Left justify. The default is Right
justify.

Pc N Pad with fill character c for
output.

Zc N, D, T If attribute field is zero, fill with
character c.

A all Auto skip for input.

Directive Attributes Usage
Reference Guide 218

Positional directives may appear several times in a picture. For a shortcut
method of specifying consecutive repeated mask characters, refer to the
section on Count Value.

Positional Directives for Alpha Pictures

The table below provides a list of positional directives for Alpha pictures.

Alpha Picture properties include:

Auto skip: No is the default option.

Select Yes in the Picture dialog to add the functional directive A to the attribute
picture. This directive instructs eDeveloper to move automatically to the next
field, without waiting for the next field action, when the last character of the
attribute has been typed during the data entry.

This functional directive is automatically added to the picture string if required.

Positional Directives for Numeric Pictures

The table below provides a list of positional directives for Numeric pictures.

Directive
Character

Holds a place for...

X any character

U a character that will be converted to upper case
when typed from the keyboard

L a character that will be converted to lower case
when typed from the keyboard

a digit (0-9) only. Note that during data entry,
eDeveloper verifies that the user typed a digit in
the positions held by #. Any other character
typed in those positions is rejected and an error
message is issued

Directive
Character

Action

holds a place for a digit
Reference Guide 219

Positional Directives for Logical Pictures

X is a place holder for a character to be used in translating the internal values
to the display/input values: True for 1 or False for 0. In addition, if a range was
specified on the attribute, alternate display/input values can be used, such as
Male, Female.

Positional Directives for Date Pictures

The table below provides a list of positional directives for Date pictures.

. indicates the location of the decimal point

Picture Meaning Range

DD A place holder for the number
of the day in a month

1-31

DDD The number of the day in a year 1-366

DDDD The ordinal day number in a
month

displayed as
1st, 2nd,
3rd, 4th,
etc.

MM A place holder for the number
of the month in a year

1-12

MMM... Month displayed in full name
form (up to 10 ‘M’s in a
sequence). e.g. January,
February. If the month name is
shorter than the number of ‘M’s
in the string, the rest of the ‘M’
positions are filled with blanks.

N/A

YY A place holder of the number of
the year

0-99

Directive
Character

Action
Reference Guide 220

Positional Directives for Time Pictures

The table below provides a list of positional directives for Time pictures

YYYY A place holder for the number
of the year, represented in full
format (e.g. 1993)

N/A

W Day number in a week 1-7

WWW... Name of day in a week. The
string can be from 3 to 10 ‘W’s.
If the name of the day is
shorter than the number of ‘W’s
in the string, the rest is filled
with blanks.

N/A

/ Date separator position. The
system will replace this
character with the character
defined in the Environment
dialog as the Date separator.
Refer to Chapter 2, Settings.

N/A

##/##/
##

Display date as DD/MM/YY or
MM/DD/YY or YY/MM/DD
according to the Date Mode
attribute setting in the
Environment dialog.

N/A

Directive
Character(s)
of Values

Function Legal Range

HH Place holder for the hour 00-23

MM Place holder for the minutes 00-59

SS Place holder for the seconds 00-59

Picture Meaning Range
Reference Guide 221

Summary of Picture Directives

In the following description of picture directives, the lower case characters
listed here have special meanings:

• n - represents the count value

• s - represents a string

• { } - represents an optional part

• c - represents a mask character. To use a directive character, for example
X, where c appears, preface it with a backslash, as in \X.

Positional Directive List

The positional directives are place holders for various classes of characters.

• For Alpha and Memo attributes, each X, U, L, or # directive defines the
type of character. The sum of Xs, Us, Ls, and #s defines the size of the
attribute.

• For attributes with the Numeric attribute, the # directives, the count
values, and the optional decimal position character define the number of
digits in the whole part and in the decimal part. This in turn defines the
default storage field model and length of the parameter.

: Time separator position.
eDeveloper replaces this
character with the character
defined in the Environment
Time Separator attribute.

PM Place holder for the AM/PM
attribute. PM restricts the
maximum value of the HH
directive to 12

AM or PM

Directive
Character(s)
of Values

Function Legal Range
Reference Guide 222

• Using the short form you can optionally specify the count values only,
without a positional directive, implying the # directive for Numeric
attributes or the X directive for Alpha, Memo and logical attributes.

Directive Attributes Usage

X{n} A Any character is accepted for
input

U{n} A Input is translated to upper
case

L{n} A Input is translated to lower case

#{n} A, N Digits are accepted for input

. N Decimal position for the
Decimal separator, as defined in
the Environment dialog.

YY D Last two digits of year (e.g., 97)

YYYY D Four digits of year (e.g., 1997)

MM D Month number (1-12)

MMM... D Month name (length 3 to 10
characters)

DD D Day number in month (1-31)

DDD D Day number in year (1-366)

DDDD D Ordinal day of month (1st, 2nd,
3rd,...)

W D Day number in week (1-7)

WWW... D Day of week name (e.g.,
Sunday, Monday,...), 3-10
characters.

/ D Date separator position (for the
Date separator defined in the
Environment dialog)

HH T Hour (0-99)

Mask Characters

Any character that appears in a picture string and is neither a functional nor a
positional directive for the specific attribute is a mask character. Mask
characters are inserted into the actual attribute value during display. For
example, the string $##### defines a 5-digit numeric integer attribute that is
always displayed with a dollar sign preceding it.

• The position of mask characters is critical. Specifying the dollar sign at the
rightmost position of the picture #####$ causes the dollar sign to be
displayed in the rightmost position of the attribute.

• Mask characters influence neither the size of the stored attribute nor its
internal representation.

• Mask characters may appear several times in a picture. For a shortcut
method of specifying consecutive mask characters, refer to the section on
Count Value.

MM T Minutes (0-59)

SS T Seconds (0-59)

PM T Displays am/pm and changes
hour from 24-hour clock, 1-23,
to 12-hour clock, 13-23

: T Time separator position (for the
Time separator defined in the
Environment dialog).

Directive Attributes Usage
Reference Guide 224

Syntax Rules for Constructing Pictures

Case
Sensitivity

Functional and positional directives must always be
specified in upper case letters. Lower case letters are
interpreted as mask characters only.

For example:

The picture XXXXX defines a 5-character Alpha
attribute.

the picture XXxXX defines a 4-character Alpha attribute
with the intermixed mask character x.

Escape
Character

The escape character \ explicitly specifies that the
character immediately following is a mask character.
This allows you to override the implied meaning of the
directive character and to use a mask character
instead.

 For example:

The picture XX\XXX defines a 4-character Alpha
attribute with the mask character X in the middle. The
example shows the character \ telling eDeveloper to
interpret the X that follows as a mask character.

Suppose you have a four-digit numeric field containing
a weight expressed in pounds. You want to display it
with a P in front of the value. If you simply specify the
picture P####, eDeveloper interprets the P as the Pad-
fill directive, which is not what you want. The correct
picture for your needs is \P####.

Note: To use the \ character as a mask character by
itself, specify it twice, as in \\.
Reference Guide 225

Field Class Properties
The property sheet for Field models includes Storage and SQL properties that
were displayed for Column properties in the previous eDeveloper versions.

Model

You can re-inherit any broken properties or disinherit all properties for the
form model. The default value is zero.

Details

• Picture -You can define the field model picture by zooming to the Picture
dialog box. The default value is zero.

• Attribute - eDeveloper displays the field model attribute.

• Cell Model - You can zoom from the Vector Cell property to open a selection
table of field models.

Count Value The count value is a quick method of repeating the
same character consecutively in a picture. The count
value is a number you put after a character that
indicates how many times the character must be
repeated.

For example:

$#4 means $####

X6 means XXXXXX

X3U2 means XXXUU

The count value can be used for positional directives or
for mask characters.
Reference Guide 226

• Range - You can set the range by entering the required range values. The
default value is zero.

ActiveX and OLE

• Type Library - The type library defines the object type to be used. For OLE
fields, you should first select the type library by zooming from this
property to browse through the objects registered in the current machine
and select the type library of the object.

For ActiveX fields, the type library is automatically set after selecting the
object name. Until the ActiveX object name is selected, the Type Library
property is disabled.

• Object Name - This property specifies the actual object within the type
library. The type library may support several type of objects.

For OLE fields, you should zoom to select the object name after you have
selected the type library. The list of objects displays all the objects sup-
ported by the selected type library.

For Active-X fields, you should first zoom to select an object. The list of
objects displays all objects that are registered in the current machine as
insertable controls.

• Sub-Object Name - Some objects are constructed by a hierarchy of sub-
objects. If the object you selected has sub-objects, you can zoom from
this property to select the sub-object.

Use the sub-object field to store references of the sub-object as it may be
retrieved at runtime.

Some COM objects include Collection Type sub-objects. A collection item is
usually retrieved from an ID field. You can use the MGItemSequential
internal method to retrieve an item from the collection by specifying its
sequential index.

• Instantiation - When set to Automatic, eDeveloper automatically
instantiates the object as the task is opened and releases the object as the
Reference Guide 227

task closes. When set to None, you can create or release the object
manually by using the COMObjCreate and COMObjRelease functions.

• Remote Host - You can define a DCOM object instantiated on a specified
remote host machine by entering the Host IP or Host Name. The remote
host can be set by a regular string, logical name, or secret name by using
the percent character, such as %DCOM_Host%. The property default value
is blank. If the remote host is not specified, the object is instantiated
according to the object’s settings on the running operating system.

• ActiveX Default - This property is available for Active-X fields only. You can
zoom from this property to open the Default Settings dialog that is
provided by the object. You can change the default values that can be
stored as part of the field definition. Not all objects provide a Default
Settings dialog.

Input

• Select Program - Determines whether the end-user can open a program at
runtime.

• Select Mode - Specifies when eDeveloper calls the program defined in the
Select Program field.

Appearance

• Help Screen - Zoom to the Help list to link the Help screen to the control to
which the field model is assigned.

• Tooltip - Zoom to the Help list to link the tooltip to the control to which the
field model is assigned.

• Help Prompt - Zoom to the Help list to link the Help prompt to the control
to which the field model is assigned.
Reference Guide 228

Style

Select the form model and click the control list arrow to choose the control
that you want to assign to the model, and then zoom to open the control’s
property sheet. The following form models are available:

• Browser - Controls that can be displayed on the browser form.

• Browser Table - Controls that can be displayed in table on the browser
form.

• HTML - Controls that can be displayed on the HTML form.

• GUI Display - Controls that can be displayed on the GUI Display form.

• GUI Display Table - Controls that can be displayed in a table on the GUI
Display form.

• GUI Output - Controls that can be displayed on the GUI Output form.

• GUI Output Table - Controls that can be displayed in a table on the GUI
Output form.

• Text-based - Controls that can be displayed on a Text-based form.

Def/Null

• NULL Allowed: No (default)

Yes means that all columns based on this class (database columns or vir-
tual variables in programs) accept NULL as a valid value.

No means that eDeveloper rejects NULL values on all columns based on
this class.

• NULL Value: (optional)

Input to the NULL Value property is permitted only if the NULL Allowed
parameter in the properties dialog box is set to Yes.

• NULL Display: (optional)

Input to the NULL Display property is permitted only if the NULL Allowed
Reference Guide 229

property in the Model Properties sheet is set to Yes.

• Default NULL

The NULL Default property determines whether there will be a default
value assigned to a NULL.

• Default Value: (optional)

The Default Value property assigns a specific default value.

• Database Default: The default database assigned to the field.

Storage

• Character Set

The Character Set property can be an ANSI, OEM, or Unicode character
set.

• Default Storage

This property supports the transparent portability among databases during
runtime that is independent of the gateway used during development.

If you select the Yes value, the following field properties are disabled:

• Stored As

• Size

• Definition

• Modifiable

This property determines if the end-user can modify the column value in
runtime.

SQL

• Database Information

The Database Information property contains customization information
Reference Guide 230

that is transferred to the Database Manager gateway at runtime.

• DB Column Name

This is the actual name of the column as it is defined in the underlying
database.

• Type

This is the SQL data type of the column in the underlying RDBMS.

• User Type

This is the User Defined Type (UDT) as defined in the database.

Control Properties
You can assign a model to a control by selecting the required control from the
Attribute column (such as Edit, Text, Push button, Check box, Radio button,
and so on). The control properties for all control classes are listed below. For a
description of the specific properties for a control, see the Form chapters.

Details

• Data - Data can be defined as either a variable or an expression.

• Button Style - Specifies the design of the button.

• Column Title - Lets you assign a title to a column. A multi-line title displays
line breaks. If the column title is multiple lines, activate the Wide option,
F6, in the Column Title property field.

• Enable Rich Format - Lets you work in Rich Text Format, RTF.

• Control Name - lets you name a control.

• Format - Determines the format for Edit and Push button controls.

• Label Format - Assigns a descriptive label to a Push button control, or as a
format for the label of an existing Push button control.
Reference Guide 231

• Label - A textual description for a Static control.

• Range - A range of values.

• Attribute - Determines the value for the selected variable.

• Default Image File Name - Specifies the name of the bitmap file for display
on a Push button for an image button.

• Default Image File Resource - Specifies the path to the Default Image file.

• Return Action - Specifies the action that is sent to eDeveloper when the
end-user clicks the button control.

• Sortable - Lets you sort rows in the column.

• Marking Column - Lets you select a column in a table.

• Static Type - Displays the type of Static control you have placed on the
form.

• Text - Specifies the text that appears on a Static control and a
Check Box control.

• Allow Dragging -When this property is set to Yes, the developer can drag
the selected control within the eDeveloper application and from an
eDeveloper application to another application. The Drag Begin event is
raised for the control when the mouse’s left button is kept clicked and the
mouse device is dragged 3 pixels to any side.

OLE and Active-X controls do not support Drag functionality.

The DragSetData and DropFormat functions define the data content and
format for controls that are not automatically handled for drag and drop
functionality. For more information, see the DragSetData and DropFormat
functions in Chapter 8, Expression Rules.

• Allow Dropping - When this property is set to Yes, the developer can drag
the selected control within the eDeveloper application and from an
eDeveloper application to another application. The Drag Begin event is
raised for the control when the mouse’s left button is kept clicked and the
mouse device is dragged 3 pixels to any side.

OLE and Active-X controls do not support Drop functionality.
Reference Guide 232

The DragSetData and DropFormat functions define the data content and
format for controls that are not automatically handled for drag and drop
functionality. For more information, see the DragSetData and DropFormat
functions in Chapter 8, Expression Rules.

Input

• Must Input - Determines whether the end-user must enter a value to this
control.

• Modifiable - Determines whether the end-user can change the value in the
control during Runtime.

• Multi-line Edit - Determines whether an Edit control can contain more than
one line of text.

• Vertical Scroll - Allows for vertical scrolling, when Multi-line Edit is set to
Yes.

• Horizontal Scroll - Allows horizontal scrolling, when Multi-line Edit is set to
Yes.

• Allow CR in Data - Determines whether eDeveloper exits the control or
moves down one line when the end-user presses ENTER.

• Select Program - Determines whether the end-user can open a program at
Runtime.

• Select Mode - Specifies when eDeveloper calls the program defined in the
Select Program parameter.

• Selection Mode - Determines whether the Browser or GUI Display List Box
control is set for a Single or a Multiple item selection.

• Password Edit - Determines whether access to the control is limited to
password users (asterisks will replace whatever is typed).

• Allow Modify in Query Mode - Allows the end-user to modify a record in
Query mode.

• View Currency - Allows you to access a currency value from the European
Currency Conversion table.
Reference Guide 233

• Hidden Variable - Determines whether a control is implemented as a
hidden parameter on an HTML form.

• Hyperlink - Defines the links for accessing an URL, jumping to a section in
your Web page, or calling an eDeveloper program.

• Context Menu - Determines whether a context menu is associated with the
control.

Appearance

• Font - Defines the font style.

• Color - Defines the color style.

• Visible - Determines whether the control appears to the end-user.

• Enabled - Determines if the control is enabled.

• Vertical Alignment - Defines the vertical alignment of text in a control.

• Horizontal Alignment - Defines the horizontal alignment of text in a control.

• Image Style - Controls the way an image is fitted into an Image control.

• Image Effects - Lets you add special video display effects to an image on
an Image control.

• Style - Defines the appearance of controls.

• Border Style - Defines the style of the border of a control.

• Line Style - Defines the appearance of lines in a Static control.

• 3D Line - Defines the width of the line in a Static control.

• Border Width - Defines the width of the control border

• Line Width - Defines the Line width for a Static control.

• Slider Style - Defines the direction of a Slider control.

• Slider Step - Defines the increments within the Slider range.
Reference Guide 234

• Choice Columns - Defines the number of columns displayed in a Radio
Button control.

• Tab Control Side - Determines where the tabs appear for a Tab control.

• Number of Visible Lines - Determines the number of lines presented when
the Combo Box control is accessed.

• Scroll Bar - Determines whether a Table control has a scroll bar.

• Context Menu - Determines whether a context menu is associated with the
control.

• Row Divider - Determines whether a Row divider appears in the Table
control.

• Column Divider - Determines whether a Column divider appears in the
Table control.

• Last Divider - Determines whether the divider for the last column is
displayed on the title bar.

• Multi-marking - Lets you mark multiple records.

• Title Height - Defines the title height of a Table control.

• Row Height - Defines the row height of a Table control.

• Help Screen - Determines whether a help screen is associated with the
control.

• Tooltip - Determines whether a tooltip is associated with the control.

• Help Prompt - Determines whether a help prompt is associated with the
control.

• Fix Size Table - Determines whether the table size depends on the size set
in the form or depends on the number of records printed on the page.

• Paragraph Alignment - Defines the alignment of the controls row in a form.

• HTML Internal Attribute - Lets you select an attribute from the HTML Style
repository.
Reference Guide 235

• HTML External Attribute - Lets you select an attribute from outside of
eDeveloper.

• Top Border - Determines whether the column has a top border.

• Right Border - Determines whether the column has a right border.

Navigation

• Placement - Determines whether a control is resized with the resizing of a
form.

• Width - Determines the width of a control.

• Height - Determines the height of a control.

• X1 - The x-coordinate for the left point for a selected line control.

• Y1 - The y-coordinate for the left point of a selected line control.

• X2 - The x-coordinate for the right point of a selected line control.

• Y2 - The y-coordinate for the right point of a selected line control.

OLE

• OLE Class - The object class that can be inserted into the parameter.

• Display OLE As - Determines how to display the object.

• OLE Content - Determines how to store the object.

• Auto Link Update - Lets you automatically update a linked document’s
content bitmap.

• Use OLE Frame Type - Lets you display a different frame style around the
object.
Reference Guide 236

Form Properties
You can select the following forms from the Class column: GUI Display, GUI
Output, Text, HTML, HTML Frame Set, HTML Merge, and Browser. Each form
has its own set of properties, which are described in the following table.

Model

You can re-inherit any broken properties or disinherit all properties for the
form model. You can also select a different model defined for the class.

Details

• Modal Window - You can specify that the form behave as a modal window,
that is, you cannot click another window without first closing this window.

This property is available for Browser and GUI Display forms.

• Floating Window - You can specify that the form behave as a floating
window. This window can be dragged outside of eDeveloper's main
window.

• Form Units - Defines the units of measurement of a form.

• Vertical Factor - Defines the vertical placement of a control on a form grid.

• Horizontal Factor - Defines the Horizontal placement of a control on a form
grid.

• Show Grid -Displays the form grid.

• Grid X - Determines the x-coordinate of the right point of a selected line
control.

• Grid Y - Determines the y-coordinate of the right point of a selected line
control.

• Allow Drop - The Allow Drop property enables the dropping of data onto
the control from other controls in the same application or other
applications running on the same machine.The data copied onto this
Reference Guide 237

control can be set manually by defining a handler over the Drop event, or
automatically by the eDeveloper engine.

• Form Name - Lets you name a control.

• Maximum Lines in Table - Determines the maximum number of lines in a
table control.

• Header File Name - Lets you add an external file to the Head section of the
generated form in Runtime.

• Title Bar - Determines whether the title bar is displayed.

• With Border - Determines whether a border is displayed.

• Frame Set Spacing - Determines the width in pixels of all of the frame
borders in the frame. Disabled when the With Border property is set to No.

• Relative Size - If the relative size is set to Yes, the size of all of the frames
in the frame set is defined as a percentage of the browser window or the
container frame. When the browser window or container frame is resized,
all frames within are resized by their percentage.

• HTML File - Defines the name of the template to be used in an Output Form
operation.

• Token Prefix - Defines the prefix for merge tags in the template. The merge
mechanism searches for tags that begin with this string and replaces the
values according to the tags in the HTML file.

• Token Suffix - Defines the suffix for merge tags in the template. The merge
mechanism searches for tags that end with this string and replaces the
values according to the tags in the HTML file.

• XML Output - If the property is set to Yes, any merged value is converted
to a valid XML form. All attributes should be converted because reserved
characters may be used as part of the format of any variable or
expression.
Reference Guide 238

Input

• Expand Form - Determines whether to expand a form to accommodate
multi-line edit controls.

• Average Palette - Determines whether eDeveloper should provide the
average color from the many color palettes available.

• Hyperlink - Determines the URL called when a Text, Image, Square Hot
Spot, or Circle Hot Spot control is clicked.

• Input Form - Determines if the HTML will be an Input form, where you can
submit data to a web server.

• Context Variables - Lets you select the context variables defined in the
Context Variables dialog box.

• Area - Lets you determine a specific area of the form (for example, header
or footer).

• System Menu - Activates the System menu.

• Minimize Button - Determines whether the Minimize button is associated
with the control.

• Maximize Button - Determines whether the Maximize button is associated
with the control.

• Child Window - Determines whether the form will be opened as a
secondary window.

• Help Screen - Determines whether a help screen is associated with the
control.

Appearance

• Font - Defines the font for text that appears in a control. Zoom from this
parameter to the Font repository and select the desired font.

• Color - The number of a color in the Color list. Zoom from this parameter to
the Color repository and select the desired color.
Reference Guide 239

• HTML Int. Attribute - Selects an attribute from the HTML Style repository,
which will be added inside the control’s tag, or an expression that will
determine the HTML style.

• Wallpaper - The image file used as wallpaper for the form.

• Visible - Determines whether the control is visible.

• Border Style - Defines the style of the control’s border.

• Help Screen - Determines whether a help screen is associated with the
control.

Navigation

• Left - The x-coordinate of the upper left corner of a selected control.

• Top - The y-coordinate of the upper right corner of a selected control.

• Width - The width of the control.

• Height - The height of control.

• Placement - The left, right, top, and button placement values of how the
control is resized with the resizing of the form.

• Fit to MDI - Enables you to set the GUI form of a task to fit the available
space of the eDeveloper MDI. This property simulates the behavior of a
maximized form.

When the Fit to MDI property is set to Yes, the Modal window, Floating
window, Minimize button, Maximize button, and Child window are auto-
matically set to No. In addition, the Startup Position property is disre-
garded.

• Startup Position - This property lets you to define the mode by which the
GUI Display form opens. The Startup Position options are:

• Customized - The window opens at the location defined in the Top
and Left navigation properties of the form. The form size is defined
from the Width and Height navigation properties.
Reference Guide 240

• Centered to Magic - The window opens centered within the
eDeveloper client area. The form size is defined only by the Width
and Height properties.

• Centered to Desktop - The window opens centered within the
desktop area. The form size is defined only by the Width and Height
properties.

• Centered to Parent - The window opens centered within the parent
window. The form size is defined only by the Width and Height
properties.

• Default - The window opens with the default location and size provided by
the operating system. The Top, Left, Width, and Height properties are
ignored.

Help Properties
The Internal Help properties are:

Model: (default)

This property lets you associate a help screen to the specific field class. This
help screen will be available to end-users at runtime when they request help
on a column associated with this field class.

Details

• File Name - The name of the help file.

• Command - Help file commands. For example: Contents, Index, or Find.

• Key - The keys defined to navigate the help file.
Reference Guide 241

Input

• Title Bar: Yes - Displays the Title bar.

• System Menu - Displays the System menu.

Appearance

• Font: 6 (default) - Defines the font size.

• Border Style: Thick (default) - Defines the style of the control border.

Navigation

• Left: 36 (default)

• Top: 0 (default)

• Width: 42 (default)

• Height: 21 (default)

Working with Models
A new object is associated with the system-based model by default. When a
new application is created, it automatically accepts the property values of the
system-based model. The system-based property values are displayed in
italics.

Creating a Model

You can create a user-defined model by redefining the system-based property
values. Double-click the new model entry to access the Property dialog. If no
revisions are made in the Property dialog, the model entry will retain values of
the system-based model.
Reference Guide 242

When the model entry is saved, it becomes read-only. To retain application
stability, existing models cannot be revised.

Deleting a Model

You can delete any user-defined model. When a model is deleted, all objects
associated with the model will be undefined and will be flagged as erroneous
when a check is performed.

When a model is deleted, the following warning is issued:

Associated objects will function unexpectedly.

A special warning is issued when a user-defined default model is deleted.
Objects associated with the deleted default model will have default model
displayed, and will use values supplied from the system-based model. The
system-based model cannot be deleted

Breaking Model Properties

You can define an object value locally. When an object is defined locally, it will
no longer inherit the current or updated property value of the associated
model. Property values that have been “broken” can be re-inherited.

Selecting a Different Model for an Object

When a model is changed for another, the associated object will inherit the
properties of the new model and will disregard the properties of the previous
model.

Removing a Model from an Object

When the No Model option replaces an object that was associated with a user-
defined model, the object will inherit the property values of the system-based
model for that object class.
Reference Guide 243

Expressions

When a model has an expression assigned as a property value, all associated
objects have the model number, as listed in the Model repository, displayed in
the Expressions field of the object. Selecting another expression for the object
breaks the inheritance to the model. If you remove the expression value
without replacing it, the object will not have an expression as a property value.

Rights

Application rights can be assigned to the entire Model repository. You can open
the Rights dialog to set the authorization for any model in the Model
repository. The following rights can be assigned:

• Query - Lets you view the models displayed in the Model repository.

• Modify - Lets you modify the Model repository content, including default
models.

• Delete - Lets you delete any user-defined model.+

• Create - Lets you create a model entry in the Model repository.
Reference Guide 244

Tables 4
ables allow you to organize and define information categories to query,
modify, add, or delete data in Runtime mode. Tables are defined by
columns, which are associated with a specific field attribute (such as

Alpha, Numeric, Date, Time, Logical, and so on). For a complete description of
field attributes, see Chapter 3, Data Items.

In this chapter:

• Table Repository

• Column Repository

• Index Repository

• Foreign Key Repository

T

Reference Guide 245

Table Repository
The Table repository is a composite of the Table pane and the Column pane as
shown in Figure 4-1.

You can select the Table repository from the Navigation pane, Workspace
menu, or click on the Tables toolbar button to create tables for your
eDeveloper application. Both the Table pane and the Column pane will be
displayed.

Database meta-data can be defined and maintained through the Table
repository. Every modification to the Table repository can be synchronized with
the underlying database, assuming that the Change Tables in Toolkit is
checked in the property sheet of the selected database. For more information,
see Database settings in Chapter 2, Settings.

Figure 4-1 Table Repository
Reference Guide 246

eDeveloper neither optimizes database structures nor tunes database
parameters. These tasks should be performed by a Database Administrator,
DBA, with external tools. A new table created with eDeveloper is created in a
generic form, and should be customized to better fit the production
environment.

A table defined in the Table repository is a logical definition that is recognized
by eDeveloper programs. In the database, the table can be displayed either as
a table or a view. You may define several files in eDeveloper that point to the
same database object.

The Table pane displays each table entry, the folder in which it is located, and
statistical information regarding the following:

• Columns

• Indexes

• Foreign Keys

• DB Table

• Database

• Folder

• Public Name

The Column pane displays:

• Entry Number

• Column Name

• Model

• Attribute

• Picture

Table repository parameters are described below.
Reference Guide 247

Table Repository Columns

The following describes the columns of a row in the Table repository:

(for Table identifier)

• This column contains an automatically generated sequential number used
by eDeveloper as a table identifier. When you first create a table, if you
have not defined an explicit DB name for the table in the Database
column, eDeveloper will use the Table identifier to assemble its default
table name. You cannot edit this column.

Name

• Enter a descriptive name. This name is used by eDeveloper for display of
error messages, which may be seen by end-users. The maximum length
for a table name is 30 characters.

Columns

• Columns defined for a table entry. eDeveloper automatically displays the
most current column count. You can zoom from this column to the Column
list to define columns for your table.

Indexes

• Indexes defined for a table. eDeveloper automatically displays the most
current index count. You can zoom from this column to the Index
repository to define indexes for your table. The use of Indexes is
recommended. Additionally it is necessary to define Indexes when using
some of the databases that eDeveloper can access. For more information
refer to Chapter 25, SQL Considerations..

Foreign Keys

• Foreign Keys are pointers in an SQL database that let you maintain
referential integrity between primary table records and records in other
tables. Each record with a Foreign Key points to a record with a Primary
Key and the Foreign Key repository lets you define the relationships
between those records.
Reference Guide 248

• You can only define a Foreign Key where a Primary Key exists.

• A Primary Key is defined for a record in the Index repository.

DB Table

• In the DB Table column you have the options to define the following:

• An eDeveloper server name when the table resides on a remote
host computer

• A complete path for the table

• An explicit OS entry name to override the eDeveloper default table
name

• A logical name

The maximum DB Table column length is 260 characters.

For SQL databases, the actual name of the table is defined in the underlying
database. This name is limited to database specifications. For example, in
Oracle the database name is limited to 30 characters that must begin with a
letter.

Since the full name of an object consists of ‘Owner.Tablename’ or
‘Database.Owner.Tablename’, eDeveloper takes the owner of the table from
the table properties. If no owner was specified in the Owner property (in the
Table Properties dialog), then the owner is the user defined in User Name
property (in the Database Properties dialog).

eDeveloper copies the table name to the DB Table column if the selected
database is an SQL database. eDeveloper replaces blanks with underlines. The
table name can be revised, but not left blank. For example, the table name,
“my emp table”, will appear as “my_emp_table” in eDeveloper. It is possible to
choose a convenient naming convention for all tables by using a pre-defined
eDeveloper Logical Name as a part of the table name. For more information
about eDeveloper Logical Names, see the Logical Names section in Chapter 2,
Settings..

For ease of maintenance and portability, it is best not to set the table location
in the DB Table column, but rather to store the location in the Database
Reference Guide 249

repository, because the Database repository is external to the application. By
placing the table location specification outside of the application itself, the
application is not “hardwired” to a particular environment.

The eDeveloper Path String

Wherever you have the option to specify a path string, it will have the format
 (server-name) table location
where:

• server-name is one of the servers defined in the Server repository. For
more information, see Chapter 2, Settings..

• table location format depends on the operating system or database being
accessed. It can be a standard directory path and an OS table name, or
just an OS table name, or, in some cases, may be the name of an SQL
entry stored among other entries within a single OS entry.

Note: The server-name and path for a table are specified in the Database
entry that the table definition uses. For more information, see Chapter 2,
Settings.. You can still specify server-name and path values in the DB
Table field, for compatibility with previous versions of eDeveloper.

If you leave both the DB Table field and the DB Table expression of a task
empty, eDeveloper will assume that the table has the default table name,
and resides in either the directory specified in the Database description or
the current directory of the local workstation. If you specify a path in the
Application Prefix but leave both the DB Table field and the DB Table
expression empty, eDeveloper uses the path you specified for the applica-
tion together with the default table name.

Database

• The Database name in this parameter provides access information from
eDeveloper to the physical database that stores the application entries.
eDeveloper uses as the default database the setting of the Default
Database parameter in the Environment dialog. To choose a different
database for the table, zoom from the Database column to open the

i For SQL databases the path is ignored.
Reference Guide 250

Database list. The Database list displays all the databases available to your
installation. Select the Database you want from the list. For additional
information on Database Settings, see Chapter 2, Settings..

Folder

• Displays the name of the folder in which the table entry is located. You can
create a folder by highlighting the Table icon on the Navigator pane and
clicking F4. Folders let you group table entries. For more information about
Folders, see Chapter 1, Introduction..

Public Name

• Defines the public name of the table by which it will be called by an
Internet requester or a Call Remote operation. The public name must be
unique within the application file.

Table Properties

 Table Properties are organized by the following tabs:

• Advanced

• SQL

Table Properties - Advanced

Access Key

The Access Key property provides the means to utilize the underlying DBMS’s
table security mechanism. The value of this parameter is passed to the
underlying database on every open table. If an external program or other
eDeveloper application tries to gain access to the table, it will have to provide
the same Access Key to the underlying DBMS. Otherwise, access to the data is
blocked. To make this protection installation-specific, use a Secret Name for
this column. For more information, see Chapter 15, Application Properties..

The Access Key property is disabled for SQL databases.
Reference Guide 251

Encrypt Table: No (default)

The Encrypt Table property is disabled when no access key is defined. When an
access key is defined for the table, the table will be encrypted by specifying a
Yes value using Access Key as an encryption seed. No means that the table
will not be encrypted.

Note: Changing the value of the Access Key or Encrypt Table properties will
cause eDeveloper to prompt the developer for change confirmation.

Cache Strategy: Position and Data (default)

The Cache Strategy specifies the cache strategy that is used with this table.

The Cache Strategy column can have one of three possible values:

Position - The cache holds information about the position of the fetched rows.
This setting is relevant only when the table is used as the Main table. When
you scroll backwards the data will be re-fetched by reading the rows by their
physical position.

Position and Data - In addition to the position, eDeveloper will store the
actual data of the row. If you read pre-fetched data, you will get old values
stored previously in the cache.

None - No caching.

Resident: No (default)

The Resident parameter allows you to define a table as a resident table, and to
determine when the table will be loaded.

The valid values for this parameter are:

• No - The default value, indicates that the table is not a resident table.

• Immediate - Indicates that the table is resident and should be loaded when
the application is loaded.

i For more information, refer to Chapter 11, Data
Management., Update/Delete Statements.
Reference Guide 252

• On Demand - Indicates that the table is resident but should be loaded only
when it is first accessed in the application.

Identify Modified Row

This determines how eDeveloper identifies modifications made to rows by
other users.

eDeveloper can select records according to:

• Position

• Position and Selected fields

• Position and Updated fields

This property applies for deferred transaction mode tasks only.

Size

The size of a record in a table by bytes is noted on the bottom left-hand side of
the Table Properties dialog. eDeveloper updates this value automatically. In
certain cases, depending on the underlying database, the actual length of a
column is difficult to determine, and eDeveloper estimates it as best as it can.
Columns assumed by eDeveloper to be variable in length (for example, Memo)
are not included in this total length. The user cannot alter this field. It is
updated automatically by eDeveloper.

Table Properties - SQL

Information for SQL Database

The Information for SQL Database parameter lets you supply database-
dependent information that eDeveloper can pass to the underlying RDBMS.
The use of this parameter is optional. For more information, refer to Chapter
25, SQL Considerations..

i For more information, refer to Update/Delete Statements in
Chapter 11, Data Management.
Reference Guide 253

Owner

The database’s owner of the table or view. This property supports logical
names.

Position

This property determines the position key for a table. The available options for
the Position property are:

Default - eDeveloper uses its own default as a position index for a table.

Unique Index - In other RDBMSs, eDeveloper uses the shortest unique index.
This can be overwritten by using another index as the position key. If you have
chosen the position as Unique Index, it is advisable to use a real index in the
database to improve performance.

ROWID - In Oracle and Informix tables, eDeveloper uses the ROWID column.

Index

If the position was chosen as Index, then the Index property will allow you to
choose one of the table’s unique indexes.

Default Position

This is the unique identifier that eDeveloper uses as the default position. This
property is for read-only.

Check Existence

This setting determines if eDeveloper checks the existence of every SQL table
it attempts to access in Runtime, and to create that SQL table if it does not
exist.

The As Database option uses the value of the Check Existence property from
the Database Properties dialog. This option is the Check Existence property
default.

Yes enables eDeveloper to create tables in the database. eDeveloper also
checks for the existence of every table it attempts to access. Note that this
check may cause a performance degradation.
Reference Guide 254

No means that eDeveloper will not check if the table already exists before
accessing it. If the table does not exist, a database error message appears.

In Runtime, you should set the Check Existence property to No for enhanced
performance.

Table Type

The table type can either be Table or View. If the table type is View, the DbDel
and DbCopy functions will not work, because a View cannot be created,
deleted, or altered by eDeveloper. If you do a get definition or a View, you
must define a unique index as the Position Key.

Hint

Some RDBMSs such as Oracle and MSSQL, allow hinting the optimizer for
processing a query. In this field the programmer can enter a string that will be
concatenated to the SELECT statement. For more information, refer to Chapter
25, SQL Considerations..

Yes activates the Hint property. No de-activates the Hint property.

eDeveloper does not evaluate the string. The developer is responsible to use
the correct syntax. It is recommended to use Hints only in special cases.
The Hint value can be inherited from the database properties (only when it is
set to Yes).

Cursor

When using the MSSQL gateway, either internal DB commands or cursors are
used. Using DB commands requires separate connections for each result set.
Performance is enhanced when the result set is large.

The available options are:

Yes - enables the user of cursors on the specific table

No - disables the use of cursors on the specific table and uses DB commands
instead

Default - eDeveloper uses cursors or DB commands according to the following
considerations for MSSQL tables:
Reference Guide 255

• eDeveloper uses cursors when the MSSQL table is designated as the main
task table.

• eDeveloper uses DB commands when the MSSQL table is designated as a
linked table.

Array Size

The eDeveloper gateways to the various SQL databases support array
processing. When fetching records from the database, the gateway does not
fetch one record at a time, but rather fetches a group of records, which
reduces network traffic.

The default for this property is 0. When this property is set to 0, the
eDeveloper default is used. The eDeveloper default can be overwritten. When
scanning a large table, increasing the array size can enhance performance. It
is recommended, however, to use the eDeveloper default. Changing the array
size in the table overwrites the Database property settings.

Resident Tables

eDeveloper’s Resident Table facility is based on the principle that certain data
in an application will be used more than once. The Resident Table Facility is a
tool that can be used by the eDeveloper programmer to enhance system
performance by reducing disk I/O, and in the case of Client/Server
configurations, to reduce network traffic. eDeveloper will read the contents of
all tables defined as resident into memory, according to the setting of the
Resident parameter in the Table Properties dialog.

i For more information, refer to Chapter 25, SQL
Considerations..

i For more information, refer to Chapter 25, SQL Consider-
ations..
Reference Guide 256

It is important to note that resident tables are read-only, and cannot be
modified while stored in memory.

 Table Conversion Utility

Table conversion is a process eDeveloper starts automatically if the physical
structure of a table is modified and the data table exists. For example,
changes such as adding a column to a table, removing a column from a table,
changing a column’s attribute, changing index specifications, adding or
deleting a Foreign Key, or modifying a model used in a table, automatically
launches the table conversion process.

It is important to note that if you change an index definition from non-unique
to unique, the conversion process deletes all the rows that meet the duplicate
index condition.

The table conversion process starts after you exit from a table row in the Table
repository, or exit from the Table repository, or as a result of a Model
repository conversion sweep.

eDeveloper maintains the structure of the table as it exists before the changes
are made, along with the new structure, until the table row is left or until the
table repository is left. If you cancel the conversion process, an inconsistency
between the physical and logical structures of the table may remain. In this
case, eDeveloper will not be able to perform an automatic conversion at a later
stage and may report an error the next time it accesses the table.

i For more information about the eDeveloper’s Resident Table
Facility, see Chapter 20, Utilities..

i For more information about The Table Conversion Utility,
see Chapter 20, Utilities..
Reference Guide 257

Column Repository
The Column list contains the column headings and field item information
associated with each heading. To access the Column list, point to Columns in
the Table repository and zoom.

Column Repository Fields

A description of column fields follows:

(for Column identifier)

• This column contains an automatically generated sequential number used
by eDeveloper as a column identifier. You cannot edit this column.

Name

• Enter a descriptive name. If you intend to associate a Model to a column
entry, you can leave the column name blank and eDeveloper automatically
enters the model name. The maximum length for a Column name is 31
characters.

Model

• You can double-click the Model parameter to access the Field Model list.
Field Models have the following attributes:

1. All field model properties are inherited by the column.

2. If the column name is empty, it is set to the field model’s name.

For more information refer to Chapter 3, Models.

Attribute

• Select one of the eDeveloper data item attributes: Alpha (the default),
Numeric, Logical, Date, Time, Memo, or BLOB. You can use the initial letter
or click on the combo box to display the attributes. Refer to Chapter 3,
Data Items., for a comprehensive description of the various attributes.
Reference Guide 258

Picture

For an Alpha or Memo column, the minimum picture required is its length. In
addition, you can enter other picture specifications as needed.

For a Numeric column, the minimum picture required is the number of its
integer digits and, if needed, a decimal point and the number of decimal digits.
You can add other picture specifications as needed.

For a Logical, Time, or Date column, you can accept the suggested picture or
you can add other picture specifications as needed.

BLOB items are binary objects stored in eDeveloper without any data
interpretation. Therefore, eDeveloper cannot create a BLOB item picture. For
more information, see Chapter 3, Data Items..
Reference Guide 259

Column Properties

Field properties are associated properties that define the parameters of a
particular data type. Field properties are displayed in the following sections:

Model

Lets you set or break model inheritance.

For more information see Chapter 3, Models..

Figure 4-2 Column Properties
Reference Guide 260

Details

• Attribute - Displays the attribute of the column.

• Range - Enter valid values for the column, separated by commas. To
specify a continuous range of valid values, type the minimum and
maximum values, separated by a hyphen. For a complete description of
Range, refer to Chapter 3, Data Items..

Input

• Select program - Use this property to associate a zoomable selection
program to the data field. For more information see Chapter 6, Programs..

• Select mode - The select mode property is enabled when a select program
is specified and determines when the select program will be called. The
permissible values are Before, After and Prompt. For more information see
to Chapter 6, Programs..

• Modifiable - You can modify the column after it has been created. If, in an
Online task, you move the insertion point to a column specified as
Modifiable No and try entering data there, eDeveloper will not accept the
new entry.

Appearance

• Help Screen - Use this property to associate a Help Screen with the
Column. The Help Screen is available to users at Runtime when they
request Help.

• Tooltip - Use this property to associate a Tooltip Help to the Column.

• Help prompt - Use this property to associate a Help prompt with the
column.

General

• Picture - Displays the picture dialog for the selected field type.
Reference Guide 261

Style

• Browser - Displays the default form control, and the style properties for
the Browser form.

• Browser Table - Displays the default form control, and the style properties
for the Browser form in Table mode.

• GUI display - Displays the default form control (that is, Edit, Combo, Table,
and so on) and the style properties for the GUI Interactive form

• GUI display table - Displays the default form control, and the style
properties for the GUI Interactive form in Table mode.

• GUI output - Displays the default form control, and the style properties for
the GUI Non-Interactive form.

• GUI output table - Displays the default form control, and the style
properties for the GUI Non-Interactive form in Table mode.

• Text Based - Displays the default form control, and the style properties for
the Text Base form.

• HTML - Displays the default form control, and the style properties for the
HTML form.

Def/NULL

• NULL allowed: No (default)

The Null Allowed property lets you specify whether the end-user can enter
a Null value in a table column. When creating a new table, the NULL con-
straint is derived from this property. The NULL default is derived from the
DBMS section in the MAGIC.INI file.

Yes means that the column accepts the NULL as a valid value. In runtime,
the NULL Allowed property lets the end-user enter a NULL value into a field
before it is passed to the database.

No means that eDeveloper rejects the NULL value.

• NULL value: (optional)

Input to the NULL Value parameter is permitted only if the NULL Value
Allowed parameter in the Column Properties dialog is set to Yes.
Reference Guide 262

The calculation of the NULL Value specifies the value that should be used
when this column contains a NULL value, and could be used in expres-
sions.

• NULL display: (optional)

Input to the Displayed String parameter is permitted only if the NULL
Value Allowed parameter in this same Column Properties dialog is set to
Yes.

• NULL default

The NULL Default property determines whether a Null value or the default
value will be assigned to the column. Valid values are:

• Yes - NULL is the Default Value

• No - The Default Value property will be used

• Default value

The Default Value assigned to the NULL column.

• Database default

This is the default value for the Database Default column in the database.
If a program creates a record and does not select the Database Default
column, then the RDBMS will assign the default value.

eDeveloper loads the database default to access the table definition. If the
default is a constant, eDeveloper also loads the default database into the
Default Value property to serve as the default database for eDeveloper.

When creating a new table, eDeveloper will add this string to the CREATE
TABLE statement as the default value for that column. For example, when
you create a database default ‘defvalue’ in MSSQL table, eDeveloper gen-
erates the following: CREATE TABLE owner1.table1 (Col1 CHAR(10) NOT
NULL DEFAULT ‘defvalue’)

eDeveloper adds this string without any additional formatting to the CRE-
ATE TABLE statement.

Storage

• Character Set - Lets you select between ANSI and OEM character sets.
Reference Guide 263

• Stored As - Every attribute in eDeveloper has several storage types. If not
otherwise specified, the SQL gateway uses the most appropriate default
mapping to the underlying RDBMS data type. For example, the Alpha
attribute may be stored as a Zstring in eDeveloper. This storage is internal
to eDeveloper only. When switching from one RDBMS to another,
eDeveloper attempts to maintain the same storage type. For compatibility
reasons, however, the storage type may differ from one RDBMS to
another. Do not change the eDeveloper default storage types. For more
information see Chapter 25, SQL Considerations..

• Default Storage - eDeveloper enables you to easily set table columns to be
automatically mapped to the expected storage of the underlying DBMS
according to the column’s attribute and the DBMS gateway in use. This
ability adds to the transparency of DBMS portability.
If set to Yes, the column will be mapped according to its default mapping,
which is determined by the DBMS gateway in use.
If set to No, the column will be mapped according to the column’s Storage
property.
The Default Storage property is also available for virtual variables used in
Direct SQL tasks.
The default value for newly created columns is No and the default value for
a Direct SQL task’s virtual variables is Yes.
On importing application export files of previous versions, the Default
Storage property will be set to Yes if the values of the Stored As, Size, and
Definition properties are the same as the default values defined by the
underlying DBMS gateway that is set for the table. Otherwise, the Default
Storage property will be set to No.

• Size and Definition - the Stored As, Size, and Definition properties reflect
the storage type that describes the internal representation of the field.
eDeveloper assigns the default storage type and size, which depends on
the field attribute, its picture, and the database assigned.

• Update Style - Previous versions of eDeveloper allowed only absolute
numeric updates. For example, you could only set Value X for Field FLD1
(FLD1=X)

eDeveloper Version 9 also lets you make differential updates. For example,
you can update FLD1 by using the value FLD1+X (FLD1=FLD1+X). The
Reference Guide 264

Update Style property has been added to the Column Properties sheet.
The values for the property are:

• Absolute - a fixed value update

• Differential - differential value update

This property is only effective for Deferred Transaction mode tasks for the
Numeric field type that has a normal storage type and relates to an SQL
table. This property does not apply to ISAM files.

SQL

• Database information - The Information for SQL Database parameter lets
you supply database-dependent information that eDeveloper can pass to
the underlying RDBMS. The use of this parameter is optional. For more
information, refer to Chapter 25, SQL Considerations..

• DB Column name - This is the actual name of the column as it is defined in
the underlying database. This name has the limitations of the specific
database (such as reserved words that cannot be used in a column name).

When adding a new column to a table, eDeveloper copies the name of the
column to the DB Name column, and replaces blanks with underscores.
You can overwrite the name that appears in the DB column, but you can-
not leave the DB Name column blank. You can also choose a convenient
naming convention for all columns by adding a logical name as a prefix to
the column name.

• Type - This is the SQL data type of the column in the underlying RDBMS. It
is loaded when Get Definition is performed. When creating a new table in
the Table repository, eDeveloper uses its own default mapping, which
eliminates the need to specify the database data type. In order to force
the use of a specific data type in cases where the eDeveloper default is not
sufficient, a different data type may be specified.

For example, the Magic date column is mapped to the ‘Date’ data type in
Oracle. You can, however, force eDeveloper to map the Date column to a

i For more information see Chapter 11, Data Management.,
Numeric Field Updates.
Reference Guide 265

different data type by specifying CHAR (8) as the SQL type.

User type - This is the User Defined Type (UDT) as defined in the database.
In most RDBMSs, a user defined type can be created to redefine a system
datatype.

For example, the UDT ‘description’ is based on ‘VARCHAR(20) ’. Once a
UDT is created, it can be used in the CREATE TABLE and ALTER TABLE
statements, as well as attaching defaults and rules to it. When loading a
table definition (using the Get Definition utility), eDeveloper loads the UDT
of each column, and the system data type on which it is based. This is for
internal use only. When creating tables in eDeveloper, eDeveloper uses
only the SQL type. eDeveloper will not create the columns with a UDT

Index Repository
The Index repository lets you define unique or non-unique index entries to
browse through a designated table. Index entries are associated to index
segments, such as identification number, email address, or telephone number
information for a specific table. To access the Index repository, point to the

i For more information, refer to Chapter 25, SQL
Considerations..
Reference Guide 266

Index parameter of the table row you want and zoom. The Index repository is
displayed below.

The definition of the index is logical and relevant only to eDeveloper. The index
in the database may differ from the index defined in eDeveloper. By using the
Get Definition utility, you can access the actual index structure in the
database.

It is best to build an index in eDeveloper that matches the index in the
database so that no Sort operation is required by the Optimizer. The more
aligned the indexes are between eDeveloper and the selected database, the
faster the response time.

When defining an index in eDeveloper the following results occur:

• If you assign a real index type to a new table, eDeveloper creates an index
in the database to match the eDeveloper index.

Figure 4-3 Defining an Index for a Table
Reference Guide 267

• In runtime, the eDeveloper index determines how the ORDER BY clause is
added to the SELECT statement issued by eDeveloper. The segments
specified in the index are the columns that are specified in the ORDER BY
clause.

Index Repository Columns

This is a description of the parameters of an entry in the Index repository:

(or Index identifier)

• This contains an automatically generated sequential number used by
eDeveloper as an index identifier. The cursor skips this column.

Name

• A descriptive name for the index.

Type

• Unique (the default) - means that only one row with a specific value in this
index can be present in the table. Some SQL gateways require at least one
unique index in eDeveloper to work with the table. For more information,
refer to Chapter 25, SQL Considerations..

• Non-unique - means that duplicate index rows are allowed.

Index Segment List Columns

The order of appearance of the segments in the repository reflects their
hierarchical strength (major, intermediate, minor) in order of decreasing
significance. The order of appearance of segments influences the sorting
sequence for this index. The Index Segment repository can store 32,767
entries.

This is a description of the columns of a row in the Index Segment repository:
Reference Guide 268

(for Segment identifier)

This column contains an automatically generated sequential number used by
eDeveloper as Segment identifier. The cursor skips this column.

Column (for Column number)

The number of the table column to be used as a segment. You can enter the
number you want here or to zoom to the Column list displayed on the right to
select the column you want.

Name

This column shows the name of the column chosen as a segment. The cursor
skips this column.

Size

The cursor parks in this column only if the column attribute is Alpha. You can
then shorten the size of the segment column to attempt to improve the
performance of searches. If you do shorten the segment, it is advisable to
define the Index as Non-Unique, to prevent loss of rows. However, specifying
Non-Unique may impose performance penalties of its own, so it is not always
certain that shortening a segment by a few bytes will improve performance.

When using SQL databases do not modify this property.

Order

• Ascending specifies an ascending sort direction of the segment.

• Descending specifies a descending sort direction of the segment.

The segment order may utilize an alternate collating sequence if one is
specified in the Environment dialog. This happens when the segment is an
Alpha column and its Translate parameter is Standard. eDeveloper supports
only one alternate collating sequence at a time. It is also important to ensure
that all tables being accessed when an alternate collating sequence is active
were created using the same sequence. If this is not the case, eDeveloper can
be confused as to the true collating sequence of these tables, and Range/
Locate queries may give incorrect results.
Reference Guide 269

Index Properties

Index properties are associated properties that define the parameters of a
particular data type. Index properties are organized by the following tabs:

• Advanced

• SQL

Index Properties - Advanced

Direction: Two Way (default)

Two Way - tells eDeveloper that it will be necessary to enable forward and
backward movement over this table, typically in an online task for databases
that do not support two-way movement. It is usually beneficial to define
indexes as One Way if they are to be used only in batch processing and if the
database does not support two-way indexes. While some database gateways
will ignore this parameter and provide two-way indexes by default, others,
such as SQL, can use this information to decide whether one index is sufficient
or two are required.

One Way - means that only forward access is required.

Range Mode: Quick (default)

Quick - means that the defined index supports a fast range execution by using
the index.

i Tuning this property according to your specific database
can improve performance. For more information see
Chapter 25, SQL Considerations..
Reference Guide 270

Full - means that the range operation is executed by sequential scanning. A
Range Mode specified as Full results in significantly slowed performance.

Index Properties - SQL

Information for SQL Database

The Information for SQL Database parameter lets you supply database-
dependent information that eDeveloper can pass to the underlying. The use of
this parameter is optional. For more information, see Chapter 25, SQL
Considerations..

DB Index Name

This is the actual name of the index, as it is defined in the underlying
database. This name has the limitations of the specified database.

When adding a new index to a table, eDeveloper copies the name of the index
to the DB Index Name, and replaces blanks with underscores. You can
overwrite the index name, but you cannot leave the DB Index Name column
blank.

For example, the eDeveloper index name ‘emp ind1’ becomes emp_ ind1 as
the DB index name.

Index Type

The Index Type property specifies whether the index is contained in the
database or defined only in eDeveloper. The permissible values are: Real or
Virtual. When creating a new table, if the index is created in eDeveloper, the
index type must be specified as Real.

i Tuning this property according to your specific database can
improve performance. For more information, see Chapter
25, SQL Considerations..
Reference Guide 271

The Index Type property has no effect on existing tables in runtime. For
example, if a end-user wants to access a dataview a virtual index needs to be
added.

Virtual indexes are not recommended to replace the sorting operation in the
program, especially when the Sort Using RDBMS feature can be accessed. This
enables the records to be fetched in a required order, so that sorting is not
necessary in eDeveloper.

Hint

Some RDBMSs allow hinting the optimizer for processing a query. In this
column the programmer can enter a string that will be concatenated to the
SELECT statement. For more information, refer to Chapter 25, SQL
Considerations..

Clustered

In MSSQL and Informix, the Clustered property specifies whether the index
will be clustered when tables are created via eDeveloper. You can decide which
index is clustered, otherwise the table is created without a clustered index.
Assigning a clustered index to a table with a high insert ratio may cause
performance problems.

A clustered index refers to the physical data, which is stored in the order of the
index. A clustered index is efficient for scanning sets of data in the order of the
index, and less efficient when trying to access one of the records directly.

Drop During Reindex

This property determines whether eDeveloper will drop an existing index when
the open mode of the table is Reindex in a task. For more information, see
Chapter 25, SQL Considerations..

i For more information, see Chapter 25, SQL Consider-
ations..
Reference Guide 272

Primary Key

This check box specifies which index is the Primary Key. Only one of the unique
indexes can be the Primary Key. For more information, refer to Chapter 25,
SQL Considerations..

Foreign Key Repository

Maintaining the relationship between primary keys and foreign keys is known
as referential integrity. Databases support the constraint listed below through
their table declarations or through their declarative referential integrity.

You can define Foreign keys in the Foreign Key repository, which is a composite
of two tables: the Foreign Key Definition table and the Foreign Key Segment
table as displayed below.
Reference Guide 273

Foreign Key Definition Columns

The following is a description of the Foreign Key Definition parameters:

• Foreign Key number (#) - An internal automatically generated number that
represents the order of the Foreign Key in eDeveloper.

• Foreign Key Name - The name of the Foreign Key in eDeveloper. This name
is used to define the Foreign Key in the database. A foreign key is a
column or group of columns that relates a row in one table to a unique row
in another table, usually by the other table’s primary key.

• Referenced Table - The table to which the Foreign Key should refer to.

• Primary Key - The eDeveloper Primary Key name for the referenced table.
The Primary Key is a column or a group of columns that has a unique key,
and considered the main access route to the row. There can be one or
more unique keys to a table, but there can be only one Primary Key.

Figure 4-4 Defining a Foreign Key
Reference Guide 274

• Create in DB - This check box lets you specify if the Foreign Key is limited
to eDeveloper or also relates to the database. Create in DB is checked by
default if the referenced table is in an SQL table from the same DB as the
Main table. Otherwise, this check box is disabled and unchecked.

The limits listed above restrict the values of columns in the table either
absolutely or in certain columns of the specific table. The current ANSI
standard requires that the definition of these constraints be declared as part of
the table creation or modification.

Foreign Key Segment Columns

The following is a description of the Foreign Key Segment parameters:

• Current Table Segment number (#) - A generated number that represents
the order of the current table segment.

• Current Table Segments - These segments can be selected from the
current table by zooming in the Column list. Each segment in the current
table must have a matching segment in the referenced table.

• Referenced Table Segment number (#) - A generated number that
represents the order of the referenced table segment.

• Referenced Table Segments - These segments can be automatically
inserted when selecting the index defined for the referenced table.
Exchanging one index for another overwrites the segments with the new
index segments.
Reference Guide 275

Application Engine 5
he application engine is eDeveloper’s taskmaster - the runtime mode is
activated by the end-user to perform the procedures comprising the
application. eDeveloper lets you define the logic as a response to

implicit and explicit events that may occur during the execution of a task.

In this chapter:

• Tasks

• Engine Levels and Operations Repositories

• Event Handling

• Handlers

• User-Defined Events

• Information About the Engine

• Record/Row Loop Flowcharts

• eDeveloper Cache

• Engine by Record Level

T

Reference Guide 276

Tasks
A task is the basic object with which to construct programs to implement
procedures that make up the application. Because almost every database
procedure requires some variation of looping through a database table, the
engine executes a task by looping through a table called the Main table of the
task.

1. You define a task’s Main table as a task property, selecting either one
of the database tables you previously defined in the application’s
Table repository, or Table 0, which is a virtual scratch file in memory.

2. The second task property to specify is whether the task is Online,
Batch, or Browser.
In an Online or Browser task, the end-user browses the Main table by
moving from record to record. This means that the only records
processed are those browsed by the end-user. If your program needs
to interact with the end-user, by providing data entry screens and
lookup windows, you must include Online or Browser tasks for it.

In a Batch task, eDeveloper loops automatically through the table. It
simply starts with the first record in the dataview you define and visits
every record until it reaches the last record. If your program has to
perform automatic procedures such as generating reports and global
table updates, you must include Batch tasks for it.

3. Once you have chosen the Main table and the type of looping, Online,
Batch, or Browser, you can then customize the task to accomplish a
specific job. You tell eDeveloper what actions, to perform and
according to which rules, at each stage of the loop: task, record,
control, or group for Batch tasks.

You tell eDeveloper’s application engine about each task’s processes by:

• Specifying the operations that must occur, while eDeveloper or the end-
user loops through the table. For example, inputting data or printing.

• Placing the operations in different level Operation repositories according to
when the engine must execute them.
Reference Guide 277

Operation repositories are where you put all of the operations that control the
task. Where you put an operation, in the Operation level, determines at which
stage it is executed by the engine, see Figure 5-1.

Note that the term used for an engine stage is called Handler level, and a
change of parameter for a Batch task is called Group level.

Engine Levels
The following figure illustrates the relationship between the engine’s Handler
levels and the various Operation repositories you can define in a task.
Reference Guide 278

Figure 5-1 A Model of the eDeveloper Application Engine
Reference Guide 279

Operation Repositories

Figure 5-1 displays the Level repository and the Task Execution repository. The
Level repository organizes the access to the various Operation level tables.

Each handler row represents an operation level (Task, Group, Record, Control,
or a user-defined handler). The Event column display the handlers available
for a specific Operation level. For example, the Control level has four handlers
- Prefix, Suffix, Verification, and Change. The fields at the intersections of rows
and columns identify the various Operation repositories. The name of each
Operation repository corresponds to its source row and column name, for
example Task Prefix, Record Main, Control Prefix, Control Suffix, or Task Suffix.

After selecting the required Operation level and handler, you can then enter
the required operations for your dataview.

The Main handler is relevant only for the record level, and therefore the only
Operation repositories with the identifier “Main” are the Record Main Operation
repositories.

Below is a brief listing of the various Operation repositories, presented in the
sequence in which they are executed by their corresponding engine levels.

Task Prefix

In the Task Prefix Operation repository place the operations that the engine
executes at the beginning of the task. The operations stored in the Task Prefix
Operation repositories are for the task’s initialization procedures. Task Prefix
operations are often used for printing report headers and initializing local
fields.

Group <break variable> Prefix

This level applies to Batch tasks only.

In the Group Prefix place the operations that the engine executes after the
break field value has changed. That is, at the beginning of the group of records
with a new value in the break field. This level is typically used to print report
group headers. There is no limit to the number of Group levels that can be
defined.
Reference Guide 280

Record Prefix

In the Record Prefix, you should place the operations that the engine executes
for every record immediately after the record is read from disk and before
interaction starts. The Record Prefix Operation repository stores operations
that are used at the initialization stage of a record: procedural operations that
need to be carried out on the record before the beginning of processing its
parameters.

Record Main

In the Record Main place the operations that the engine executes for building
the dataview. For more information, see the Task Dataview section of this
chapter.

Control Prefix

In the Control Prefix, place the operations that the engine must execute before
the insertion point is moved to a particular control. The Control Prefix
Operation repository stores operations that are used at the initialization stage
of a specific control type. A control handler can only come after a record
handler.

Control Suffix

In the Control Suffix, place the operations that the engine executes at the end
of the control. The Control Suffix Operation repository stores operations that
are used for the control’s exit procedure, that is, just before the engine leaves
the control to reset, update, or to print a control value.

Control Verification

Control Verification operations are performed whenever the insertion point is
taken away from the control and whenever the control is passed through in
Fast mode, before the Control Suffix level.
Reference Guide 281

Control Change

In the Control Change handler level place the operations that the engine
executes when a control variable is changed. The Control Change is for Online
task types only.

Record Suffix

In the Record Suffix place the operations that the engine executes:

• For each record of the dataview in batch tasks.

• For each record browsed and modified in online or browser tasks. This
means that if the record was not changed, the Record Suffix operations
will not be executed.

Group <break variable> Suffix

This section is relevant for Batch tasks only.

In the Group Suffix place the operations that the engine executes before
processing the record with a break field value that has changed. The Group
Suffix Operation repository also stores the operations that are used for the
printing of report group footers.

Task Suffix

In the Task Suffix place the operations that the engine executes at the end of
the task. The Task Suffix Operation repository stores operations that are used
for the task’s exit procedure; to update fields for a calling task, or to print
report totals.

Handler Level

The handler level lets you define a flow of operations that can be executed
whenever a specified event occurs.

For more information about user-defined handlers, see the following Event
handling section.
Reference Guide 282

Event Handling
eDeveloper lets you define the eDeveloper logic as a response to implicit and
explicit events that may occur during the execution of a task.

The following are terms for the event-driven engine:

• Event - An event is a logical definition of an occurrence. An event can be
handled by an event handler to perform a flow of operations.

• Trigger - An event can be assigned as a trigger of another user-defined
event. When the triggering event is raised, it triggers the user-defined
event.

• Handler - A set of operations designated to be performed when a specified
event is raised.

Event Types

Events in eDeveloper are divided into two groups, Pre-defined events and
User-defined events.

Pre-defined events are divided into the following categories:

• Internal eDeveloper events. These are:

• Events that are defined by the eDeveloper Runtime operation.

• Events that have handlers hard-coded into the eDeveloper engine.
For example: Prefix, Main, or Suffix.

• Events triggered with a mouse button. Mouse button triggers are
onclick, ondblclick, onmousever, and onmouseout.

• System events. These events are keystroke combinations.

• User-defined events are divided into the following categories:

• Timer events - Events that occur at a pre-defined interval.

• Expression Evaluated events - Events that are raised when an
expression evaluates to True.
Reference Guide 283

Interactive Task Event Handling

Interactive task event handling lets you handle pre-defined or user-defined
events for Online or Browser task types.

The Control Operation Level

The Control Operation level lets you control the behavior of a specific control
type at runtime. For example, you can set and display values, check input, and
implement other operations.

You define the Control level in the Task Execution repository as shown below.

The Control Operation level has the following fields:

Figure 5-2 Defining a Pre-defined Control Handler

Handler Level Select the Control Operation level

Event Prefix, Suffix, Verification, or Change

Details Zoom to select the control from the main
screen of this program to be assigned to
this handler

Scope Not accessible

Propagate Not accessible

Enable Yes enables the handler

No disables the handler

Operation The number of operations in the Control
Operation repository
Reference Guide 284

The Handler Operation Level

The Handler level lets you assign a handler for an event. The Handler level can
be created between a task and a record, or within a Group or Control Level
handler. The Handler level shares all of the fields of the Control level but lets
you choose the required event type from the Event field as shown below.

You can access an event defined in the Users Event repository by selecting
Application in the Events field. For more information on user-defined events,
see the User-Defined Events section in this chapter.

Batch Task Event Handling

Batch task processing is different from the interactive process. Unlike
interactive tasks, where the runtime engine waits for input, Batch tasks
process the records without waiting for input.

Figure 5-3 Choosing an Event Trigger Type from the Event List

Figure 5-4 Selecting a Trigger Event for a User-Defined Control Handler
Reference Guide 285

Batch tasks can poll pending events. You can define the Batch Task engine to
poll events by a timer, by the number of records processed, or by both.

The Batch Event Interval field, in the Environment dialog, lets you set the
timer for the event polling of Batch tasks. Entering a numeric value of 0
disables the Batch Event Interval. The polling of events will then be
determined only by the numerical value of the Record Event Interval in the
Task Control dialog.

The Record Event Interval, in the Task Control dialog, lets you define the
number of records for the event polling of Batch tasks. Entering a numeric
value of 0 disables the Record Event Interval. The polling of events will then be
determined only by the numerical value set in the Batch Event Interval setting
in the Environment dialog.

The Group Handler level is only relevant to Batch task types, and can be
located only between a task and a record, as shown below.

Batch Event
Interval

Record Event
Interval

Behavior

1 0 0 Never poll in that
task

2 0 N Poll every N
records

3 M 0 Poll every M
milliseconds

4 M N Poll every M
milliseconds and N
records

Figure 5-5 The Group Handler Level for Batch Tasks
Reference Guide 286

The Group Handler level lets you group records by a specific variable. For
example, you can have a Group level for Customer Identification or Number of
Purchases. When you change the variable for the Group level, you must reset
the Prefix and Suffix handlers.

Handlers

The Task Break table of the Task Execution repository of previous versions has
been renamed the Levels repository. The Levels repository displays a handler
and its association with an existing event. The Handler table resides in a task,
and displays the Handle flow, its fields and virtual variables.

In the old Task Break table each row defined all Flow operations for each
Operation level (Task or Record). In the Levels repository, for eDeveloper
Version 9, each line has a pulldown menu that displays its handlers: Prefix,
Suffix, or Main, as shown below.

Task and Record level handlers are fixed. They are automatically generated for
new tasks or records, and cannot be added or removed.

Group Level

The Group level is only relevant for Batch task types. The Group level can be
located only between a task and a record. The Group level lets you group
records by a specific variable. When you change the variable for the Group
level, you must reset the Prefix and Suffix handlers. For more information, see
Batch Task Event Handling on page 285.

Figure 5-6 Definition Level Repository
Reference Guide 287

Control Level

A Control level has been added to the task flow. The Prefix, Suffix, Verification,
and Change handler types are associated with this new level. The Control level
lets you define flow operations that can be executed when a specific control is
entered or exited. Control handlers can be added only after the Record handler
level.

Handler Level

The Handler level lets you associate a handler with an event.

Level Repository Fields

The Levels repository has the following fields:

• Level

• Task

• Group - For Batch task types only

• Record

• Control

• Handler

• Details - display a variety of relevant control types to define the exact
context of the handler.

For Group Handlers, the Details column displays the Var field, which lets
you select a variable from the Variables list.

For the Control and Handler levels, the Details column displays the Ctrl
field, which lets you select the control to which the handler associated.

You are required to select a control when working at the Control level. The
Control Prefix, Suffix, Verification, and Change cannot be defined for an
unspecified control.

You are not required to select a control when working at the Handler level.
Selecting None in the Details property enables the handler to execute the
linked event for all control types in a task.
Reference Guide 288

• Handler Type - For error handlers, the Detail column displays the Dir field,
which lets you define the engine directive that can be performed upon
completion of the handler and the MSG field that defines whether
eDeveloper should display the default error message. You can define an
error handler for the following levels:

• Task - Prefix and Suffix

• Group - Prefix and Suffix

• Control - Prefix, Suffix, Verification, and Change

• Handler - System, Internal, User, Expression, Timer, and Error

• Scope - lets you determine when a handler will execute an event. The
scope of the task may be:

• Task - the handler executes the event in that task.

• Subtree - the handler executes the event in that task and all of its
subtasks.

• Global- this is relevant only for main program handlers that are part
of a component application. When set to Global, the handler is
available to the host application.

• Propagate - you can propagate an event to an event handler defined in a
higher level. In other words, once this event has been handled,
eDeveloper passes the same event to the previous program, the one
before it, and so on, looking for a handler for this event.

• Enable - enables or disables a handler.

• Operations - the number of operations listed in flow section.

Event Handler Behavior

• Every time an event is raised, it enters an event queue of the running
context.

• eDeveloper polls the event queue for pending events at the following
timings:

• Online and Browser task – Every time the task is idle.
Reference Guide 289

• Batch task – Every passed time interval according to the Batch
Event Interval environment setting, or every number of processed
records according to the Record Event Interval in the Task Control
dialog.

• For each event that is polled from the event queue eDeveloper searches for
a handler that is defined for the event. Whenever a handler for this event
is found eDeveloper executes the handler.

• Upon completion of the handler, eDeveloper looks for the next matching
handler only if the propagate property of the last executed handler is set
to Yes or evaluated to True. Note that the when the Propagate property is
set, eDeveloper looks for the next handler set for the same event as the
previous handler. In the case when Event A triggered Event B and the
handler on Event B was found and executed, the propagate command is
done only for Event B and not for Event A.

• eDeveloper looks for the matching handlers through the entire handler list
from the current task up to the main program and from the bottom of each
handler list to its top. This means that if there are two handlers of the
same event in the same task the bottom handler is executed first.

• User events cannot be propagated.

Importing From Previous Versions

eDeveloper will make the following modifications to applications imported from
previous versions:

• In general, a previous version event is created as a handler in the relative
task. In this handler a Call operation is created for the specified program
or subtask.

• Hot-Key events of previous versions
Such events are converted to a system event handler of the same key
combination.
If an expression was set for this event, it is used as the enabling condition
of the handler.
If an elapsed time value was given along with the hot key, the event is
discarded and will not be part of the task. The discarded event information
is shown in the log file.
Reference Guide 290

• Action events of previous versions
These events are converted to an internal event handler of the same
eDeveloper action.
If an expression was set for this event is used as the enabling condition of
the handler.
If an elapsed time value was given along with the action this event is
discarded and will not be part of the task. The discarded event information
is shown in the log file.

• Elapsed events of previous versions
These events are converted to a handler of a timer event of the same time
interval.
If an expression was set for this event it is used as the enabling condition
of the handler.

• Events of previous versions with just an expression – If you create a
program in Magic V8.xx with a single event based on an expression and
import it into Magic V9.4, the time interval is ‘00:00:05’.

• Application events – Unlike previous eDeveloper versions, eDeveloper
Version 9 does not have an Application Events repository. Handlers and
events defined in the main program are treated as global for the entire
application. Importing a previous version application event is converted to
a corresponding handler in the main program.
Reference Guide 291

User-Defined Events
You can create a user-defined event in the Users Event repository (CTRL+K), as
shown below.

The Users Event repository lets you create a user-defined event and its
associated triggers and levels at the application level.

For example, you can create an event called Create New Customer, which is
triggered by clicking the CTRL+F key combination. In the Levels repository of
the Task Execution repository, you create a new Handler level entry with a list
of operation sequences. The Create New Customer Operation sequence is
executed whenever an end-user presses CTRL+F in runtime.

User events are created at the task level, and are common to all the subtasks
of the task to which they are defined. User events created in the root task of
the Main Program are common to all the tasks in the application. If a handler
does not exist for a user event, no default is available and the event is lost.

You can define a handler for the user event by creating an event Handler in the
Levels repository of the Task Execution repository as shown in Figure 5-3.

The Users Event repository has the following fields:

An automatically generated entry number

Figure 5-7 Defining an Event in the User Event Repository
Reference Guide 292

Description

The event name

Trigger Type

System - Various keystroke combinations.

Internal - Events that have handlers hard-coded into the eDeveloper engine.

Timer - Events that occur at a pre-defined time interval.

Expression -Events that occur when an expression evaluates to True.

None - The user-defined event can be raised only by a Raise Event operation.

Trigger

The actual value that triggers the event. If None is set as a trigger, then the
user-defined event can be raised only by a Raise Event operation. Please refer
to Raise Event operation in Chapter 7, Operations.

Force Exit

Specifies from which level the handler should exit before performing its own
sequence of operations.

• None – The handler will not commit a force exit, but performs its
flow of operations within the edit mode of the control from which
the event was raised.

• Control – The eDeveloper engine will first exit from the Control
level, and perform the Control verification and Control suffix
operations. Only after these operations have been executed will the
eDeveloper engine execute the handler operations of a particular
event.
Reference Guide 293

• Record – The eDeveloper engine first executes the Control
verification, Control Suffix, and the Record Level (performing
Record Main and Record Suffix operations accroding to the Force
Record Suffix property). Only after these operations are executed
will the eDeveloper engine execute the handler operations of a
particular event. The record is written to the database only after the
execution of the handler.

Public Name

For the Main Program only. Defines the public name of the event by which it
will be called by an Internet requester or a Call Remote operation. The public
name must be unique within the application file.

Expose

For the Main Program only. When you select the Expose check box, programs
from other components can call the Main Program event in the host application
by using the Raise Public Event operation. When Expose is not selected, the
event cannot be called by other loaded applications. You are also required to
provide a public name for the user event because eDeveloper will use the
public name of the user event to search for a corresponding handler.
Reference Guide 294

Information about the Engine

The 14 eDeveloper Operations

You can find complete and detailed explanations of all the operations in
Chapter 7, Operations The table below lists the operations and gives a short
explanation of the purpose of each.

Operation
Number

Operation
Name

Operation Function

1 Select Automatically defines a field as a
variable available in a task. Also used
to restrict the range of Main table
records, to locate the first record to be
processed, to assign initial values to
computed variables, and to control
insertion point movement. The Init
expression of a Select Operation works
non-procedurally.

2 Verify Displays an error or warning message
under a defined condition. Usually used
for input validation.

3 Link Begins a relational (one-to-one) link
between the Main table and another
database table.

Link Join establishes a many-to-one
dataview relation between the Main
table and linked join tables, that will be
implemented by the underlying
RDBMS. The operation will generate a
SQL inner join statement among all the
participating tables.
Reference Guide 295

4 End Link Used to tell eDeveloper to stop
selecting variables from the linked
table. A Link operation must precede
the Select operations.

5 Block Delimits the beginning of a logical block
of operations. The purpose of a block is
to enable you to put a condition on the
Block operation that will control the
execution of every operation inside the
block.

The If-Else Block lets you set an if-else
condition in a single Block operation. If
the first condition proves false, the
engine will go to the Else option. You
can have multiple Else options defined
within one Block operation.

The Block Loop operation instructs the
eDeveloper engine to repeatedly
execute the operation within the block.

6 End Block Ends the logical block of operations
started by the preceding Block
operation.

Operation
Number

Operation
Name

Operation Function
Reference Guide 296

7 Call There are eight kinds of Call operations
used to execute different types of
subroutines:

 Call Task to call subtasks

Call Program to call eDeveloper
programs

Call Exp to call Expressions

Call Public to call a public program

Call UDP to call user-defined
procedures

Call COM to call a COM object

Call Remote to call programs from the
eDeveloper Broker to a remote
terminal

Call Web Service (Web S) to call a Web
service by using a SOAP protocol

8 Evaluate Executes action functions. Refer to the
Evaluate section of Chapter 7,
Operations Used to execute the action
functions while evaluating the
expression that includes them.

9 Update Updates a variable with the evaluated
result of an expression.

10 Output Output Form writes a record to a text
file on an output device. Used for
printing reports or exporting data to
text files.

Operation
Number

Operation
Name

Operation Function
Reference Guide 297

Non-Procedural Operations

All operations, with two exceptions, are procedural. That is, they are executed
when the engine reaches them during the sequential scanning of the Operation
repositories. However, Select operations with Init expressions and Link
operations with Link expressions work non-procedurally; they can be placed
only in the Record Main Operation repositories, because they are used to build
up the task’s dataview.

The evaluation and assignment of the Init expression to a selected variable is
activated automatically whenever the value of a variable in the Init expression
changes. The evaluation of the Link expression and the consequent execution
of the link is activated automatically whenever there is a change in the value
of a variable in the expression.

Non-procedural recomputation is similar to the recomputation in a spreadsheet
cell.

11 Input
Form

Reads text from an input file or device
into the variables defined in a form.
Used for text import programs.

12 Browse Invokes an eDeveloper viewer or editor,
with a text file.

13 Exit Executes an operating system program
from within eDeveloper. When the
external program terminates, control
may automatically return to
eDeveloper, depending on the setting
of the Wait field.

14 Raise Event Lets you raise events during the
eDeveloper engine flow. The Raise
Event command is handled in the same
way as System events.

Operation
Number

Operation
Name

Operation Function
Reference Guide 298

Guidelines to the use of the non-procedural features in operations are found in
Chapter 7, Operations There are other non-procedural mechanisms available,
and they are explained throughout this manual.

The Task Dataview

Each eDeveloper task works with a set of records and their variables that you
select from the application database. These variables, whether selected from
the Main table or from a linked table, are the task’s real variables. In addition,
you may define computed variables that exist for the duration of the task’s
execution. These are the task’s virtual variables or parameters. Real and
Virtual variables, and passing parameters together constitute the task’s logical
record. The set of logical records selected from the Main table and linked
tables in accordance with the task’s range rules constitutes the task’s
dataview.

All of a task’s variables, real, virtual, and passing parameters, are included in
the task’s variable list. Each variable in the list is assigned a letter code.
Whenever you want to refer to a variable in a task, you use this letter code. A
subtask’s variable list includes all the variables selected by its parent.

Figure 5-8 The Construction of a Dataview
Reference Guide 299

How eDeveloper Prepares the Dataview

When eDeveloper starts a task, the engine identifies which records will be
included in the Task Dataview before executing operations in the Task Prefix
Operation repositories. It does this as follows:

1. It examines the Record Main operations, looking for Select Real
operations for variables from main and linked tables, and Select
Virtual operations and parameters, and includes all these variables in
the Logical Record/Row.

2. It evaluates the Task Range expression and any Range lower and
upper expressions in their order of appearance in the Record Main.
These Range criteria limit the records that can be included in the
dataview. If you make Range active during runtime, the end-user can
further limit the range of records included in the dataview. For a
dataview created form an SQL table, eDeveloper also evaluates and
performs the eDeveloper and the DB added where clauses.

3. If you have entries in the Sort repository, the engine sorts the Main
table according to the specified index segments. If you make the Sort
function active during runtime, end-users can perform their own sorts
over the dataview record. Only records that comply with the range
criteria are sorted.

Note: The eDeveloper task may be based on a SQL statement defined in the
eDeveloper SQL Command task object. In this case, the dataview is prepared
by the SQL database to which the SQL statement is directed and all the
standard eDeveloper dataview preparation logic is bypassed. However,
eDeveloper maintains normal operation in the stages after the dataview
preparation stage. The variables used for such a SQL-based dataview are
usually virtual variables, because the dataview is not based on the usual
structure that eDeveloper recognizes a table definition in the Table repository.

Dataview Tuning

The Range expression in the Range/Locate dialog box provides a more flexible
way to define the record set in the Task Dataview. When the Range expression
is not a lower/upper value pair, it may contain non-contiguous ranges and set
other complex conditions based on any of the logical record’s variables. The
Reference Guide 300

Task Range Order field allows you to set the actual sequence, ascending or
descending, in which records will be displayed and processed. If both the Task
Range property and Select Range lower/upper expressions are specified, the
engine will use them all (in an “AND” relation) to determine the set of records
for the dataview. Other range fields are described below.

Field models have a Range field in the Field Model Properties sheet as
explained in Chapter 3, Models

The Column list lets you enter a range value for a column entry for a table as
explained in Chapter 4, Tables

The SQL Where Clause determines a range based on SQL syntax using
eDeveloper variables as explained in Chapter 6, Programs

The Record Dataview Instance

When the engine processes a particular logical record from the task dataview,
that instance of the dataview includes values for the variables in the Variable
list. The term logical record is used to distinguish this instance. A logical record
contains one set of values including values from any linked tables, from the
overall task dataview.

The Effect of Modes of Operation on Task Flow

The behavior of eDeveloper’s application engine depends both on whether the
task is Browser, Online or Batch, and also on its Mode of Operation. The modes
of operation pertain to the task’s Main table only. There are four basic modes
of operation, shown in the table below, and they tell the engine which data
manipulation operations are allowed on the data.

Mode of
Operation

allows the end-user to...

Create Create new records.

Modify Edit existing records.
Reference Guide 301

When you define a task, you specify its initial Mode of Operation in the Task
Control dialog. In the Task Control dialog, you can specify other properties
regulating the opening of certain interactive windows for the end-user.

In an Online task, the end-user can change the initial Mode of Operation by
selecting at runtime those modes you have allowed in the Task Control dialog.
In a Batch task, the initial Mode of Operation cannot be changed during task
execution.

The engine scans and executes operations specified in the Operation
repositories, regardless of the Mode of Operation. You can restrict the
execution of an operation based on the actual Mode of Operation during
execution by using an expression containing the Stat function in the Cnd
(Condition) column. Use of the Stat function is explained in detail in the
Controlling the Execution of an Operation section in this chapter.

Modes of operation do not affect creation or modification of any database
tables linked to the Main table. The type of Link operation used to link the
table determines its creation and modification of records. Refer to the Link
operation in Chapter 7, Operations

Query Scan through records, without
allowing any update to the records.
In Online, user input in this mode is
used by an automatic locate function
to locate records according to
received keyboard input. In Batch,
the task tables are opened in Read
Only mode, which does not allow any
update to the scanned records.

Delete Delete records. Delete mode is active
only in the Record Suffix Handler
level of the Batch task.

Mode of
Operation

allows the end-user to...
Reference Guide 302

Automatic Switch from Modify to Create Mode

When the engine starts to execute an online or browser task whose initial
Mode of Operation is set to Modify, if the specified Main table does not exist, or
if the specified range is an empty one, the Mode of Operation is switched
automatically to Create. This saves you having to make a special case of the
first run of a program that both creates and updates a table.

However, an unexpected switch from Modify to Create Mode of Operation may
occur if there is an irregular situation in the database table used as the Main
table. For example, if the table is suddenly not present in the specified
directory, or if its path was changed outside eDeveloper without a
corresponding change to the table definition.

User-Initiated Temporary Switch from Modify Mode to
Create Mode

While in Modify mode, the end-user can edit existing records in the task’s
dataview. The user may also temporarily switch to Create mode while
maintaining the information displayed on the task’s form. This switch to Create
mode opens an empty record to be completed by the end-user according to
the task’s regular input design. After entering the new record with data and
moving to a different record (thereby accepting the record), the task mode
switches back to Modify, and, if the Reposition After Modify flag in the
Environment dialog is set to Yes, the new record is placed according to the
task’s sort order. The temporary switch from Modify to Create occurs when
either:

• The user creates a line (F4) while on a dataview record. The new record is
then opened after the form position of the original record, or

• The user goes to the next line (↓) while on the last record in the dataview.
The new record is opened as the last record on the form.

The Reposition After Modify setting is relevant only for online tasks, an does
not apply to batch or browser tasks.
Reference Guide 303

The Meaning of Query Mode

Engine execution flow is similar for a task in Query or Modify mode, with the
following unique behavior for Query mode:

• For Batch tasks, execution flow is identical for Query and Modify modes
with the exception of database update. In Modify mode, every record is
read, processed, and rewritten to the database. In Query mode, all the
database tables involved in the task are opened in Read Only mode and
only read operations are performed on the data. Query mode should be
used for output-only purposes because it is faster than Modify mode.

• For Online tasks in Query mode, all updates or deletes to records and
variables are blocked, regardless of their source, whether user input or
procedural task operations. However, in Query mode of an online task, a
special accelerated Locate facility is available to the user. For this facility,
user input is used to incrementally search the database table for the value
that the user has input into the fields on the task’s form. This Locate
allows high-powered browsing through data without damaging its
contents. The Locate facility can be disabled by the developer.

End-User Screen Interaction

This section concerns Online tasks only, and only the execution of those
Record Main operations that specifically deal with end-user screen interaction.

The engine allows the end-user to move the insertion point between parkable
variables in the same order as you defined their Select operations in the
Record Main Operation repositories. Since the position of the variable on the
screen is not relevant to the moving path of the insertion point, be sure to plan
the sequence of insertion point movements required on the screen when you
insert Select operations in the Operation repositories.

You control which operations the engine executes when the end-user moves
the insertion point from variable to variable and from record to record, as
follows:

1. By inserting the operations in the right place in the Record Main
Operation repositories; that is, between the Select operations that
Reference Guide 304

define variables to be displayed on the screen where the insertion
point will park. See the Insertion Point Park section below.

2. By setting the Flow fields of an operation. These define how the
engine scans and executes operations in the Operation repositories,
and corresponding to which direction of the insertion point movement
each operation must be executed. See the Flow Column section.

Insertion Point Park

An insertion point park is any control displayed on the screen where the
insertion point is allowed to stop. A control can be an insertion point park only
if it meets all of the following conditions:

1. The Select operation for this control is in the Record Main Operation
repositories for the current task and not in the Record Main Operation
repositories of a parent task.

2. The Cnd (condition) expression of the Select operation evaluates to
True.

Note: If the task does not contain at least one parkable control, it will
terminate immediately at runtime and it will display an error message.

Engine Execution Rules
This section explains how the engine executes each level of the task cycle.

Task Cycle Levels

The basic application engine cycle is shown below. Each box in the following
figure represents a specific task Handler level, and its related Operation
repository is depicted within the Level box.
Reference Guide 305

Figure 5-9 Task Cycle
Reference Guide 306

The operations in each Operation repository are only part of all the activities
performed by the engine at the related Handler level. In addition, the engine
performs database management and other activities behind the scenes.

The two loops nested within the engine’s Task cycle are:

the Record/Row Loop, whose levels are repeated for each record.

the Control Loop, which implements end-user interaction with the displayed
record. The Control Loop exists for online and browser tasks. The Control Loop
is described in the End-User Screen Interaction section of this chapter. The
following descriptions tell you under which conditions the engine executes
each level and what steps it performs.

Task Cycle

The engine executes the following steps once per task.

Task Prefix Level

1. If the task is called by another task to accept any passing parameters.

2. Establish the task dataview, that is, which records to use and how
they shall be sorted, refer to the How eDeveloper Prepares the
Dataview section.

3. Execute all the operations of the Task Prefix Operation repositories in
the order in which they appear.

4. If this is an Online task in Modify (or Query) mode, compute Init and
Link expressions to determine how many records can fit on the
screen, according to the definition of the form and how many records
it can display. For more information, refer to Chapter 7, Operations

5. In the Browser task, the Chunk Size Expression property in the Task
property dialog can determine the number of records that can be
fetched.

6. Execute the Record/Row Loop, as explained below.
Reference Guide 307

Task Suffix Level

1. At the end of Record/Row Loop, execute all the operations of the Task
Suffix Operation repository in the order in which they appear.

2. Exit the Task.

The Record/Row Loop

The engine executes the following steps once for every record the end-user
browses in online and browser tasks and once for every record in the
dataview, starting from the first record, in Batch tasks.

Record Initialization Level

1. Fetch the record into memory, so that its field values are available for
processing.

2. Evaluate the Init expressions of the Select Virtual operations, from
Record Main tables, and initialize the related variables.

3. If the Evaluate Task Condition setting is set to Before, see Task
Control properties, evaluate the End Task expression and exit if True.

4. Execute the Record Prefix operations.

5. If the task is in Create mode, evaluate the Init expressions of the
Select Fields operations, from the Record Main tables, and initialize
the related variables.

6. Compute all Links for the current record.

7. If this is an Online task, step through the operations of the Record
Main Operation repositories by executing the Fields Loop.

Record Termination Level

1. Execute Record Suffix Operation repositories.

If this is a Batch task, execute all the operations in the Record Suffix
Operation repositories.
Reference Guide 308

If this is an online or browser task, execute the Record Suffix level
only if the current logical record has been changed. eDeveloper
considers the current record to be changed if any of the following
happened:

a) The end-user edited a field, either by typing a value into it.

b) An Update operation with the Undo property set to No.

c) An Update operation of any kind executed in a subtask of the
current task modified a variable.

d) An Input Form operation inserted data from an input repository in a
variable.

e) The Force Record Suffix field, set in the Task Property sheet,
evaluates to True.

2. Performs record deletion when required.

Record/Row Deletion in Online and Browser Tasks

When a Delete Line (internal event) is raised either by selecting the
Edit or Delete Line menu option, by clicking F3 in an Online task, by
explicitly raising the Delete Line event in online and browser task, or
by making the Force Record/Row Delete condition True, the engine
activates the following Delete procedure:

a) If the record has not been modified, execute the Record Suffix only
once, in the ‘Delete’ mode.

b) If the record has been modified,

- execute the Record Suffix in the Modify mode, in order to perform
any update operation defined there and complete the processing
logic; and

- execute the Record Suffix a second time in the Delete mode, in
Reference Guide 309

order to perform any delete-related operations, such as deleting
chained records in one-to-many relations, or Update operations using
the Incremental mode.

Record/Row Deletion in Batch Tasks

a) If the initial mode of the task is Delete, execute the Record Suffix
once in the Delete mode.

b) If the Force Record/Row Delete becomes True,

- execute the Record Suffix in the ‘Modify’ mode, in order to perform
any Update operation defined there and complete the processing
logic;

- execute the Record Suffix a second time in the ‘Delete’ mode, in
order to perform any delete-related operations.

For all of the above three situations, after the execution of the Record
Suffix in the ‘Delete’ mode, mark the record as deleted.

3. If the Record Suffix has been executed, save all the changes to disk
for Main table and linked tables.

If the record has not changed, it is not saved to disk.

4. If the Evaluate Task Condition property is set to Updating Record (see
Task property dialog), evaluate the End Task expression and exit the
Record/Row Loop if True.

The Control Level

The Control Loop is relevant only for Online or Browser tasks.

The Control Level handler is executed for the Control Prefix or the Control
Suffix. The Control Level handlers let you set values, check input, display
control values, and implement other operations for a specific control. For each
eDeveloper Control type, you can create a specific Control handler.
Reference Guide 310

Creating a Control Handler

Unlike Task and Record handlers, which exists for every task, the control
handler must be created manually.

Each control handler should be set with the required event type of (such as
Prefix or Suffix) and the name of the control on the form.
Note that eDeveloper generates a control name for every variable dropped on
the form or placed by the Automatic Program Generator (APG).

• Control Prefix

The Control Prefix level is performed whenever the end-user parks on the
control for which the control handler is set.

All the operations listed in the Control Prefix level are executed before the end-
user actually executes the control.

• Control Suffix

The Control Suffix is performed whenever the insertion point is taken away
from the control (loses focus). This may occur when the end user moves to a
different control or exits the record or the task.

The Control Suffix can be implicitly executed when an event, that is defined to
exit a control level, is raised and handled. These internal events, like View
Refresh or a user-defined event, are set to exit the control or record level.

The following sequence occurs when an event exits the Control Loop:

1. Terminate Control Editing

2. Set the runtime value of variable

3. Re-compute according to the value of the new variable

4. Exit the Control Suffix

• Control Verification

Control Verification operations are performed whenever the insertion point is
taken away from the control and whenever the control is passed through in
Fast mode, before the Control Suffix level.
Reference Guide 311

• Control Change

In the Control Change handler level place the operations that the engine
executes when a control variable is changed. The Control Change is for Online
task types only.

Group Levels

Group levels are additional levels of execution and they are available for Batch
tasks only. You use them for presenting or processing data by groups -
application-breaks - in reports.

You can define multiple Group levels, based on different fields.

For each application break, you may specify operations for either or both
Group Prefix and Group Suffix.

The engine executes these operations whenever it detects a change in the field
used for the definition of the application break, and before the processing of
the current dataview record at the Record/Row stage. This allows for
operations that must be performed at the end of a block of records, such as
printing subtotals and totals.

After Group Suffix operations are executed for the previous dataview record,
the engine executes Group Prefix operations for the current dataview record
before it is processed. This allows the engine to perform any initialization-type
operations, such as zeroing counters and printing headers, before processing
begins on the block of dataview records containing the new value.

The Main table must be ordered, by Index or by Sort, according to the fields
specified in the Group level. Place the Group levels in the Level Definition
repository in the order of appearance of the index segment fields in the Index
or the Sort Index declared for the task.

Main group levels appear first, followed by intermediate Group levels, and
finally minor group levels. The Group level immediately before the Record level
is the lowest, and that immediately after the Task level is the highest. If the
order of levels in the tables is incorrect, the breaks will execute incorrectly.
Reference Guide 312

A change in a higher Group level forces a change in all lower Group levels. The
Prefixes are executed from high to low, and the Suffixes low to high.

How the Engine Executes Group Levels

When the execution of a Batch task starts, the Task Prefix is executed. Then
the first dataview record causes the prefixes of all Group levels to be executed,
from the highest to lowest, ending with the Group Prefix of the lowest level.
Until a change is encountered, the Record Suffix operations are executed for
each record.

A change condition may be encountered at any Group level. The first change
causes all Group Suffixes, from the lowest level up to the changed level, to be
executed for the block of records already processed. Next, the Prefixes of all
Group levels are executed, from the changed level down to the lowest level for
the block of records to be processed.

Then the next block of dataview records is processed at the Record Level until
the next change, and so on until all records have been processed. Finally,
when an end condition is encountered, either at the end of all dataview records
or when the End Task expression becomes True (see the Task properties dialog
in Chapter 6, Programs, for more information), it is treated as the equivalent
of the highest Group level, causing only the Suffixes of all Group levels from
the lowest to the highest levels to be executed for the block of records already
processed. Only then is the Task Suffix executed.

Group Levels Example

In a Batch task that prints running totals from an Order Lines tables sorted by
Customer (high), Order Number (intermediate), and Item Number (low), the
lowest Group level is based on changes in the Item Number, the second Group
level is based on changes in the Order Number, and the third Group level is
based on changes in the Customer Number.

During processing of the first record, the Group Prefixes of all levels are
executed, from the highest to the lowest. When the first item in the first
Reference Guide 313

customer’s first order has been processed (e.g., counted or printed), the Suffix
of Item Number (the first Group level) is executed.

After all the first order’s item lines have been processed, the Suffix of the
intermediate Group level, by order number, is executed, to print the total
values for the first order. Group levels for both Item Number and Order
Number are executed for all this customer’s orders, and then the Group Prefix
for the next customer is executed.

If, during the scanning of the record, a higher-level Group field changes value,
all the Group Suffixes up to that level will be executed before the next record
is processed.

After all of the records are processed the Task Suffix executes. In this example
the total values for all customers will be printed.

Record/Row Loop Flowcharts
The following pages show diagrams that describe the engine flow of the
Record/Row Loop for online, browser, and batch tasks. They can help you to
find your way when you want to know exactly what the engine is doing while
executing your task.

Record/Row Loop in Online Tasks

Figure 5-10 shows the execution flow of the application engine while
performing the Record/Row Loop stage of an online and browser task. The
details shown are not of direct concern in task development activity but they
can help you to decide in which tables to insert a specific operation, or to find
out why your task doesn’t behave as expected
Reference Guide 314

.

Figure 5-10 Record/Row Loop in Online Tasks
Reference Guide 315

Record/Row Loop in Batch Tasks

Figure 5-11 shows the execution flow of the application engine while
performing the Record/Row Loop stage of a Batch task. The details shown can
help you decide in which tables to insert a specific operation, or to find out why
your task does not behave as expected.
Reference Guide 316

Figure 5-11 Record/Row Loop in Batch Tasks
Reference Guide 317

Engine by Record Level

How the Engine Scans the Record Main Tables

The engine can scan the Record Main tables in two modes: Step mode and
Fast mode.in online tasks.

Step Mode

This is the default scanning mode. The engine remains in Step mode as long as
the end-user moves the insertion point from the current parkable control to
the previous or next parkable control in the same record using the Next Field
and Previous Field actions. Using the mouse to move the insertion point causes
the engine to scan the Record Main tables in Fast mode.

While in Step mode, the engine mimics the movement of the insertion point on
the screen between controls of the same record by scanning and executing all
operations in the Record Main tables that meet the following three criteria:

1. The operation must be situated between the Select operations of the
two parkable controls.

2. The Cnd expression must evaluate to True.

3. The first Flow field must have Interaction mode set to either Step or
Combined, and its Flow direction setting (the second Flow field) must
match the current direction of the insertion point movement. The Flow
Interaction mode setting Combined includes both Step and Fast, and
the Flow direction setting Combined includes both forward and
backward insertion point movement.
Reference Guide 318

If the user moves the insertion point backwards from Field B to Field A, the
operations intervening between Select Real A (or Select Virtual A) and Select
Real B (or Select Virtual B) are executed in reverse order. See Figure 5-12.

By default, all procedural operations are defined as executable in Step mode
only, and for insertion point movement in both directions. This is suitable for
most situations and requires no programming effort. If you need finer control
of execution flow, for example, if you want an operation to be executed only
when the insertion point passes in a specific direction through a control, then
use the second field of the Flow column of the operation to specify the
direction you want.

For a more detailed explanation of this topic, refer to the section below on
Controlling the Execution of Operation.

Figure 5-12 Scanning in Step Mode
Reference Guide 319

Fast Mode

Scanning in Fast mode means that the engine scans the Record Main tables,
executes only those operations flagged for execution in Fast or Combined
Interaction mode, and recomputes Init and Link expressions if needed.

The typical situation that causes the engine to switch automatically to the Fast
mode of scanning is if, during interaction with the controls of one record, the
end-user terminates editing the current record, for example, by moving the
insertion point to a different record. This scenario is illustrated in Figure 5-13
below:

Figure 5-13 Scanning in Fast Mode
Reference Guide 320

The engine executes the following sequence of actions:

1. If the current record has been edited, the engine scans the rest of
operations in the Record Main tables in Fast mode. When it finishes
scanning, the engine executes the Record Suffix.

2. The engine moves to the new pointed record.

3. The engine scans, in Fast mode, the Record Main for the new record,
from its beginning, until it reaches the Select operation for the control
where the insertion point has to park.

4. As soon as the insertion point parks, the engine returns to Step mode.

In addition to the case described above, the engine switches to Fast mode in
the following situations:

1. When the end-user uses the mouse to move the insertion point within
the current record.

2. When the end-user uses the End Row action to move the insertion
point to the last control in the current record, the engine scans
forward in Fast mode to the Select operation of the last parkable
control in the record.

3. When the end-user uses the Begin Row action to move the insertion
point back to the first control of the current record, the engine scans
in Fast mode backward to the Select operation of the first parkable
control of the record.

4. When the end-user moves the insertion point by using the mouse
forward or backward to another parkable control in the current
record, the engine scans in Fast mode forward or backward to the
pointed parkable control.

5. When the end-user selects Edit/Delete Line (F3), the engine scans the
rest of the Record tables in Fast mode.

6. When the end-user exits the task by pressing ESC, the engine scans
the rest of the Record Main tables in Fast mode.
Reference Guide 321

Controlling the Execution of an Operation

You can control whether or not any single procedural operation defined in an
Operation repository executes. You cannot disable the execution of eDeveloper
non-procedural operations; the re-computation of the Init expression in Select
operations and of Link operations is considered to take precedence, in order to
preserve data integrity.

The fields you use to control the execution of operations are set in the Cnd
column of any Operation repository and in the Flow column for Record Main
Operation repositories of Online tasks only, as shown below.

Figure 5-14 Row and Cnd Fields
Reference Guide 322

When the engine scans Operation repositories to determine which operations
will execute, it first checks the Cnd (condition) expression of an operation and

then, for the Record Main repositories of Online tasks only, the two conditions
specified in the Flow column.

The operation is executed only if all conditions are satisfied.

Cnd Expression

The last column of each operation is labeled Cnd (for Condition).

Depending on which operation you are defining, you can use the Cnd column
to:

• Control the insertion point’s ability to park on a control for Select
operations in Online tasks.

• Change the behavior of the Link Validate operation when the link fails. For
the other Link type operations, the Cnd column is irrelevant. Refer to the
Link operation in Chapter 7, Operations.

• Condition the execution of all the other operations, except for End Link and
End Block. End Link and End Block are not executable operations, and the
Cnd column is not available for them.

The Cnd column can have the following values:

Yes - (default) - sets the condition to True and makes execution of the
operation dependent on the Flow columns.

No - Select operation: prevents the insertion point from parking on the control.

Other operations: sets the condition to False and disables execution of the
operation. Use this option for debugging purposes.

Expression number - refers to a logical expression in the Expressions Rules
repository. If the expression evaluates to False, the engine does not execute
the operation. If it evaluates to True, execution of the operation depends on
the Flow columns.
Reference Guide 323

For example, you can use the Cnd expression to condition an operation’s
execution to a specific Mode of Operation of the task. To do this, define an
expression that includes the function Stat.

The syntax of the Stat function is:

Stat (generation, mode)

where

generation is one of the following numbers identifying the task that is to be
tested:

0 indicates the current task

1 indicates the parent task

2 indicates the grand-parent task

and mode is a string of up to four of the following letters indicating the
required Task mode to match against:

C means Create

M means Modify

Q means Query

D means Delete. The Delete status can be tested in the Record Suffix Level
only.

The expression

Stat (0,’CQ’MODE)

will return a True value if the current task mode is Create or Query. If you use
this expression as the Cnd expression in an operation, the engine will execute
the operation only if the task currently running is in Create or Query mode.

Flow Column

The Flow column appears only in the Record Main Operation repository of
Online tasks. The purpose of Flow is to allow you to make the execution of an
operation dependent on how the end-user interacts with the task.
Reference Guide 324

The Flow column is always empty for Link, End Link, and End Block operations.
For all other operations that you define in the Record Main of Online tasks, the
Flow column contains two fields: Interaction mode and Insertion Point
direction.

Interaction Mode (first Flow Column field)

The Interaction mode is a one letter code which works according to the
following rules:

Step and Fast modes are explained in Section End-user Screen Interaction,
above. The After and Before modes are called Zoom Interaction modes.

Zoom Interaction Modes

The zoom interaction mode is relevant for online tasks only. By setting the
Interaction mode of an operation to A or B, the operation becomes zoomable,
that is, its execution is conditioned to the end-user’s selection of the Zoom
option. If the end-user does not select zoom, the Zoomable Operation is not
executed.

To implement this feature:

1. Designate a field to be the Zoom field and an operation to be the
Zoomable Operation. The Zoom field is where the insertion point is to
park when the zoom becomes enabled.

2. For the Select Field operation of the Zoom field, set the Zoom mode to
A if you want the insertion point to move to the next parkable field

When Flow Mode
Code is...

the engine executes the operation
if...

S for Step The task is in Step mode

F for Fast The task is in Fast mode

C for Combined The task is in either Step or Fast mode

A for After The end-user selects Zoom (F5) in the
previous control

B for Before The end-user selects Zoom (F5) in the
next control
Reference Guide 325

after the execution of the zoomable operation. Then place the
zoomable operation immediately after the Select operation of the
Zoom field.

In the example shown in Figure 5-15, Field C is the Zoom field. At
runtime, when the end-user moves the insertion point to Field C, the
Zoom indicator appears on the message line to tell the user that zoom
is active. If the end-user selects zoom, the engine executes Task X.
When the called task ends, the insertion point moves to Field D.

3. Set the Zoom mode of an operation to B if you want the insertion
point to remain on the Zoom field after the execution of the zoomable
operation. In this case you have to place the zoomable operation

Figure 5-15 Zoom Mode ‘After’
Reference Guide 326

immediately before the Select operation of the Zoom field.

In the example shown in Figure 5-16, Field C is the Zoom field. At runtime,
when the end-user moves the insertion point to Field C, the Zoom indicator
appears on the message line to tell the user that the zoom is active. If the
end-user zooms from this field, the engine executes the task X. When the
called task ends, the insertion point stays on Field C.

Most probably you will use the Zoom modes in conjunction with Call Task, Call
Program, and Block operations, to implement Look-Up windows and pick lists.
However you can use any procedural operation as the zoomable operation.

Insertion Point Direction (second Flow Column field)

Figure 5-16 Zoom Mode ‘Before’
Reference Guide 327

The Insertion Point Direction field in the Flow column is a one letter code that
works according to the following rules:

End-User Screen Interaction

This section concerns Online tasks only, and only the execution of those
Record Main operations that specifically deal with end-user screen interaction:
the engine’s Field Loop.

The engine allows the end-user to move the insertion point between parkable
fields in the same order as you defined the Select operations in the Record
Main Operation repositories. Because the position of the field on the screen is
not relevant to the moving path of the insertion point, be sure to plan the
sequence of insertion point movements required on the screen when you
insert Select operations in the Operation repositories.

You control which operations the engine executes when the end-user moves
the insertion point from field to field and from record to record, as follows:

1. By inserting the operations in the right place in the Record Main
Operation repositories, that is, between the Select operations that
define fields to be displayed on the screen where the insertion point
will park. For more information see the Insertion Point Park section.

2. By setting the Flow fields of an operation. These define how the
engine scans and executes operations in the Operation repositories,
and corresponding to which direction of the insertion point movement

When Insertion
Point Direction Code
is...

The Engine Executes the Operation
if the...

F for Forward insertion point passes through it
moving forward

B for Backward insertion point passes through it
moving backward

C for Combine insertion point passes through it
moving forward or backward
Reference Guide 328

each operation must be executed. For more information see the Flow
Column section.

Insertion Point Park

An insertion point park is any control displayed on the screen where the
insertion point is allowed to stop. A control can be an insertion point park only
if it meets all of the following conditions:

1. The Select operation for this control is in the Record Main Operation
repositories for the current task, and not in the Record Main Operation
repositories of a parent task.

2. The Cnd (condition) expression of the Select operation evaluates to
True.

3. The Flow interaction mode you specified in the first Flow field of the
Select operation matches the task’s current interaction mode.

4. The insertion point movement direction you specified in the second
Flow field of the Select operation matches the current insertion point
movement direction.

Note: If the task does not contain at least one parkable control, it will
terminate immediately at runtime, with a suitable error message.

Programs 6
his chapter focuses on where you can create or modify eDeveloper
programs and tasks.

In this chapter:

• Program Repository

• Local Variable Repository

• Expression Rules Repository

• Form Repository

• I/O File Repository

• DB Table Repository

• Sort Repository

• Event Repository

• Main Program

T

Reference Guide 330

Program Repository
The Program repository contains an entry for each program within an
application.

Properties of the Program Repository

Each entry in the Program repository has the following properties:

(for Program identifier)

This column contains an automatically generated sequential number used by
eDeveloper as a program identifier. You cannot edit this column.

When you edit the Program repository by moving a program from one folder to
another, or adding and deleting rows, eDeveloper automatically renumbers the
affected programs and updates their identifier numbers throughout the
application. For example, it will renumber the menu entries that activate
programs to reflect the modified numbers in the Program repository and
maintain the association.

When you use the Program Identifier number inside an expression, you must
qualify it explicitly by using the Prog literal. To do so, specify the program
number nn as ‘nn’Prog. For example, if you enter ‘3’Prog as a program
expression in the Expression Rules repository, and later insert a new program
in the Program repository ahead of the third program, thereby changing the
old program entry from #3 to #4, eDeveloper will automatically change the
‘3’Prog to ‘4’Prog in the expression.

Note: When the cross-reference utility is activated, using the Prog literal will
enable eDeveloper to locate an expression that refers to a program.

Name

A descriptive name

• The program name in this property is identical with the Task Name of the
root task and it will appear as the label of the root task box in the Task
navigator, and the Task name in the Task Properties dialog.
Reference Guide 331

• Any change to this name in one of the three places is reflected immediately
in the other two.

Public Name

You can define the public name of the program that is called by an Internet
Requester, Call Remote operation, Browser client, or Call Public operation, the
public name must be unique within the application file.

Last Update

This property is automatically filled with the date and time when eDeveloper
saved the latest change made to any task in the program hierarchy.

Tasks
A task is the basic control object executed by the eDeveloper Application
engine. If a task has one or more subtasks that are organized in a hierarchic
structure, the top task is also known as a parent task, root task, or program.
The Task navigator gives a visual representation of the related tasks of a
program. If the current task is the root task, this is also the name of the
program as it appears in the Program repository.

Menu Options for Tasks

The Task pulldown menu provides tool options for defining and modifying the
various parts of a task. The Task pulldown menu options are:

• SQL Command - Lets you base the task’s dataview on a SQL statement
provided by the developer.

• Task Control - Lets you set the properties that control the runtime behavior
of the task.

• Variables - Lets you access the local variable repository, where you can
browse or edit the task’s temporary Virtual and Parameter variables.

• Expression Rules - Lets you create or edit the task expressions.
Reference Guide 332

• Forms - Lets you create or edit the task display and output forms.

• DB tables - Lets you set specific properties for the database tables used in
the task.

• I/O Files - Lets you define any operating system IO device the task
requires.

• Sort - Lets you specify a sort of the task dataview, to be executed as soon
as the task starts running.

• User Events - Lets you define Task events, which are eDeveloper programs
or tasks that can be executed at any moment during task execution.

• Range/Locate - Lets you define the range and locate functionality for any
non-SQL eDeveloper applcation.

• SQL Where - Range and locate functionality for eDeveloper applications
that use an SQL database.

Task Properties Dialog

Task Properties are defined in the Task Properties dialog, which opens
automatically the first time you zoom into a new task. To once again open this
dialog select Edit/Properties from the Task Execution window.

The Task Properties dialog contains three tabs:

• Properties Tab

• Advanced Tab

• Enhanced Tab

Properties Tab

Task Name

This is the name appearing in the Task box. If the current task is the root task,
this is also the name of the program as it appears in the Program repository.
Reference Guide 333

The Task Window title, displayed when the task is executed, is inherited from
the task name; it can be overridden.

If you change the name in the Task Properties dialog, it will automatically be
updated everywhere it occurs, including in the Form Repository entry and form
window title. However, the Form Repository entry name will not be changed if,
prior to the task name change, it differed from the task name.

Task Type: Online (default)

The Task type is either Browser, Online, or Batch.

Browser or online tasks do not always require updating data. If the task does
not update data, there is no need to open a transaction. To open a browser or
online task without a transaction, set the Transaction Mode to None.

For details about the differences between Browser, Online, and Batch tasks,
refer to Chapter 5, Application Engine.

Initial Mode: Modify (default)

This property defines the mode of operation in which execution of the task
starts. The options are: Modify, Create, Delete, Query, As Parent, Locate,
Range, Key, Sort, Files, Options, and By Exp.

You can allow the end-user to change this mode during execution by setting
the suitable Allow properties in the Task Control dialog, explained below, to
Yes.

You can specify the mode of operation by assigning a specific mode in the
Initial Mode property, or it can be assigned dynamically by selecting the By
Expression option.

The modes that can be selected are shown in the table below.

Mode
letter

Mode
Name

Allows the end-user to...

M Modify change data in existing rows. In Batch, the
row is read and written back to the database
even if not modified.
Reference Guide 334

C Create create new rows.

D Delete delete all the rows of the dataview. It is
relevant only for Batch tasks.

Q Query scan through the rows and columns using
directional keys or mouse, allowing for user
input only if the Allow Locate in Query option
control is set to Yes. In Batch, open tables in
ReadOnly mode, regardless of DB Table
Repository definitions, to perform read only
operations.

P As Parent run a task or program whose mode is identical
to that of its parent in runtime. If a program
with the As Parent Task mode in runtime is not
called by another program, the task mode
defaults to Query.

L Locate search for specific rows, as defined by values
and/or expressions.

R Range determine which rows will participate in the
task, according to From-To values and/or
expressions.

K Key change the Main Table index, and access and
display rows according to the new index.

S Sort perform Online sorts by specifying the desired
sort criteria. Each sort criterion defined by the
end-user will create a temporary index that
will be added to the Index list of the task for
the duration of the task session.

F Files specify the names of all I/O files defined for
the task and redirect any of them to a disk file,
to the console, or to a printer. F mode is used
mostly in Batch tasks.

Mode
letter

Mode
Name

Allows the end-user to...
Reference Guide 335

Initial Mode Expression

If you chose By Expression as the Initial Mode value, the insertion point moves
here to allow you to specify an expression number. The expression will be
evaluated at runtime to determine the Initial mode.

NOTES:

1. The result of the evaluation of the expression must be a valid Task
Mode letter: M, C, D, Q, P, L, R, K, S, F, or O

For example, the expression:

IF (A=’QUERY’,’Q’Mode,’M’Mode)
means that if variable A in the task has a value of QUERY, eDeveloper
will start execution of this task in Q (Query) mode. Otherwise, it will
start execution in M (Modify) mode.

2. The Initial mode is evaluated as soon as task execution starts.
Variables of the current task are not yet available during the
evaluation of Initial Mode expressions. Therefore, if the expression
uses variables, these variables must be arguments or variables of a
parent task. If a legal value is not found at runtime for the expression
used for dynamic definition of the initial mode of operation, a
message box pops up, displaying a prompt to notify the user of the
problem and to terminate the task.

3. By using the MODE literal in the Initial Mode expression, as shown in
the example above, you instruct eDeveloper to check the string
content for valid task modes. Any character in that string that is not a
valid task mode will be cleared automatically. The value represented
by the characters in the string are stored in an internal

E By Exp specifiy an expression in the Initial Mode
Expression property (next), which will be
evaluated dynamically at runtime to determine
the Initial mode.

Mode
letter

Mode
Name

Allows the end-user to...
Reference Guide 336

representation. If the application is used with an eDeveloper system
running with a non-English language configuration, the values in the
string will be automatically changed to the corresponding values of
the configuration’s language.

End Task Condition: No (default)

If the value No is specified in this property:

• Browser and Online tasks end when the user ends the task, or when a
developer raises an Exit event.

• A Batch task ends when all the dataview records have been processed or, if
the task is abortable, when the end-user cancels the task by pressing Exit
ESC.

If the Yes value is specified, the task will end before executing the record level,
or after processing one row, depending on the setting of Evaluate condition.
You can zoom from the End Task Condition property to the Expression Rules
repository to set a condition that will activate the End Task condition.

Note: In Batch tasks an End Task condition is required to prevent an endless
loop when:

• You specify the Scratch file (Main Table=0) for the Batch task to perform a
loop.

• The Batch Task, is in create mode.

Note: Regardless of the End Task property setting, the Task Prefix and Task
Suffix operations are always executed.

Evaluate Condition: Before entering record (default)

• Defines when eDeveloper has to evaluate and test the End Task condition:

• Before - the End Task condition test is done before entering the row.

• After - the test is made after updating the row. This way you can, for
example, include in the End Task condition variables from the latest
processed row.
Reference Guide 337

• Immediate - tests immediately whenever the row is changed.

Termination of the Task for End Task Condition

When the Evaluate Condition property is set to Immediate, the End task
condition is checked on the execution of every single operation, at all levels,
and when End task = True, eDeveloper sets up an internal Terminate State.
This state is checked only in the Online Record Main level, and causes the
immediate termination of this level.

During the Record Main level of Online tasks, the Terminate state causes an
immediate termination of the task.

During all other levels of Online tasks, and all levels of Batch tasks, the setting
of the Terminate state does not cause termination of the task. The task will
terminate when End Task = True at either Before or After End check.

• When eDeveloper terminates the task for End task = True, it:

1. Executes the Record Suffix for browser and online tasks, if the row
was modified

2. Executes the group levels (if any in batch tasks)

3. Executes the Task Suffix

4. Ends the task

Examples of End Task and Evaluate Condition

• If you want 1 row processed, set End task to Yes and Evaluate Condition to
After.

• If you want no rows processed, set End task to Yes and Evaluate Condition
to Before.

• If you want 15 rows processed, specify the expression for End Task
Counter(0)=15, and set Evaluate Condition to After.

Allow Event: Yes (default)

Yes means that the end-user can execute events assigned to the batch task,
and that events assigned to the batch task will be handled by the eDeveloper
engine.
Reference Guide 338

No means that the end-user cannot execute events assigned to the batch
task, and that an event assigned to the batch task will not be handled by the
eDeveloper engine.

For example, while the batch task is being executed, the end-user cannot
cancel the task. If a time event is defined to trigger every ten seconds, the
event will be triggered, but the eDeveloper engine will not handle the event.

You can also create an expression that will determine when the end-user can
trigger an event or when an event assigned to a batch task will be handled by
the eDeveloper engine.To create an expression, zoom from the Allow Event
property to the Expression Rules repository.

Return Value

eDeveloper lets you specify a return value for a task. This property is assigned
to an expression. By zooming from this field, the Expression Rules repository
opens and lets you assign the variable name or expression.

Main Table

You can define a table from the Table repository for the Main table property.
This table’s records will be scrolled by the executed task.

The Main Table property is not accessible if the task has a SQL command.
Otherwise, the Main Table property contains an identifier number as it exists in
the Table repository of the table that provides the basis for the dataview of the
task. For more information, refer to Chapter 5, Application Engine.

Index

The default index is the table’s first index in its Index repository. The choice of
a specific index determines the fetching sequence of the dataview records for
this task.

Setting the Index value to zero and not using an index expression will cause
the table to be scanned in physical order without the use of any index.

The Index property is not accessible if the task has a SQL command.
Otherwise, the Index property contains the number of one of the table
indexes.
Reference Guide 339

Index Expression

The Index Expression property is not accessible if the task has a SQL
command.

Otherwise, to use the Index Expression property, you must leave the default
zero as the Index definition in the Index property. The expression number you
enter in Index Expression property points to an expression in the Expression
Rules repository, to be evaluated at runtime.

If you use an index expression:

The result of the evaluation of the expression must be a valid index number for
the selected Main table. If, at runtime, a legal value is not found for the
expression used for the dynamic definition of an index, or if no expression is
specified, eDeveloper uses the zero index (physical order) as default.

The Index expression is evaluated as soon as the task starts executing, before
any of the task’s variables are available. Therefore, an index expression that is
based on variables, rather than constant values, must either use local
variables that receive arguments, or use the variables of a parent task. Any
Index expression based on variables that are not available will yield zero.

Note: When you use an index number inside any expression, if you want
eDeveloper to update it automatically, you must qualify it explicitly using the
KEY literal as follows. When you use the Index number in an expression,
specify the index number nn as ‘nn’KEY. For example, if you enter “’2’KEY” as
an index expression in the Expression Rules repository, and later insert a new
index in the Index repository for the table ahead of the existing ones, thereby
changing the old index entry from #2 to #3, eDeveloper will automatically
change the “’2’KEY” to “’3’KEY”in the expression.

Advanced Tab

Selection Table: No (default)

This property is relevant for online and browser tasks only. If you set this
property to Yes, you are instructing eDeveloper to implement this task to
behave as a Selection Table task. Such a task is used to pick a specific value
from a table (pick list) and then terminate.
Reference Guide 340

Resident Task: No (default)

When you set the Resident task property to Yes, the called task or program is
loaded into memory when its calling task is loaded, and remains in memory
until the calling task is finished. This trades memory for improved
performance, by attempting to keep the task in memory for repeated calling
from a parent task. Use this option sparingly on systems with limited memory
resources.

Chunk Size Expression: 0 (default)

This property is only relevant for browser tasks, and determines the amount of
records to provide to the browser client. The end user may therefore browse
through records on a local record cache without having to return to the
enterprise server for every new record or page. An expression used for this
property evaluates to a numeric value. This expression is computed when a
task is initialized.

Exit URL

This property is only relevant for browser tasks. The property lets you define a
hyperlink to an eDeveloper Program or any other URL. This hyperlink will be
executed when a browser task ends.

Attached Context

This property enables you to attach a context menu structure to the current
task. This property is enabled for Online and Batch tasks. In runtime, when the
end-user requests a context menu while this task is in focus, the menus that
display are those defined in this property, rather than the default context
menus for the application. For more information, see Chapter 12, End-User
Menus & Help.

Main Display: 0(default)

This property lets you use an expression to define the number of the form that
will serve as your main display form.This enables you to create programs with
dynamically defined displays.
Reference Guide 341

When using a form number inside any expression, to update it automatically,
you must qualify the number explicitly using the FORM literal as follows:

Specify the form number nn as ‘nn’FORM. For example, if you enter ‘2’FORM as
a form expression in the Expression Rules repository, and later insert a new
form in the Form repository ahead of the existing numbers, thereby changing
the old index entry from #2 to #3, eDeveloper will automatically change the
‘2’FORM to ‘3’FORM in the expression.

Icon File Name

This prompt allows you to specify an Icon file name to be used when the
program is minimized under GUI operating systems such as MS Windows.

Enhanced Tab

Transaction Mode

There are five possible transaction mode settings for activating transaction
processing:

• Deferred - Statements are stored in a cache and not sent to the physical
database. These statements will be implemented at the expected commit
time.

• Nested Deferred - Identical to Deferred but specifically applies to cases
when a task is called from another deferred task. The child task opens as a
new deferred transaction. Its transactions are committed to the database
independent of the parent task.

• Active Within Transaction - Task is implemented within the parent
transaction.

• Physical - Statements are implemented after the Task or Record Suffix.
Reference Guide 342

• None - eDeveloper does not open a transaction for the task.
This option is available for browser tasks only.
Note: In a modal task, the Transaction Mode cannot be set to None.

Transaction Begin

Transaction Begin property options include:

• Before Task Prefix

• Group (for batch tasks only)

• On Record Lock

• Before Record Prefix

• Before Record Suffix

• Before Record Update

• None

The transaction processing may also be activated by a variable defined in the
Task Properties Dialog.

Note that the Transaction Begin combo box appears as disabled when None is
selected from the Transaction Mode property.

Locking Strategy

Designates the locking strategy as either No Lock or On Modify. If the
Transaction Mode is set to None, the Locking Strategy is set to No Lock and is
disabled. For more information refer to Chapter 23, Multi-User Considerations.

Cache Strategy

Designates the cache strategy as part of the data management options. For
more information, refer to Chapter 11, Data Management. See also the Table
Repository section in Chapter 4, Tables.

i For more information, see the Transaction Processing
section in Chapter 11, Data Management.
Reference Guide 343

Error Behavior Strategy

Designates the error behavior strategy as either Recover or Abort. For more
information, refer to Chapter 12, Error Handling.

Keep Created Context

When you select Yes or when a set expression is evaluated to True, a context
opened by a batch or online task, as a response to a request, keeps its
context for subsequent requests. This property can be enabled only for batch
or online programs, but is not available for subtasks and browser programs.
Although this property is primarily meant for batch tasks, it is also available for
online tasks for debugging online programs. The default value is No.

Contexts using this task property are subjected to the context inactivity
timeout value just like a context opened by a browser client task. The Context
inactivity timeout value is reset as the request execution is completed.

Context requests can include the following HTTP arguments:

• CTX - the argument value is a context identifier that is stored on the
server.

For example, http://MyServer/Magic94Scripts/Mgrqisipi94.dll?
APPNAME=MyApp&PRG NAME=MyProg&CTX=9755586289880

The CTX context identifier can be retrieved by the task that created the
current URL by using the GetParam(CTX) function or CTXGetId function.

In runtime, the following behavior can occur:

• The defined context exists and is idle. When the context set by
the CTX argument exists and is idle, the context is activated and
the requested program will be executed within that context.

• The defined context exists but is active. When a request for a
specific context is submitted and the context is responding to a
previous request, the submitted request is kept pending until the
previous request is completed. When several requests are waiting
for execution from the same context, they are completed
sequentially in the order of arrival. If the requester timeout of a
pending request passes, the request will fail.
Reference Guide 344

• The defined context does not exist. The request fails and
displays this error message: -197, Context not found.

• No context is defined. When no CTX is set, the request opens a
new context.

Note: With an open context, both batch and browser programs can be
executed by using the CTX argument.

• TRMCTX - This argument value is Y for Yes. Any other value is regarded as
No. For example, http://MyServer/Magic94Scripts/Mgrqisipi94.dll?
APPNAME=MyApp&PRG NAME=MyProg&CTX=9755586289880&TRMCTX=Y

The TRMCTX argument can only be used when the request includes a CTX
argument and the defined context exists on the server.

When the request is executed for a defined context and TRMCTX=Y, the
following runtime behavior occurs:

• The requested program is executed within the set context

• As the top program is completed, the context will close. Note that
browser client tasks are abruptly closed.

Client-Side Identification

Setting requests for execution within a defined context without any client
identification means that any user could create a user-defined request with the
same context identifier. To avoid this, the browser context requires some or all
of the following client-side identification:

• Client-side IP, such as REMOTE_ADDR

• Client-side host name, such as REMOTE_HOST

• Client-side user name, such as REMOTE_USER

• SSL-related information, such as HTTPS, SSL_CLIENT_KEY_SIZE

• User-defined cookie variables

The client identification criteria can vary for every site. If a site utilizes the web
server logon functionality, using the client-side user name can be sufficient.
However, if the site does not support web server authentication, the client
Reference Guide 345

identification can be defined by the Client-side IP, host name, or other client-
side identification options.

You can assign client-side identification to the HttpSigVars Magic Request
Broker setting, described under eDeveloper Requester settings in Chapter 19,
Distributed Application Architecture.

Direct SQL Command
The Direct SQL Command object lets you provide a SQL statement that is
passed to the underlying SQL database to provide the task’s dataview, or to
perform the processing required by the command.

When SELECT statements are complicated, it is faster to let the RDBMS server
join and constrain the rows, bringing only the specified rows into the
eDeveloper task’s dataview. This is especially helpful in a client/ server
environment, where decreasing network traffic improves overall system
performance.

An RDBMS can perform vertical updates and deletes with one SQL statement,
a cursor, and a simple transaction. eDeveloper tasks process the dataview one
record at a time. In an Insert, Update, or Delete task, each record is processed
separately, even though all the records may be processed as one transaction.

You can use explicit SQL where DDL operations are specific to runtime. For
example, you may need to create a special table index for a specific report and
then drop the index when the report is complete. You may also want to create
a temporary table in the RDBMS.

In general, performing other types of DDL from eDeveloper is not
recommended. RDBMS joins are usually more efficient, although not in all
cases.
Reference Guide 346

Using Direct SQL Command

eDeveloper lets you embed native SQL statements in your eDeveloper
application with the SQL Command dialog. If the SQL Command dialog is used,
the task’s Main table is the SQL statement.

1. From the Workspace menu, choose Programs.

2. Create a new line.

3. Type demo for the program name.

4. Zoom to the task tree.

5. Select the SQL Command option from the Task menu (CTRL+Q)
The SQL Command dialog, as shown in Figure 6-2.

eDeveloper executes the SQL command before it executes the Task Prefix
level. The task can use the returned data as an integral part of its dataview.

Figure 6-1 The SQL Command Dialog
Reference Guide 347

eDeveloper does not attempt to analyze the command’s syntax and semantics.
This gives the programmer flexibility, but requires that the programmer plan
the programming carefully. eDeveloper does not protect the data from errors
in the Direct SQL commands.

eDeveloper’s Direct SQL feature is a tuning tool to improve performance. Use
this feature selectively, and only when its use results in significant
performance improvement.

Use the Direct SQL feature:

• When you need to calculate statistics on the database, such as how many
records have a specific property, or the total sum of this month’s salaries.

• When you want to make a vertical update to your data, such as to increase
all salaries by 5 percent, delete all old records, and copy parts of one table
to another table.

• When you want to utilize existing code that was developed and compiled
using the SQL DBMS tools, such as stored procedures.

Direct SQL Task Elements

Create a Direct SQL Task

1. Select the SQL command from the Task menu. The Direct SQL
Command dialog appears as shown in Figure 6-1.

2. From the Database field, zoom to the Database List.

3. Select the database from which to run the explicit SQL.

SQL Command

eDeveloper does not check the syntax or semantics of the statement. The
underlying database performs all statement processing at runtime. If an error
occurs at this stage, the eDeveloper task terminates with an explanatory
message.

You can use the SQL command object to perform global updates, global
deletes, DDL statements, and PL/ SQL Blocks.
Reference Guide 348

The SQL command may also contain the name of a predefined procedure that
was developed and compiled using DBMS facilities (stored procedures). If such
a procedure name is specified as the SQL Command, the database procedure
is invoked and executed by the RDBMS. These stored procedures can be used
as though they were SQL command types. All the rules regarding Direct SQL
commands described here apply to stored procedures when called.

Executing Stored Procedure

You can use a stored procedure by specifying the reserved word exec in the
following format:

exec procedure-name parameters

If the procedure accepts more than one parameter, separate the parameters
with commas. If the procedure body is a Select statement, treat the procedure
as if it is a regular Select statement. In other words, select Options/ Generate
Program. There are three APG characteristics that should be kept in mind
when in a stored procedure:

• APG invokes the stored procedure. If the stored procedure contains
statements other than the Select statement, change the other statements
into Remarks while using the APG.

• Stored procedures that are called from eDeveloper receive parameters by
value.

• An output parameter can only result from a Select statement.

Input Arguments

You can insert a colon (:) followed by a number anywhere in your Direct SQL
command as a property designator. The colon plus number combination is
replaced by the property value specified in the SQL Command dialog’s Input
Argument table. The arguments are computed just before the SQL Command
is prepared, and eDeveloper replaces the property designator with the
computed value in the SQL statement’s text. The statement is then passed to
the RDBMS for syntax evaluation and execution.

The SQL command syntax is always re-evaluated before the command is
executed, regardless of the Resident Task property value (in the Task
Reference Guide 349

Properties dialog). Generally, Input arguments are used as placeholders for
SQL WHERE clauses.

Output Arguments

SQL SELECT statements or stored procedures provide eDeveloper with an
alternative dataview to the standard Main table ordinarily used. When the SQL
Command results produce a result table or a data stream, eDeveloper provides
the buffers necessary to accept the data. These buffers take the form of virtual
variables defined in the SQL Command’s task. The virtual variables must
match, in attribute and picture, the data generated by the SQL Command.

Assist Utility

The Assist utility provides an easy way to construct SQL statements that
include database names for tables and columns. The SQL Command Assist
utility is not a substitute for knowing the SQL language, which is a prerequisite
for using the SQL command.

Use the Assist utility to reference the names of tables and columns in the
database, but be careful when you use this utility to build syntax.

For example, the Assist utility will build

SELECT ALL FROM EMPLOYEE

even though this is not valid syntax. The correct syntax is:

SELECT * FROM EMPLOYEE

Use the Assist Utility

1. Click the Assist button on the SQL Command dialog. The SQL Assistor
dialog appears. as shown in Figure 6-2.

2. Select a keyword from the keywords list and press ENTER to place the
selected keyword in the Statement box.
Reference Guide 350

Continue the same for selecting column names, table names and operations
from their lists.

You can view the table under either its eDeveloper name or its RDBMS name.
By clicking the Flip button, you can toggle back and forth between the
eDeveloper and RDBMS table names. Whether selected from the eDeveloper
or the RDBMS name, the SQL statement shows the RDBMS name.

The Table box shows only tables that are defined in eDeveloper’s Table
repository. However, it is possible to enter SELECT statements that access any
available tables in the database, even if those tables are not defined in the
Table repository.

Figure 6-2 SQL Assistor Dialog
Reference Guide 351

SQL Command Automatic Program Generator

The SQL APG utility constructs a complete eDeveloper program from SQL
statements the programmer inputs. Running the SQL APG is the only way to
check the SELECT statement syntax before running it. The utility generates an
eDeveloper task structure based on a SELECT statement or a stored
procedure.

The generated task contains the following items:

• The original SQL Command

• Select virtual operations and virtual field definitions for all the result table’s
columns

• A full Output Properties table with the automatic virtual variables

• A default form for user interaction

The developer only has to define input properties for the SQL command if
required and change the default form if necessary.

Behavior of Direct SQL SELECT Statements

Some of the Direct SQL statements that have a result database behave
differently in eDeveloper.

Direct SQL statement execution always occurs before a task prefix. Therefore,
once you have entered the task prefix, the SQL statement has already been
executed.

Browser Client and Online

In browser client and online tasks:

• You must browse on the SELECT statement result.

• eDeveloper creates a temporary result table or file and inserts all the
records into it so that the user can scroll on the records. The table is
deleted at the end of the task.
Reference Guide 352

Batch

In batch tasks:

• Every record is only read once, and you do not need to go backwards.

• eDeveloper opens a cursor according to the SELECT statement and
retrieves all the records one after the other.

Result Database as Input Database

Setting the same value in the Result Database field as in the Input Database
field, lets you make the result database the same as the input database. In
most cases, the underlying RDBMS allows an

INSERT INTO table AS SELECT...

statement, which copies all the data to a table in one command. This method
is faster than opening a cursor. All of the records are retrieved from the client
and inserted into the result table.

In such cases, the SQL gateway creates a table in the database and sends:

InsERT INTO temp_ table AS SELECT “direct SELECT

statement”

The user may then scroll on that table to speed up the SELECT statement
execution. This method is especially helpful when the result set is large
because there is no retrieving and inserting of each record to the temporary
table.

Result Database Different from Input Database

When the result database is different from the input database, a temporary
table is created. A cursor is defined, and the records are retrieved and inserted
one by one into the result table. The user may then scroll on that table.

Recommendations

• When the result is large, it is best to use the option that makes the result
database the same as the input database. Then the InsERT INTO AS
SELECT statement will be used.
Reference Guide 353

• When the result is relatively small, it is best to use the result database as
an ISAM database that will reside on the client. Then when you create the
result and scroll on it, the work is only performed on the client, which
reduces network traffic.

• Use the memory gateway when the results are relatively small to enhance
performance.

Restrictions on Using Direct SQL

A task with a Direct SQL command instead of a Main table is a normal
eDeveloper task and has almost the same functionality. There are, however,
some restrictions:

• All the tables participating in the SQL command must be from the database
that is declared in the Database field of the SQL Command dialog. Mixing
tables from different databases is not allowed.

• In an online task, do not update a column that belongs to the SQL
command’s view (the result table). Such updates are never written back to
disk because the result table is deleted when the task terminates. Use
links to other tables to update information.

• Do not use commands that alter the state of a record that is the current
view of an ancestor task.

• During batch processing, do not update a Group level of a SELECT
operation. Group Level operations require that the preceding record be
refreshed before the Group Level operation. Refreshing records is
impossible because the task’s data stream is a one-way stream that
cannot be stopped.

• Use task level transactions on batch SQL commands.

• Do not use the COMMIT and Rollback commands in your Direct SQL. If
these commands are not generated through eDeveloper’s standard
transaction management layers, the results are unpredictable. COMMIT
and Rollback functionality is achieved correctly only by choosing the right
transaction mode in eDeveloper’s task level table.
Reference Guide 354

• The SQL statement is executed by the underlying database. The command
syntax is the developer’s responsibility, and the developer is not prevented
from using DBMS- specific extensions. If application portability among
various SQL DBMSs is required, be careful not to include DBMS- specific
SQL extensions in Direct SQL. In the SQL statements created by
eDeveloper this is not a problem. The eDeveloper gateways generate the
correct, optimized syntax for each database.

• When using Direct SQL in online tasks, eDeveloper creates a temporary
table. Optionally, the table can be created in the database. Creating the
temporary table in the same RDBMS using that RDBMS’s utilities is usually
more efficient than having eDeveloper read and write each record.

• Range on a Direct SQL output argument is not allowed.

• To execute a stored procedure, prefix the name with the word exec as in:
exec sp_order_update

The gateway actually executes the generated program statements to
recognize the correct form of the result set in the APG. So, if your statement
modifies data, the modification will occur.

• DB2 and ODBC cannot be used as the Result Database of a Direct SQL
task.

Binding Variables

When using Direct SQL tasks, eDeveloper sends the SQL statements to the
database after creating them dynamically. The database receives the SQL
statements as alpha or numeric string values, and parses and executes the
SQL statements.

Parts of the SQL statement can be placeholders for predefined values.
Replacing placeholders with values is called binding, which eliminates the
process of reparsing
SQL statements by the database.

Binding Restrictions

Binding variables for SQL statements are supported by Oracle RDBMS only.
Reference Guide 355

Binding variables are supported only with select statements or stored
procedures that return output.

You can specify a variable as a binding variable by using the Tilde (~), as
displayed in the following example: Select * from table where field1 =
~1 and field2 > ~2

Binding is supported for Alpha, Logical, and Numeric eDeveloper types.
Apostrophes are not required when binding alpha values. eDeveloper stores
Date, Time, Logical, and Numeric eDeveloper types as numeric values.

You can use the binding mechanism when the parallel data type in Oracle is
Numeric.

Note: SQL statements with bound (~) and unbound parameters eliminate the
benefits of binding variables.

Allow DSQL in a Deferred Transaction

eDeveloper lets you define a Direct SQL statement for all types of task modes:
browser, online, and batch.

When generating a task from the SQL Command dialog, you can select the
browser client from in the APG Option combo box, which creates a browser-
based task with data retrieved from a Direct SQL Statement.

In a browser-based task, you can specify only select statements and call
stored procedures that return data. DML statements are not allowed, such as
Update, Insert, and Delete operations.

If the DSQL rows are linked with other tables, the linked data for the non-
DSQL rows are stored in the transaction (trans) cache, which behaves as a
normal link in a deferred transaction task.

A DSQL task assigned as a browser client subform will be blocked. The timing
of the SQL Command execution prevents eDeveloper from refreshing the
subform.
Reference Guide 356

Task Control
Task Control properties are used to control the runtime behavior of a task.

Task Control Properties as Conditions

You can specify Yes or No for most of the control properties or you can assign
them the number of a logical expression to be evaluated at runtime. This way,
the control property setting can be made dependent on the result of a
condition expression. A condition expression that evaluates as True is
equivalent to a Yes value in this property, and a condition expression that
evaluates to False is equivalent to a No value in this property.

Task Control Properties Dialog

Use the Task Control properties to specify which modes of operation will be
available on the task menu for the end-user to set at runtime. The setting of
Task Control property also determines which modes of operation will be legal
as the Initial Mode for the task.

Note: If the Initial Mode setting for the task is disabled by the corresponding
Task Control property, at runtime eDeveloper issues an error message to that
effect. When the end-user exits the message box, the task will terminate.

The Task Control dialog is divided into two tabs:

• Modes Tab

• Behavior Tab

Modes Tab

Allow Options: Yes (default)

No means all end-user options will be disabled; the task will run using its
Initial mode and the end-user will not be able to change it.
Reference Guide 357

Allow Modify: Yes (default)

No means the Modify option will be disabled.

Allow Create: Yes (default)

No means the Create option will be disabled.

Allow Delete: Yes (default)

No means the Delete option will be disabled.

Allow Query: Yes (default)

No means the Query option will be disabled.

Allow Locate: Yes (default)

No means the Locate option will be disabled. In Query mode, the automatic
locate mechanism will not operate.

Allow Range: Yes (default)

No means the Range option will be disabled.

Allow Index Change: Yes (default)

No means the Index change option will be disabled. The automatic index
optimization will also be disabled.

Allow Sorting: Yes (default)

No means the Sorting option will be disabled.

Allow I/O Files: Yes (default)

No means the end-user will not be allowed to redirect input or output
operating system text files.
Reference Guide 358

Allow Index Optimization: Yes (default)

No means the Index Optimization mechanism will be disabled.

Allow Locate in Query: Yes (default)

No means the automatic locate mechanism will not operate in Query mode.

Allow Printing Data: No (default)

Yes means the Allow Printing Data option will be enabled. This opton is
available only for online tasks with the Main table selected.

Behavior Tab

Open Task Window: Yes (default)

This property is relevant for Batch tasks only, because the Task Window is
always open for Online and browser tasks.

If you specify No for a Batch task, eDeveloper does not display its Task
Window on the screen. If you specify No for an Online task, eDeveloper will not
start execution.

Close Task Window: Yes (default)

The Yes value tells eDeveloper to close (that is, remove) the Task Window
when the task ends. The No value tells eDeveloper to leave the Task Window
with its final content on the screen when the task ends. When executing the
same task again, the previous open window is closed and a new window
opened. When exiting the runtime environment, all open windows are closed.
This property is only relevant for Online and batch tasks.

The following table displays the allowed combinations of the Open and Close
Task Window properties:

Open Task
Window

Close Task
Window

Relevant for

Yes Yes Online and
Batch tasks
Reference Guide 359

Foreground Window: Yes (default)

This property is only relevant for online and batch tasks. At runtime a task will
usually open its window as the top window, meaning it will be fully displayed
and will overlap all other open windows. However, eDeveloper can also open
the task’s window in the background, behind all the other active task windows.
Select the No option when you want the task to substitute its task window for
the standard eDeveloper background window or when you want to leave the
task window open above the eDeveloper work area background. This way, you
can display background information such as time or date.

When you set Foreground Display to No, you would normally also set the Close
Task Window to No, to keep the displayed background window open. If you
want to refresh this background window upon user demand or periodically, use
the Event repository to make program execution dependent on a particular
keystroke or on the passing of a specified elapsed time.

Refresh Task Window: No (default)

This property determines whether the task window is refreshed after each row
is processed and its Record Suffix is executed, refer to Chapter 5, Application
Engine. This property is only relevant for Online and batch tasks.

eDeveloper works on a single row at a time. Even in a multi-line display, in
Line mode, only the currently-highlighted line is refreshed and displays the
exact values of the dataview row. The other lines in the display are refreshed
as soon as the input focus is moved to them. Therefore, it is possible that a

Yes No Online and
Batch tasks

No No Batch tasks
only

No Yes Batch tasks
only - same
meaning as No

Open Task
Window

Close Task
Window

Relevant for
Reference Guide 360

non-highlighted line can be displayed without reflecting its most up-to-date
values as stored in its dataview row.

In another scenario, it is possible for the current dataview row to contain some
columns that also participate in another row of the same dataview, because of
a link operation. In this case, the other dataview rows may also be displayed
on the same screen, in Line mode, or in a parent task. If such a column is
changed, the changes will be displayed only for the currently highlighted
dataview row. In such situations, it is a good idea to immediately reflect the
changes in all the dataview rows currently being displayed, using Refresh Task
Window set either to Yes or to an expression. It is preferable to use an
expression, if possible, because such refreshing can slow down task execution.

Record Event Interval: 0 (default)

This property is only relevant for Batch tasks and defines after how many
processed records will eDeveloper poll pending events in the events queue.
This property’s expression should evaluate to a numeric value and is computed
at the task’s initialization stage. For example, if the expression evaluates to
500, the eDeveloper engine looks for pending events in the events queue after
every 500 records. If a matching handler for an event is found in the queue,
the handler will be executed.

Form Records: 0 (default)

The Form Records property is relevant for Batch tasks only. It is used to
produce reports on pre-printed forms, where the header and footer are in a
fixed position and a fixed number of lines exist on each page. In this case, a
fixed number of records should be output to each page, with the last page
padded with empty lines. For more information, refer to the Output Form
operation in the Chapter 7, Operations.

Cycle Record Main: Yes (Default)

If Yes is specified in this property, when the end-user finishes working on the
last column of the current row the insertion point will return to the first column
of the same row. This process continues until the user leaves the row and
moves to another row, or exits the task.
Reference Guide 361

If No is specified, the insertion point will move automatically from the last
column of the row to the first column of the next row of the dataview.

This property is relevant for Online tasks only.

Confirm Update: No (default)

If No is selected, eDeveloper confirms only Delete operations. If Yes is
selected, eDeveloper also confirms Create and Modify operations. You may
also use an expression to override this behavior. For example, Stat(0,
“’C’MODE”) will confirm Create operations only.

Confirm Cancel: No (default)

eDeveloper will prompt the user upon the cancellation of updates on the
current record, if Yes is selected. Confirming the cancellation will cancel the
changes and the record will revert back to its original values. Declining the
cancellation will keep the new values in the records.

Force Record Suffix: No (default)

The Force Record Suffix property is only relevant for browser and Online tasks.
If its value is No, eDeveloper executes the Record Suffix level only if the
current dataview row has changed; that is, if one of the task variables was
modified.

If the Force Record suffix property is Yes, or if you specify a condition
expression that evaluates to True at the end of Record Main execution,
eDeveloper executes the Record Suffix whether or not modifications were
made to the row.

Force Record Delete: No

The Force Record Delete property allows you to delete rows from the task
dataview conditionally.

The Delete condition expression is evaluated before eDeveloper begins Record
Suffix processing. If it evaluates to True, the row is deleted using the same
mechanism as if the user had pressed a Delete key, as described below.
Reference Guide 362

Delete Mechanism

If the row has been modified, or if the task is running in Batch, the Record
Suffix is processed once with the task status Modify, in order to perform any
update operation defined there and to complete the processing logic. The
Record Suffix is then processed a second time with task status Delete, in order
to perform any delete-related operations, such as deleting chained rows in
one-to-many relations, or Update option operations using the Incremental
mode. For more information refer to the Update Operation in Chapter 7,
Operations. If the row has not been modified, the Record Suffix is executed
once only, with task status Delete. This logic is illustrated in the figure below.

If, with Force Record Delete, you want to avoid the double-processing of
specific Record Suffix operations, use the Stat function in the condition
expression specified in the Condition column for those operations.

Figure 6-3 The Effect of Force Record Delete
Reference Guide 363

Local Variable Repository
Almost all tasks need to store certain information temporarily for the duration
of the task execution. For this purpose you can define local variables, selected
from a temporary “scratch” memory area called a virtual file. The virtual file
may be edited by selecting Variables from the Task menu.

All selected local variables appear as entries within a task’s Variable repository.
The Variable repository behaves like the Column repository of a table. The only
difference being that in the Variable repository you cannot create or delete a
line using the normal table editor. A line is created or deleted in this repository
automatically when you create or delete a Select Virtual or a Select Parameter
operation in the Record Main Execution repository, and no other way. For more
information refer to the Select Operation section in Chapter 7, Operations.

Properties of the Variable Repository

The following properties exist for each entry in the Local Variable repository:

(for Variable identifier)

This column contains an automatically generated sequential number used by
eDeveloper as a variable identifier. You cannot edit this column.

Name

Enter a descriptive name. If you want the variable to inherit a field model, you
can leave the name column blank and eDeveloper will copy the model name in
it.

Model

You can create local variables based upon pre-defined field models. Either
zoom from the model column and select the desired field model, or type in the
number of the field model.

When a model is selected, its name will appear beside the model number and
the attribute and picture columns will reflect the model’s attribute and picture.
All other properties will be inherited from the selected model.
Reference Guide 364

You may also leave the model column empty (zero) and define your local
variable properties directly through the variable’s property sheet. In any case,
every property can be broken and be set locally

Attribute

Click the combo box to select an attribute from the Attributes list, or enter the
initial letter of one of the eDeveloper data item attributes: A for Alpha (the
default), N for Numeric, L for Logical, D for Date, T for Time, M for Memo, B for
BLOB, O for OLE, X for ActiveX, and V for Vector. For more information, see the
Attributes section in Chapter 3, Data Items.

Picture

• For an Alpha or Memo variable, the minimum picture required is its length.
In addition, you can enter any other picture specifications the variable
needs.

• For a Numeric variable, the minimum picture required is the number of its
integer digits and, if needed, a decimal point and the number of decimal
digits. You can add any other picture specifications the variable needs.

• For a Logical, Time, or Date variable you can accept the suggested picture
or you can add any picture specifications you want for the variable.

• For a BLOB, there is no picture available.

• Additional details about Picture specifications are available in the Pictures
section of Chapter 3, Data Items.

Local Variable Properties Sheet

The property sheet of the local variable is the same as the property sheet that
is available in the Model repository for an Alpha field model.

Please refer to Chapter 3, Models for more information on setting the Field
model properties
Reference Guide 365

Expression Rules Repository
The Expression Rules repository is a compound window that includes:

• Expression Rules repository area at the top left corner.

• Variable list at the top right corner.

• Expanded variable area at the lower section of the window. In the
expanded expression area, the expression highlighted in the Expression
Rules repository area at the top of the screen is displayed with each
variable identifier letter replaced by its full variable name.

• Buttons at the bottom of the window, described in the table below.

Action Function
Button

Meaning

OK ENTER OK Accept changes and
terminate the dialog. Copy
the current expression
identifier number to the
property from which you
zoomed into the Expression
Rules repository.

Cancel F2 Cancel Cancel all changes to the
Expression Rules repository
and terminate the dialog
without copying the current
expression identifier number.

Show
Expression

Show Show the edited expression
in the expanded expression
area.

Function
List
Alt+F

Function Display a list of all the
available functions.
Reference Guide 366

Note: Place the insertion point on the Expression Rules repository to copy
values from a list to an expression.

Expressions

An expression is a constant or a formula for computing a value. An
expression’s value can be of type Numeric (including Date and Time), String,
or Logical (TRUE or FALSE). The expression consists of a sequence of

Action List
Alt+A

Actions Display the Action list used
for selecting actions while
editing a KbPut or KbGet
function.

Shortcuts
List
Alt+S

Short-
cuts

Display a keyboard
mnemonic list used while
editing a KbPut or KbGet
function.

Rights List
Alt+R

Rights Display a list of allowed rights
used with the Rights function.

Control
Name List
Alt+N

Controls Display a list of control
names used with the controls
in the form.

Table List
Alt+T

Tables Display a list of the available
tables
to be used in table-related
functions.

Program
List
Alt+P

Programs Display a list of the available
programs to be used in
program- related functions
and operations.

Error List
Alt+E

Errors Displays a list of supported
errors to be used in error-
related functions.

Action Function
Button

Meaning
Reference Guide 367

operators indicating the action to be performed, and operands on which the
operation is performed. Operands may contain variables, functions, constants
(called literals), or other sub-expressions.

• A variable is part of the current Variable list. The Variable list contains both
Real and local variables.

• A function is one of eDeveloper’s library of built-in functions. The built-in
functions can be classified into the categories Date & Time, Mathematical
& Trigonometric, String Manipulation, Conversion, Identification, Tests &
Conditions, Logical, Database Interface, Table Management, Value
Manipulation, and Action. You can access and select functions during
editing by pushing the Function button. For a complete directory of
available functions, refer to Chapter 8, Expression Rules.

A function usually contains one or more arguments, delimited by commas. The
argument list is enclosed in parentheses. Even if the function contains no
arguments it still requires a set of parentheses: for example, Date ().

Every function returns a value.

• Operators can be numeric (for example, +), string (for example, &), or
logical (for example, NOT), as described in Chapter 8, Expression Rules.

• Each entry in the Expression Rules repository evaluates to a numeric value,
a string, BLOB, or a logical value (True or False), depending on the type of
variable and functions used. If an inappropriate combination of types is
used, eDeveloper displays an error message.

• Functions can be nested using parentheses. For example, the following
expression gives the real length of the string stored in the variable A:
Len(LTrim(RTrim(A))) which is equivalent to Len(TRIM(A)).

Further complexity is possible by nesting logical expressions, including IF,
AND, NOT, and OR.

eDeveloper will remove any superfluous parentheses.
Reference Guide 368

Form Repository
The Form repository contains form definitions for a task. Each entry represents
a form. The first form is the task’s main window.

From the Task menu, click Forms to open the Form repository, as shown in
Figure 6-5.

When you define a task, eDeveloper automatically creates an initial entry in
the Form repository. This form entry is specific to the task. You cannot delete
the form or move it to another position in the repository.

When you create a subtask, eDeveloper automatically appends a new entry to
the root task’s Form repository. This entry is for the subtask. You cannot delete
this entry, although you can modify the columns associated with this form.
This entry may move if you add or delete entries in the Form repository of
ancestor tasks. From the Form repository of a subtask, you have access to all
of the forms for that subtask and to the entries for the subtask’s ancestors.

Figure 6-4 Form Repository
Reference Guide 369

For a Class 0 form, the Form Editor displays a secondary window above the
main windows of all the ancestor tasks in the program’s hierarchy. This lets
you see how the display appears at runtime.

For online tasks, the form is used to display the dataview and to allow end-
user interaction.

For batch and browser tasks, the form can be used for feedback information,
such as to show that a task is running. It can also serve as a template for end-
user options, such as to set the locate and range fields for the batch process.

You can define the selected form by specifying the property value on the form
properties sheet.

Double-click a form entry to start the form editor or click Edit Main Form
from the Options menu, as shown in Figure 6-5.

You can add controls to the form by selecting a control from the Control
palette, and dragging and dropping the control on to the form. You can define

Figure 6-5 Form Editor
Reference Guide 370

the control by specifying property values displayed on the control properties
sheet.

Form Repository Columns

The following is a description of the form columns:

(for Form identifier)

A sequential number representing a form’s position in the repository. Magic
automatically generates and maintains the form identifier. You cannot edit this
column. The first entry of the task is the task form, Class 0, and cannot be
deleted or moved, although some of its properties, such as Name and Child
can be modified.

Name

You can specify the form name. This field contains the task name or another
name given to the form. When you create a new task or subtask, Magic also
automatically creates the Form repository entry for that task. The name of the
task, as it is entered in the Task Properties dialog, appears as the name of the
form. As long as the task name and the form name are the same, any changes
to the task name are automatically copied to the form name. You should
provide a name for all additional form entries you make in the Form repository.
The form name appears at the top of any of its associated Class 0 display
windows.

Zoom or double-click on an entry in the Name column to activate the Form
editor type selected for the form. If the form is a Browser or an HTML Merge
form, zoom to the editor that you have specified in the Web Authoring Tool
setting, from the Partitioning tab of the Environment dialog. If the form is a
Web Online Response form, zoom to the Merge Command repository.

Class

Magic automatically assigns Class 0 to the task’s main form. You can define
additional Class 0 forms. Class 0 is reserved for interactive forms.
Reference Guide 371

You can also define forms with a Class Number > 0. These forms are used for
reports, I/O record layouts, and HTML output. If a task produced two reports
you could assign the Class Number 1 to all of the forms of the first report, and
assign the Class Number 2 to all of the forms of the second report. The actual
class values are of no significance except to associate all header, detail, and
footer forms within a single report, and to ensure that they are treated as a
single unit in End of Page situations.

Magic will automatically adjust the Units of Measurement, Vertical Factor and
Horizontal Factor settings for any group of forms with the same class number,
where Class > 0, so that all the related forms have the same settings, which
will be the highest resolution defined in any one of the forms of that class.

Note: Changing the form class may cause controls to be deleted.

Area

For interactive windows, Class 0 forms, the Area field is disabled. For report
forms, the Area field can be set to Header (the default), Detail, Footer, Page
Header, or Page Footer. For I/O record layout forms, the field is disabled.

The physical placement (nesting) of Header, Detail, and Footer forms in the
Form repository is important. Each header form must be followed by its
matching footer form. All header-footer pairs must precede the detail lines.
The header-footer pairs must appear in their outside-in nested order. The
detail lines should be placed after the innermost header-footer forms pair.
Detail forms should appear in the order they appear on the report. When
displayed within the report editor, Magic orders the forms to their output
format of nested header, detail, footer, reflecting the sequence in which they
appear on the report.

Interface Type

For Class 0 forms, the interface type is a Browser form or GUI form.
For Class > 0 forms, click the Interface Type column to choose one of the
following options in the table below.

Select... For...

Browser Browser tasks
Reference Guide 372

If you convert a Class > 0 GUI form into a text-based form, and the GUI form
contains controls that are incompatible with a text-based form, a message
warning you that existing controls may be modified or deleted appears on the
message line. A dialog appears asking if you want to overwrite the current
display. Press ENTER to accept the overwrite. The form and its controls are
changed to text-based rules, and mismatched controls are deleted.

Display forms have either a Browser interface or a GUI Display interface and
are described in Chapter 9, Display Forms

Output forms have the following interface types: HTML, Frame Set, HTML
Merge, or Web Online Response, and Text-based. They are described in
Chapter 10, Output Forms.

HTML Tasks implemented in an
HTML environment

GUI Display Online interactive tasks

GUI Output Online reports

Text-Based Textual output

Frame Set Creates a complex Internet
document where the browser
window is divided into
multiple frames.

HTML Merge Merges data from a Magic
task with a predefined
template file to create any
dynamic HTML page based on
a predefined HTML design.

Web Online Response Specifies the commands to be
executed in response to a
Magic program called by a
Web Online page.

Select... For...
Reference Guide 373

Child

For text-based forms, the Child column is disabled. For Class 0 GUI forms, click
on the combo box in the Child column of a Form repository to choose one of
the available options:

• Yes - The form will be opened as a secondary (child) window.

• No (default) - The form will be opened as a main window.

You can also enter an expression to determine when the form opens as a
secondary (child) window. The expression is computed when the form is
opened before the Task Prefix operations are run.

Working with Forms

Forms let the end-user interact with the application. They contain controls that
either display data options or let the end-user enter data.

The Form Editor displays the form’s frame and content as specified in the Form
repository. You can design a form by assigning form properties and selecting
controls and defining their properties.

Resizing a Form

You can define the logical size of your form from the Navigation properties
listed in the form properties sheet. Alternatively, you can use the SHIFT +

[Arrow keys] to change the layout area of the form. Use the arrow keys or drag
the title bar of the layout to move the form. Click and drag the right and
bottom borders of the layout frame to resize the form layout area. After
resizing or moving a form layout area, press ENTER to accept the change, or
press ESC to cancel the change.

If you make the layout frame smaller than the layout area, eDeveloper
automatically adds scroll bars to the form. You cannot change the layout area
dimensions of a form in such a way that controls would be lost.
Reference Guide 374

Form Units

The size and position of controls on a form are defined in terms of form units.
Form units also determine the resolution of the form. You set the form units in
the Form Properties sheet. You can define a form in dialog units (characters),
centimeters, or inches. A dialog unit is the size of the form’s current font. Use
dialog units to maintain the same proportions in a form when using different
screen resolutions.

Use the Vertical factor and Horizontal factor properties in the Details section of
the Form Model sheet to determine fractions of dialog units for finer resolution.

Units of measurement for HTML forms are always in dialog units based on the
form’s font. The units of measurement determine the size of the grid displayed
when the form is developed.

The grid specifies the row to which the control is placed on the form, and, in
the case of a pre-formatted control, the number of spaces to be used for
padding.

Palettes

Palettes contain icons that let you select controls or control formatting
commands. eDeveloper palettes are described below:

The Control palette contains icons of the controls that can be placed on the
form depending on the form type specified.

The Command palette contains icons that let you align, resize, link, group,
and arrange controls for GUI and HTML forms.

The Color palette lets you define the color for a particular control as
displayed on the palette. Each color is identified by a color button.

The Static Table palette provides you with controls for the precise placement
and independent formatting of all HTML controls through the use of Static
Table cells and rows that can easily be modified for custom design.
Reference Guide 375

Form Templates

The current form layout can be saved to a file as a template. The default file
extension is MFT, Magic Form Template. The template contains all controls and
all control properties except for the following:

• Control Name

• Property expressions

• Data properties

• Help and Prompt Help properties

• Auto Call Program properties

The above properties will have empty property values when loaded from the
template file.

If you load a template into an existing form, the template file will overwrite all
the form settings, and all the controls that were on the form will be deleted.

Form Templates are limited to GUI forms. HTML templates are not accepted by
the GUI Form editor.

Form and Control Properties

Form properties determine the visual display and format of a task. Control
models determine the visual display and operation of controls. Form and
control properties are described in Chapter 9, Display Forms, and Chapter 10,
Output Forms.

Form and control properties can be a set of inherited properties. You can
define form and control models in the Model repository. For more information,
see Chapter 3, Models.

Keyboard Shortcuts

Keyboard shortcuts for forms are listed in the table below.

Key Modifier State Operation

F5 Control is selected Control properties
Reference Guide 376

F5 No selection Form properties

SPACE Clear the selection

DELETE Delete the selection

INSERT New control menu

ENTER A Static control is
selected

Text entry

ENTER A Choice control is
selected

Rotate choice layer

ARROWS Controls are selected Move the selection

ARROWS SHIFT Controls are selected Size the selection

ARROWS No selection Move the form

ARROWS SHIFT No selection Size the form

ALT Places a control on
an existing table
column or select a
table column

TAB Select next control

TAB SHIFT Select previous
control

HOME Select first control

END Select last control

CTRL Adjusting table
columns

Push mode

CTRL SHIFT Adds a table column
in front of an existing
table column

Push mode

CTRL Adds a table column
after an existing
table column

Insert mode

Key Modifier State Operation
Reference Guide 377

CTRL Adjusting report
dividers

Push mode

SHIFT Dropping a control
from within a
variable palette

No title

ESC A control is selected Exit

ESC Z-order display Cancel

CTRL+↓ Moves you to the
next row in a multi-
marked table

CTRL+↑ Moves you to the
previous row of a
multi-marked table.

CTRL+PgDn Moves you to the
next page in a multi-
marked table

CTRL+PgUp Moves you to the
previous page of a
multi-marked table

CTRL+SPACE Marks or unmarks a
table row.

SHIFT+PgDn Marks the next page.

SHIFT+PgUp Marks the previous
page.

Shift+Down
Arrow

Moves you to the
next line and marks
it.

Shift+Up
Arrow

Moves you to the
previous line and
marks it.

ESC Exit

Key Modifier State Operation
Reference Guide 378

Mouse Action Mapping

In the Form Editor, use the mouse to design and place controls to make the
form look the way you want. Mouse actions are described in the table below.

Action Modifier Operation

Dragging a control Displays bounding
outline selection.
Child controls are
also selected.

Dragging a control CTRL Displays bounding
outline selection.
Child controls are
not selected.

Click on control Selects control. Child
controls are also
selected.

Click on control CTRL Selects a control.
Child controls are
not selected.

Click on choice control SHIFT Change layer

Click on form Unselect control

Click on form SHIFT Drag the form (Class
0 forms only)

Double click on a control
button

Control appears in
the upper-left corner
of the form

Double click on a control Control properties
are displayed

Double click on the form Form properties are
displayed

Right click The context menu is
displayed
Reference Guide 379

DB Table Repository
eDeveloper automatically includes in the DB Table repository the Main table
and the tables used by Link operations. These entries cannot be removed from
the repository by deletion; the Edit/Delete Line (F3) option is not available
when the insertion point parks on their rows. You can only edit their
properties.

To access the Table list, zoom from the Table column.

You can include additional tables to be used and other called tasks. For
example, a child task’s DB Table list may be added to the parent task’s DB
table in order to save the time it would take to open and close tables each time
the child task is called. In this case, these tables will also be listed in the DB
Table repository of the child task.

When the cursor is parked on a Select Real table entry, the original name of
the column is displayed at the bottom of the Task Execution repository.

Properties of the DB Table Repository

#

The sequential number automatically assigned by eDeveloper to the entries in
the repository. It is not used for referring to the repository. You cannot edit
this column.

Table

This column contains the repository’s identifier number from the Table
repository.

To add a new table, create a new line by choosing Edit/Create Line F4 and
enter the identifier number of the table you want, or zoom to the Table list
from the Table column to select the table that you want.

Name
Reference Guide 380

The Name column shows the name of the repository. You cannot edit this
column and the name is inserted automatically when the repository identifier
number is specified.

Access

The Access property is relevant only in a multi-user environment. It
determines how the repository is accessed by multiple users.

Use Read for Read Only access, or Write (the default) for Read and Write
access.

For more details on the Access property, refer to the Access section in Chapter
23, Multi-User Considerations.

Share

The Share property is relevant only in a multi-user environment. It determines
how other, concurrent tasks can access the table.

Use Read to allow other tasks Read Only access. Use Write (the default) to
allow other tasks Read and Write access (effectively row locking). Use None for
no shared access (Table locking).

The combination of Access and Share will be used by eDeveloper to determine
the Open mode of the repository automatically. Thus, write access with share
write implies row locking, while read and write access with share read implies
table sharing. Share None implies exclusive use of the table. For more details
on Access/Share mode, refer to the Share section in Chapter 23, Multi-User
Considerations.

Open

Normal - the Open mode for a valid table for all normal purposes.

Damaged - The Damaged Open mode instructs eDeveloper to open the table
even if it is reported as damaged by the underlying database manager. In this
mode, eDeveloper will retrieve whatever rows it can from the damaged table.
No indexes are available for the table during such an access. eDeveloper
cannot guarantee retrieval of all the rows in this mode. Damaged Open mode
should be used only for recovery attempts on the table.
Reference Guide 381

• Reindex - The Reindex Open mode instructs eDeveloper to drop all the
indexes of the table when opening it, perform processing, and rebuild the
indexes upon session termination. Reindex Open mode is a performance-
enhancing feature, for large table imports in Create mode, or for massive
index value modification to a table. By removing all the indexes in
sequential processing, eDeveloper saves the index-maintenance time
normally required for every insert and modify index operation performed
by the underlying database manager, such as balancing the B-tree in
Btrieve. When the process ends, eDeveloper builds the index structure
once for the whole table.

The Reindex Open mode depends on support by the underlying database
gateway. Note that when specifying Reindex Open mode, if duplicate index
values were entered in a unique index, the re-indexing process may give
unexpected results. For instance, Btrieve simply aborts the re-indexing
process. Other database gateways may decide to skip the duplicate rows.
Refer to Chapter 25, SQL Considerations, for more information.

Fast - eDeveloper opens tables with the following default settings:
Access=Write, Share=Write, Mode=Normal. If you wish to maximize integrity
for the entire application but also maximize the performance for a particular
table, set the Open mode to Fast. Note that Reindex mode is based on the Fast
mode, which maximizes performance. If you want to maximize integrity, set
the ISAM- Transaction environment property to Yes. Set the latter property to
No when you wish to maximize performance.

Exp

A non-zero value here identifies an expression that will be evaluated to a DB
table name at runtime. You can optionally include its logical name or explicit
location (server/driver/directory) in the name. The evaluated table name is
then used to redirect the table, from the default table name specified for it in
the Table repository.

Cache

The Cache column is relevant for linked tables only. The setting of this
property specifies if the linked table is cached or not. This setting should not
be changed for the Main table.
Reference Guide 382

The possible settings are:

• Yes - Use cache for the linked tables.

• No - Do not use cache for the linked tables.

Default value: Based on the cache strategy in the Table’s Properties dialog.

Note that for linked tables there is no meaning for Position Cache. Therefore
the Position Cache setting is considered as No Cache.

The default setting is taken from the Table Properties dialog as follows:

• Yes - If Position and Data was specified in the Table Properties dialog; or

• No - If Position or None was specified in the Table Properties dialog.

Identify Modified Row

You can have eDeveloper indicate to select rows that have been modified by
another user, before updating your database.

eDeveloper can identify and select records according to the following options:

• Position

• Position and selected fields

• Position and updated fields

• As table

This property applies only for deferred transaction mode tasks and SQL tables.

I/O File Repository
In the I/O File repository you define all INPUT and OUTPUT devices to be used
for reading or writing during the current task. Each I/O file must be defined
before you refer to it in an Output or Input Form operation.

All subtasks, nested to any level, have access to any I/O file defined in their
parent tasks. The I/O File repository of a subtask shows all the I/O files
opened by its ancestors.
Reference Guide 383

The IO devices defined in the Main Program are accessible to all other
programs and their subtasks. The meaning of each repository property is
presented below, including the options available in each property.

Properties of the I/O File Repository

#

This property contains an automatically generated sequential number used by
eDeveloper as the I/O File identifier. You cannot edit this property.

Name

A descriptive name. The I/O File name in this field is used for documentation
and prompting purposes only.

Media

Defines the physical support for the file: its destination as an output file or its
source as an input one. The possible values for Media are:

• Graphic Printer (default) - The I/O based on this I/O file definition creates
graphical information that can then be directed to a graphic printer or to a
disk file.

• Printer - The file is formatted for printing and is directed to one of
eDeveloper’s logical printers. You can redirect a printer file to a disk file by
defining an expression, in the Exp property, which evaluates to a valid file
name at runtime.

• Console - The file is formatted for display and is redirected to the console.
The dimensions of the console display area are defined according to the
eDeveloper MDI window dimensions. The display area width will be
congruent to the width of the form if it stretches beyond the eDeveloper
MDI window width.

• File - Defines either an input or output disk file, depending on the value of
the Access property. The file’s path and name are specified by the
expression referred to in the Expression property.
Reference Guide 384

• Requester - The Requester I/O device is used by batch tasks of an
application that are invoked by a Call Remote operation or an internet
request. The output to this I/O device is transmitted back to the calling
task or browser upon completion of the task that opened the device.

• XML Direct Access - This is used to query an XML file that can be queried
using the XMLCnt, XMLExist, XMLFind, and XMLGet functions. You can also
create, modify, or delete an XML element or attribute by using the
XMLInsert, XMLModify, and XMLDelete functions.

• Variable - This is used to send and receive a text variable for input and
output forms. This option can be used for the exchange of XML files. You
can use the XMLCnt, XMLExist, XMLFind, and XMLGet functions when the
Access column is set to Read. You can use the XMLInsert, XMLModify, and
XMLDelete functions when the Access column is set to Write.

It is not necessary to specify an expression for the Graphic printer, Printer,
Console media, or Requester. However, when an expression is specified, the
output is directed to the file defined by the expression.

Printer

This property is relevant only when you specify Media as Printer. It refers to
one of the logical printers defined in the Printer repository.

i For more information, refer to Chapter 2, Settings.
Reference Guide 385

The value for the Printer property is the name that will establish a match
between the printer specified here and one of the printers defined in the
Printer repository. The default is the first printer in the Printer repository. To
choose another printer, zoom to the Printer list and select the printer you
want, or type in the name of the printer.

Generic error messages are displayed at runtime to indicate various error
situations such as Printer not Connected, Printer Power Off, Printer not
Selected, and Printer Out of Paper. Printer error messages are followed by the
Confirm Cancel Operation dialog. Answering Yes causes eDeveloper to
continue with program execution until it reaches the end of the data, ignoring
any further output operation. At the same time, eDeveloper raises the EOF
(end of file) status for the file. The EOF status can be used to terminate task
execution by conditioning task termination (End Task) to the return value of
the EOF function. A No value to the Confirm Cancel Operation dialog causes
eDeveloper to retry the print operation. If the error is not cleared, the Confirm
Cancel Operation dialog will reappear.

Figure 6-6 A Printer List
Reference Guide 386

Access

Defines the mode in which the file will open.

The possible values are:

• Read - tells eDeveloper to open the file in Read mode. You can define Input
Form operations for the file in the Task Execution repository.

When you open an XML document by defining an XML Direct Access or
Variable I/O media type, you can query the inserted XML element or
attribute without saving the XML document.

• Write - tells eDeveloper to open the file in Write mode. You can define
Output Form operations for the file in the Task Execution repository.

After the task is closed, changes to an XML document are saved, after the
task is closed, when the XML Direct Access or Variable media type is set to
Write access. For information about making changes to an XML document,
see the XMLInsert, XMLModify, or XMLDelete functions in Chapter 8,
Expression Rules.

If the file you want to open is an output file whose name is defined by an
expression, its content will be erased.

• Append - tells eDeveloper to open the file in Write mode. You can define
Output Form operations for the file in the Task Execution repository.
Output forms can send a text variable only if the Access property for the
Output form is set to Append.

If the file you want to open as an output file, whose name, defined by the
expression Exp, already exists, all new forms written to it will be added to
the end of the same file.

Format

Defines which control characters are to be automatically written to an output
file or are expected in an input file.

Allowable settings for Format are:
Reference Guide 387

• Page - means that Top of Form and End of Line control characters are
requested for the file. Top of Form control characters will appear when a
page ends and End of Line control characters will appear for every line.

• Line - means that only End of Line control characters are requested for the
file. They will appear for every line.

• None - means that no control character is requested for the file.

Exp/Var

Defines the number of an expression in the Expression Rules repository to be
used at runtime to define the file source or destination for the operating
system.

You can use the expression to define any valid operating system file name.
Optionally you can include server/path to the file name or use a logical name
in the expression. In these cases, eDeveloper will read/write according to the
specified criteria. The expression is evaluated in the task initialization stage,
and cannot change dynamically.

If the Media column is set to Variable, then you can type in a variable code or
zoom from the Exp/Var column to the Variable list. Only BLOB variables
defined in the Record Main can be selected in the Exp/Var column when the
Media column is set to Variable.

PDlg (for Print dialog)

The valid values for the PDlg (for Print dialog) property are Yes, No, or an
expression. The PDlg property is relevant only for Media=Graphic Printer. Yes
specifies that when the task opens the I/O file, a Windows Print dialog will
appear allowing the end-user to change print properties. No specifies that a
Windows print dialog will not appear, and that the print properties will be
transferred directly to the printer without end-user interaction. The expression
allows dynamic selection of the Yes/No setting. The Print Dialog property
default value is No.

Rows

This property is relevant only for Printer media and Console where Page format
output is selected.
Reference Guide 388

It defines the number of rows or lines per page (i.e., the number of printed
lines between two successive Top of Form control characters) in the output file.
The default value depends on the specific printer used. For more information
refer to Printer Repository in Settings. The default value is 0, which produces
an output page of 60 lines, including a 3-line header area and a 3-line footer
area.

The default may be changed here, in the Rows property. The default may be
changed at runtime by the end-user in the I/O File repository, provided you set
Allow I/O Files to Yes in the Task Control dialog.

I/O Properties Dialog

Page Size

Page size defines the page (paper) size for a graphic printer.

Page Header Form

The Page Header Form specifies one form from the Form repository to be used
as the page header. This form will be the automatic output for every new page
as the page header.

Page Footer Form

The Page Footer Form specifies one form from the Form repository to be used
as the page footer. This form will be the automatic output for every new page
as the page footer.

Copies

The Copies property specifies the number of copies to be printed by the
graphic printer.

Note: The Copies property is only enabled when the Graphic Printer is selected
from the Media field.
Reference Guide 389

Expression (Exp)

The Expression property holds an expression number, defined in the
Expression Rules repository, that determines the number of copies to be
printed from a graphic printer.

Note: The Copies property and The (Copy) Expression property cannot be
enabled at the same time.

Orientation: Portrait, Landscape

The Orientation property determines whether the copies will print from a
graphic printer in portrait or landscape orientation.

Print Preview

The Print Preview option redirects the printer output to the Print Preview
system. The valid values are Yes, No, and an expression that returns a logical
result. The Print Preview system allows the end-user to preview the output of
the report, choose a printer, and to print.

Note: Print Preview is available only for graphical printers.

I/O Name to Use

The I/O Name to Use setting allows you to specify an open I/O from another
program to be used by the current program.

Zoom to the Expression Rules repository to enter an expression that evaluates
to the name of an open I/O. In runtime, eDeveloper will find an open I/O file of
the name specified in this setting. If such a file is found, it will be used by the
current task.

Note that in printing a report, the page header and footer are from the task
that originally opened the I/O file. In addition, only the current printed task
header forms are printed automatically. The header of the task that originally
opened the I/O is not printed automatically.

Character Set to Use

This property is only relevant for File media.
Reference Guide 390

When this property is set to ANSI, eDeveloper will not perform any translation
of the character set, since the eDeveloper uses the ANSI convention internally.

If this property is set to OEM, eDeveloper will convert the data from ANSI to
OEM using the OEM2ANSI translation file. If no file is defined, eDeveloper will
use the operating system OEM to ANSI conversion.

Visual to Logical Translation

This property controls conversions from visual to logical for the processed
data. Applies only to File and Printer media. This property applies to
right-to-left applications only.

When set to Yes, the output process of each field is converted from logical to
visual. The entire line is converted from visual to logical. The default value is
Yes.

When set to No, no conversion occurs.

You can set an expression from the Expression field. It is required that the
expression return a Boolean value.

Flip Line

This property controls the flipping of a line as it is exported or imported. It
applies to right-to-left applications only.

When set to Yes, the line is flipped. When set to No, the line does not change
as it is exported or imported.

The Flip Line property is enabled only when the Visual to Logical Translation
property is set to Yes or evaluates to a True value.

Sort Repository
The Sort repository shows a compound window that includes:

• Segments area on the left-hand side of the window.

• Variable list on the right-hand side of the window.
Reference Guide 391

Properties of the Segment Area

The order in which the segments appear in the repository reflects their
hierarchical strength, from major to intermediate to minor. This order will
control the sorting sequence.

Fill in the properties of a newly-created row or edit an existing one according
to the guidelines described below.

(for Segment identifier)

This property contains an automatically generated sequential number used by
eDeveloper as segment identifier. You cannot edit this property.

Var (for Variable #)

The letter identifier of the Real, Virtual, or Parameter variable that will be used
as a segment.

You can type the letter identifier you want or you can zoom to the Variable list
on the right to select the variable you want. Once you are in the Variable list
you can zoom to the Column repository for additional information.

Variable Name

This property shows the name of the variable chosen as a segment. You
cannot edit this property.

Size

You can edit this property only if the property attribute of the chosen variable
is an alpha type. You can then shorten the size of the segment field. The
leftmost characters included in the new size are used as the index. This
property is for performance and memory considerations. Set the size
according to the number of significant characters for the sort. Including
characters beyond this size is unnecessary. If the index segment is shorter, the
sort process is faster, and the sort file is smaller due to better utilization of
index space. Some SQL databases do not support sorting by part of a field.
Reference Guide 392

Direction

This property indicates the direction of the sort, according to the active
collating sequence.

Each database you can use with eDeveloper may have its own limitations
concerning, for example, the number of segments or the maximum size
allowed for an index. Sort files are created using the Database for Sort/
Temporary, defined in the Environment dialog.

Sorting in SQL databases may use the Sort Using RDBMS feature. For more
information, see the Programs section under the Sort repository in this
chapter.

Sort Type

The Sort Type property allows you to indicate to eDeveloper that the columns
used in the sort are unique. This setting indicates to eDeveloper that there is
no need to add a position value to the Order By clause for SQL tables.

• Unique Sort - indicates that the columns used in the sort are unique. The
SQL gateway will not add a position value to the Order By clause.

• According to Index - indicates that eDeveloper will determine the
uniqueness of the sort by scanning all known Unique Sort indexes. If the
sort segments contain a unique index, the sort will be defined as unique.
Otherwise, the sort will be defined as non-unique.

The default value is According to Index.

Sort Using RDBMS

When using SQL databases, the RDBMS engine can sort the rows dynamically
by using the ORDER BY clause without the need to define an index or an index
as required in ISAM files. Sort usage in eDeveloper remains unchanged. When
all columns are sorted as part of the main and joined tables, however,
eDeveloper allows the RDBMS to sort. When it is not possible for the RDBMS to
sort, eDeveloper sorts the rows by using a temporary file in the Sort Database
defined in the Magic.ini file.
Reference Guide 393

Sort usage in a task is the same as defining a virtual index for that table. In
addition, it minimizes the need for you to define additional virtual indexes to
anticipate the index needs of your end-users.

When defining a sort, eDeveloper reissues the Select statement for the task,
and replaces the ORDER BY clause that was generated according to the Index
with the column names used in the Sort as long as the following conditions are
met:

All sort segments are part of the main or linked tables (only with Link Inner
Join or Link Left Outer Join).

All sort segments are natural data types in the database. This means that they
are mapped to data types to which the database can sort. For example,
MSSSQL cannot sort according to a BIT data type, therefore sorting by a sort
segment that is mapped to BIT in the database will not use the Sort Using
RDBMS feature and will create a temporary sort table in the Sort Database
defined in the Magic.ini file.

eDeveloper always requires a unique ORDER BY clause. If you do not specify
that the ORDER BY clause is unique, and if eDeveloper does not determine
that the sort segments in combination are unique, eDeveloper will add the
position index segments to the ORDER BY clause. In addition, if any part of the
columns selected in the sort were not part of the main and join tables,
eDeveloper creates a temporary sort file.

When you define a sort that results in ORDER BY clause, the RDBMS optimizer
might not use an index to perform a Query, but might prefer to use a different
access method to perform the query in a more efficient way.

Event Repository
In each task you may define user-defined events to be handled in your
application whenever these events will be raised or triggered.

A user-defined event is a logical definition of an occurrence, for example you
may define an event called ‘Add Customer’. The event definition by itself will
not effect the application. This logical definition allows you to define the
handling for such a logical occurrence.
Reference Guide 394

Properties of the Event Repository

#

This property contains an automatically generated sequential number used by
eDeveloper as the event Identifier. You cannot edit this property.

Description

This is a descriptive name of the event. The event name is used to select this
event when a handler is defined for it.

Trigger Type

This is the pre-defined event type you wish to be used as a trigger for an
event.

The available options for this property are:

• System

• Internal

• Time

• Expression

• None

When the trigger type is set to None (i.e. No trigger), this event may be raised
only through the Raise Event operation.

Trigger

This property only applies when you have set a trigger type other than None.
In this column you may zoom to define the exact event you wish to trigger a
specific user-defined event.

• For a system type event, the Key Definition dialog will appear for you to
enter the key combination to trigger the event.

• For an Internal type event, the eDeveloper Action list appears to let you
select an action.
Reference Guide 395

• For Timer type event, you will be able to set the time interval.

• For Expression type event, you will be able to zoom to the expression
editor to define or select the required expression.

Force Exit

This property allows you to define the level from which the should exit before
performing the handler of your defined event.

• None – The event does not force an exit to any level and the handler will
be executed whenever it is reached in the engine flow.

• Editing – The event instructs the task to exit the edit mode of the current
control before executing a corresponding handler. On handling such an
event, the engine:

• Exits the Edit mode

• Updates the variable with the edited value

• Recomputes all the values related to the updated variable

• Executes the Control Change handler if the data was modified

• Executes the Event handler

• The engine returns to the Edit mode

When referring to the control's variable from the executed handler, the
engine displays the last edited value as it is updated in the variable.

This option is required primarily for Edit, Rich Edit, and Multiple Selection
List Box controls, and controls that have an editing state that differs from
the variable update value.

Control – The event instructs the task to exit the current control before
executing a corresponding handler. On handling such an event the following
sequence will take place:

• The engine exits the Edit mode

• Updates the variable with the edited date

• Recomputes all the values related to the task
Reference Guide 396

• Executes the Control Change handler

• Executes the Control Verification and Suffix handlers.

• Executes the Event handler

• Executes the Control Prefix handler

• The engine returns to the Edit mode

Record – The event instructs the task to exit the current record before
executing a corresponding handler. On handling such an event the following
sequence will take place:

• The engine exits the Edit mode

• Updates the variable with the edited date

• Recomputes all the values based on the variable

• Executes the Control Change, Verification and Suffix handlers

• Executes the Record Suffix if the record has been modified

• Executes the Event handler

• Updates the record in the table if the record was modified

• Executes the Record Prefix

• Executes the Control Prefix

• The engine returns to the Edit mode.

Public Name

For the Main Program, you are required to provide a public name for the user
event because eDeveloper will use the public name of the user event and not
of the program when searching for a corresponding handler.

Expose

When you select the Expose check box, programs from other components can
call the Main Program event in the host application by using the Raise Public
Event operation. When Expose is not selected, the event cannot be called by
other loaded applications.
Reference Guide 397

Range and Locate Properties
Use the Range/Locate properties dialog to specify ranges on the records
retrieved in the task and to locate on a specific record.

The Range/Locate properties dialog is divided into two tabs:

• Range/Locate tab

• SQL Where tab

Range/Locate Tab

Range Expression: 0 (default)

The Range Expression property is one of the means of defining a task’s
dataview. The rows are initially included in a dataview based on the Range
Lower/ Upper limit expressions specified in the task’s Select operations. The
Range expression allows you to refine the Range criteria further, and base
them upon more complex and dynamic conditions. The Range expression is
evaluated for every fetched record.

• If the Range expression evaluates to True, the row is included in the
dataview.

• If the Range expression evaluates to False, the row is skipped.

• If a Range expression is not specified (that is its number is zero), it
evaluates to True.

A Range expression is required when:

1. the criteria depend on values contained in variables not available at
task initialization time, or

2. the range criteria are not definable by the lower limit and higher limit
expressions of the Select operations.

Note: The Range expression is not sent to the database – eDeveloper filters
the records that were brought from the database.
Reference Guide 398

Range Order: Ascending (default)

The Range Order property value determines whether the fetch direction for the
range of rows to be included in the dataview is ascending from the first row to
the last, or descending from the last row to the first.

Locate Expression: 0 (default)

A Locate Expression is used to position the dataview to start from a specific
row when a task starts running. When a task begins, eDeveloper scans the
dataview from its beginning until the Locate Expression evaluates to True for a
row. That row is fetched and the cursor is positioned on it. The user may then
freely travel back or forth within the dataview using the direction keys.

Notes:

1. The Locate Expression property is relevant for online tasks only.

2. The Locate Expression property should be used in cases where the
locate condition is not based on a single contiguous range, or when
the search criteria are complex. Otherwise, you can use the Select
operation Locate Lower/ Upper limit expressions, which will run faster.

3. All variables included in the Locate Expression are evaluated at the
task’s initialization; therefore they may contain only property
variables or variables of ancestor tasks.

4. If a Locate Expression is not specified, the cursor is positioned on the
first dataview row fetched.

5. If the starting row cannot be found when an Online task starts
execution, an appropriate warning message is displayed and the
cursor is positioned on the first row of the dataview or on the next
closest value, if one exists.

Locate Order: Ascending (default)

This property determines whether the search direction for locating the row in
the dataview is ascending from the first row to the last, or descending from
the last row to the first. If the last row matching particular criteria is required,
specify descending. For example, if the dataview was ordered by date, you
Reference Guide 399

could use Locate Order: Descending to position on the last transaction for that
date.

Note: The Locate Order property may be used even if no Locate Expression or
Locate Lower/ Upper limit criteria are found.

Position: 0 (default)

This property provides a method to display a record according to its position,
or a set of records beginning from a specific position. This property is relevant
only for the Main table of the task. The linked tables cannot be ranged or
located according to their position.

The property accepts a BLOB expression indicating the position of the record
from which you want the task to start or locate.

The Position property is enabled only for tasks with a Main table.

It can accept an expression that returns a BLOB expression which holds a
record’s position.

There are 2 functions in eDeveloper V9 that return a record’s position:

• CurrPosition

This function will return, as a BLOB expression, the internal position of the
current record of the Main table of the task represented by its depth.

• ErrPosition

This function will return, as a BLOB expression, the internal position of the
record on which the most recent error occurred.

For more information on these functions, refer to Chapter 8, Expression Rules.

Usage

The Usage property is enabled only when the Position property is not 0. Once
the Position is selected, the Usage property will enable selecting from these
options:

• Range On (default)
Reference Guide 400

Indicates that only the specific record should be displayed - eDeveloper will
perform a get current operation, and no open cursor.

• Range From

Indicates that all records starting from the position record will be displayed.
eDeveloper will perform an open cursor with this position as start position.

Note:

For both these range options, there will be an AND operation between the
range in the Select operation, the range expression on the task and this
condition.

For both these range options, if this record does not exist – no records will be
displayed.

• Locate

Indicates that all records (according to all other task ranges) will be displayed,
and eDeveloper will locate on the record with the specified position.

There will be an AND operation between the locate in the Select operation, the
locate expression on the task and this condition.

If this record does not exist – the locate operation will fail (“Record not found –
positioning at beginning” warning message is displayed).

SQL Where Tab

SQL Where Range Expression: 0 (default)

A DB SQL Where range is not allowed for tasks that are executed within a
deferred transaction. To deliver the SQL Where range functionality for deferred
transactions, a new range was added called ‘SQL Where range’.

It is similar to the existing DB SQL Where range with one exception – it is
defined using a subset of eDeveloper expressions (unlike the existing DB SQL
Where range, which uses free format text). The Magic SQL Where range may
only include those expressions that the engine can translate to SQL.
Reference Guide 401

For example, assuming

A is real column with DB name Employee.BirthDate then writing the Magic SQL
range expression A = Date() will be displayed in the Full SQL Where area as

Employee. BirthDate = Date()

(the table name will be added only when link join is involved)

Note that the Date function is used, not a DB-specific function.

This will be translated in runtime with Oracle to

TO_Date(Employee.BirthDate, ‘DD-MON-YY’) = TO_Date(SysDate, ‘DD-MON-
YY’)

and will translate in runtime with MSSQL to

CAST(CONVERT(CHAR, Employee.BirthDate,112) AS DateTime) =
CAST(CONVERT(CHAR, GETDate(),112) AS DateTime)

The same task was executed without any change in the syntax of the
expression against 2 different databases. eDeveloper translates the SQL
Where expression to the appropriate syntax per each database.

Note: For a list of supported eDeveloper functions for the SQL Where
expression, please refer to the SQL Considerations chapter.

DB SQL Where

DB SQL is the same SQL Where Clause feature that was introduced in Magic
Version 8. This property is available for Physical Transaction mode tasks with
SQL Main table only. In Deferred\Nested Deferred transaction mode tasks this
property is disabled.

The purpose of the DB SQL feature is to enable the programmer to use the
SQL- specific Where clauses (in addition to the Where clauses generated
automatically by eDeveloper) without the need to use the Direct SQL tasks,
and to view the Full Where clause that is generated by eDeveloper.

This is an interface for writing Range based on SQL syntax using eDeveloper
columns. This range is added to the Magic Where clause that is defined in the
Record Main.
Reference Guide 402

You can zoom to the column list from the DB SQL field. The variable list is a list
of all the variables available to use in the DB SQL property:

• Real columns from the main and joined tables - will be replaced with their
DB column name.

• Variables from parent tasks - will be replaced with their values.

• Virtual and other real columns from the current task - will be replaced with
their values.

The DB SQL refers to a free text form in which the DB SQL Where clause is
written. Three types of strings can be written in the DB SQL area. They are as
follows:

• A column number (A, B, C, etc.) prefix with a ‘:’ sign.
If the column is from either the main or joined tables it will be replaced by
its DB column name. Otherwise, it will be replaced by its value according
to its attribute. For alpha columns, eDeveloper will suppress any trailing
blanks, and add quotes to it.

• A column number (A, B, C, etc.) prefix by ‘@:’ sign and is an Alpha column
not from the main or joined tables. It will be replaced with its value
without adding quotes to it.

When eDeveloper replaces a column with its contents, eDeveloper checks the
column’s attribute and storage, and if necessary adds quotes - as in the case
of alpha strings. In order to prevent eDeveloper from adding quotes to the
alpha columns, enabling any type of syntax to be written, the @ character
should be added as a prefix to the column.

For example, assuming

A is real column with DB name Employee. jobname, and B is a virtual alpha
column with description Vjobname, and its value in runtime is “AB” then
writing the DB SQL range

:A like ‘B% ’ will be displayed as

Employee. jobname like ‘B% ’

(the table name will be added only when link join is involved)
Reference Guide 403

and will translate in runtime to

jobname like ‘B% ’

Writing the DB SQL range

:A like :B will be displayed as

Employee. jobname like [“Vjobname”]

(the table name will be added only when link join is involved)

and will translate in runtime to

jobname like ‘AB’

Assuming that C is a virtual column, and its Description (Name) is Voperation
and its value in runtime is “like” then writing the DB SQL range

:A @: C :B will be replaced with

jobname [Voperation] [“ Vjobname”]

and will translate in runtime to

jobname like ‘AB’

Full Where Clause

eDeveloper displays the entire WHERE clause as used in the SQL statement
generated by eDeveloper in the Full Where Clause area. Click the SHOW
button at the bottom of the screen to refresh the Full Where clause.

The Full Where clause consists of three parts:

1. The Where clause expressions from the Record Main (consist of
ranges on the Select operations and the Link Inner Join/Left Outer
Join).

2. The Magic SQL Where clause, added in parenthesis with an AND
clause, to concatenate it to the Record Main Range.

3. The DB SQL Where clause, added in parenthesis with an AND clause,
to concatenate it to the Record Main Range. When running a task
within a deferred transaction the DB SQL Where clause is ignored.
Reference Guide 404

This part of the Where clause will be added only when the task
Transaction mode is not Deferred\Nested Deferred.

The Full Where clause replaces every occurrence of a column from the column
list. Real columns from the Main and Joined tables, are replaced in the format
of ‘column DB name’ or ‘A. column DB name’, and virtual fields are replaced
with their description.

The Full Where clause is added to every SELECT statement. The variables’
values are evaluated only once when entering the task, and no re-compute is
done.

The only time in which the DB SQL range or Magic SQL range is not used is
when eDeveloper generates the SELECT statements for the internal Get
Current and Hook (determined by the locking strategy) operations. In these
operations eDeveloper uses the position key to get the record, and the SQL
range is not needed.

Magic SQL Where and DB SQL Where Behavior

When a dataview is created for a task, eDeveloper generates a Select
statement with a Where clause. The first part of the WHERE clause is based on
the From and To expressions of the Select operations, in the Record Main. The
second part of the WHERE clause is the Link Inner Join/Left Outer Join
condition. The third part is the Magic SQL Where, which is added to every
SELECT statement. The forth part is the DB SQL Where, which is added to
every SELECT statement The column’s values are evaluated only once when
entering the task, and no recomputing is done. The only time that the SQL
Where is not used, is when eDeveloper generates the SELECT statements for
the internal Get Current and Hook (determined by the locking strategy)
operations. In these operations, eDeveloper uses the position index to get the
row, and the SQL where is not needed.

Magic SQL Where and DB SQL Where Usage Considerations

• When using virtual columns from the current task in the SQL range, the
virtual columns must receive their values from the calling task’s
properties, otherwise their default values will be used.
Note: The init expression is calculated afterwards therefore it cannot be
used.
Reference Guide 405

• BLOBs and Memo fields cannot be used in the SQL range.

• eDeveloper does not check the syntax of the SQL range. Therefore, if an
invalid SQL syntax is used, a message from the RDBMS will occur in
runtime.

• eDeveloper does not check the attribute of each column used in the SQL
Where string. It tries to convert each attribute to a string which is
concatenated in the corresponding location in the SQL Where string.
Therefore, it is important to use the attributes properly.

• When the Link Join operation is used, eDeveloper uses an alias for the
Table names. Therefore, instead of Table1.Column1, it uses A.Column1. If
a string is written in the DB SQL which contains a column name, the alias
letter corresponding to the Table should prefix the column name.

• eDeveloper suppresses any Trailing blanks.

• Note that both the DB SQL Where range and the Magic SQL Where range
are both computed once, before the task prefix.

Task Execution Repository
The Task Execution repository is a compound window that includes:

• The repository of the execution handlers at the top of the window. This
portion of the window is referred to as the Handler repository.

• The Operation repository is related to the currently highlighted level, and
appears at the bottom of the window. The title of the Operation repository
includes the name of the execution level to which the operations are
associated.

As you navigate the Operation repository, zoom to specify the properties of the
current operation. Once you have entered a value in an Operation field,
whenever the cursor parks on the property its content is displayed at the
bottom of the repository.
Reference Guide 406

The Structure of the Handler Repository

All tasks have built-in Record level handlers, containing a Record Prefix,
Record Main, and Record Suffix, and built-in Task level handlers, containing a
Task Prefix and Task Suffix. Tasks can also have Control levels containing a
Control Prefix, Control Suffix, Control Verification, and Control Change, and
Handler levels with defined events. Batch tasks can have an optional Group
level.

• The Record Main is used to define a task’s dataview and usually requires a
related Operation repository to be filled in. The exception is in the case of
subtasks that use the Scratch File as their Main repository, and are used
for the manipulation of properties previously selected by any of their
ancestor tasks or for operations that are not dataview related.

• Record Prefix, Record Suffix, Task Prefix, Task Suffix, Control Prefix, and
Suffix Operation repositories can be empty.

• A control handler can only follow a record handler. Control Prefix places the
operations that the engine executes before a specific control is entered,
while Control Suffix places the operations that the engine executes after
exiting a specific control.

• At the Handler level, you assign a handler for a defined event for a specific
control type that can be implemented between the Task and Record levels,
or within Group and Control level handlers. The Handler level shares the
same properties as the Control level, but allows you to select defined
events while the Control level lets you select pre-defined events.

• Batch tasks, primarily report-producing tasks, may include additional levels
in the Handler repository. These levels are called Group levels, and they
create control breaks. Each control break is executed when there is a
change in value of a variable specified in the Handler repository as a Group
Level variable.

The major control break - the one that occurs least frequently- should be
positioned immediately below the Task level in the repository. The minor
control break, occurring most frequently, should be the last Group Level entry
in the repository, just above the Record Prefix.
Reference Guide 407

For further details about the contents of the levels and their relationship to
execution flow, refer to Chapter 5, Application Engine.

Handler Repository Properties

#

The # property shows the sequence number of the execution level.

Level

Indicates the level (Task, Record, Group, Handler, or Control). You cannot edit
this property. Control lets you select a pre-defined event. Handler lets you
select any other event. The Group level is used for Batch events only and the
pertinent task type must be indicated in the Task Properties dialogue before
the Group level can be selected.

Figure 6-7 Execution Level Repository
Reference Guide 408

Event

You can only define an Event for the Control and Handler levels. Event for the
Task or Record level are hard-coded into the eDeveloper engine and cannot be
altered.

Control events are:

• Prefix - The operations that the engine must execute before the insertion
point is moved to a particular control.

• Suffix - The operations that the engine executes at the end of the control.

• Verification - The operations that the engine executes when the insertion
point is taken away from the control and the control is passed through in
Fast mode, before the Control Suffix level.

• Change - Performs the operations that the engine executes when a control
variable is changed.

The Handler level for online task types can be:

• Internal - An eDeveloper internal action from the eDeveloper action list.
For more information, see the eDeveloper Action section below.

• System -These are events that are triggered by defined keystroke
combinations.

• Timer - Events that occur at a defined interval.

• Expression - Events that are triggered when an expression evaluates to
True.

• User - Events defined in the Events repository.

• Error - An error event raised whenever a database operation produces a
database error.

• ActiveX - An ActiveX event raised for COM objects.
Reference Guide 409

Details

Group Level – This level is only used for batch programs, to perform
operations when one or more fields of the active key, change. Zoom from the
Details column to select a variable from the Variables list.

 Control Level – For Control level handlers you must specify the control on
which this handler should be performed. You may zoom from this column to
the controls name list, to select the relevant control by its name.

Handler Level – Like the Control level, you may select a control from the
controls name list, to have this handler perform only if the defined control is
parked at the time in which the event is handled.

However unlike the Control level, this property is not mandatory. If you do not
define a specific control name than this handler will be executed for all
controls.

Error Level – For the Error level you may define two details.

• Directive - you may choose from a list an engine directive and by that
define what the eDeveloper engine should do after the error was handled.

• Msg - Where you may define if you wish eDeveloper to present its default
message box notifying of the error. This detail may accept a Yes, No and
expression values.

Scope

Scope is defined as one of the following for Handler levels:

• Task - The event is executed only in a single task. If the event is triggered
in a subtask, the handler ignores it.

• Subtree - The event is executed in the task or any of its subtasks.

• Global - Option available for a Main Program handler. This is relevant for
applications that are to be used as eDeveloper components.

Propagate

Propagate is active for Handler levels.
Reference Guide 410

• Yes - When you want task event to be taken to the next handler level.

• No - Prevents the event from going to the next handler level.

Enable

Relevant for only the Control and Handler levels. This setting determines
whether the handler is enabled for the selected task.

Operation

The number of operations in the Control Prefix or Control Suffix Operation
repository.

Main Program
The Main Program serves as a main dispatch program from which every other
program will run.This makes the Main Program active for the duration of an
application’s execution.The Main Program is the first to open as the application
is opened and the last to close.

In the Main Program you can define the following:

• Variables

• Events

• Handlers

• Forms

These can then be accessed and used by any other program in the application.
These resources are rendered global and can be applied to the entire
application.

Main Program Access and Usage

The Main Program is implicitly executed when:

• An application is opened while the eDeveloper engine is in Runtime mode.
Reference Guide 411

• A user, after opening an application in Toolkit mode, switches to Runtime
mode.

• Running a program in Toolkit mode using either the Execute Program
action from the Program repository, or the Generate Program action from
the Task repository. In either case, the Main Program will run before the
current program.

The Main Program is used for any or all of the following:

• As a controlling mechanism through an application’s Task Prefix and Suffix,
the Main Program determines the start and end of application handlers.

• Setting and maintaining global variables throughout an application.

• By defining global event handlers, the Main Program fashions a generic
handling for applications.

• By controlling global events, the Main Program sets user-defined events.

Main Program Characteristics

Runtime Characteristics and Behavior

Dataview

Unlike other programs, the Main Program does not have a Main table. It can
have virtual variables that are initialized at the beginning of the application’s
execution, and are in use during the execution of an entire application.

To allow you to open tables as soon as the application opens, the tables can be
opened in the Main Program. Specific records can be read through the Link
operation, and thus used throughout the application. Tables can also be
specified in the DB Table repository – these tables will be only opened and not
read.

Records fetched by Link operations in the Main Program cannot be updated. If
an update will be attempted it will be ignored, and the particular task update
phase will not exist. Therefore, the Main Program does not execute any record
Reference Guide 412

locking or transaction managing commands. Table locking, however, will be
available for the tables that are opened by the Main Program.

Flow

The Main Program executes as a batch task whose record cycle is performed
once. This behavior is not affected by Task Ending properties. As an application
opens, the Main Program’s tables open and its Task Prefix is then executed.
The Main Program’s virtual variables are then initialized and its link records
read.

The Main Program’s Task Suffix is executed just before an application ends,
when the application is terminated. The Main Program’s tables will also close.
Like any batch program, any operations that are not relevant for batch tasks
but appear in the Record Main, will be ignored.

Subtasks

The Main Program can have regular subtasks, executed as a regular task.
These subtasks have Main tables and functions like regular tasks. However,
their variables are not global variables.Only the Main Program’s root task
variables are global.

Recomputation

The Main Program behaves like any other program in adhering to the rule that
does not allow for the recomputation of variables from parent tasks that are
updated from subtasks.

Call Expression

The Main Program cannot be called explicitly through a Call Program operation.
If the Call operation is a Call Expression, and the expression in runtime
evaluates to 1, an error message appears, and the Call operation will not be
executed.
Reference Guide 413

End Condition

When the End Condition of the Main Program evaluates to True, the whole
application will stop running.

Toolkit Characteristics and Behavior

Program Repository

The Main Program will always be listed as the first program in the Program
repository. It is automatically generated whenever a new application is
created, and its default name will be Main Program.

You cannot delete, repeat or overwrite the Main Program. In addition, you
cannot execute the Main Program – the Execute Program option will be
disabled while the cursor is parked on the Main Program row.

Program Properties Dialog

The Main Program Properties dialog has the following settings:

• The Task Type is set to Batch, and is disabled.

• The Initial Mode is set to Query, and is disabled.

• The End task condition is set to No.

• Allow Events property is set to No and is disabled.

• Because the Main Program does not have a Main table, the related
properties will be disabled.

• The Locking Strategy is automatically set to No Lock and is disabled. All
other properties in the Enhanced tab keep their current settings and are
disabled.

• All the properties in the Task Properties Advanced tab are disabled.

Task Control Dialog

The Main Program Task Control dialog has the following default tab settings:
Reference Guide 414

• Modes tab: all the properties, except the Allow query property, are set to
No and disabled.

• Behavior tab: The Open Task Window property is set to No. All other
properties in this tab will be disabled.

Program’s Form Repository

The program is created by default with a class 0 form. You can always add a
form, but this form will not have a system menu.

Forms of a class greater than 0 are available for output for all the application’s
programs.

DB Table Repository

Although you cannot define a main table for the Main Program’s main task,
you can defined tables in the Main Program’s DB Table repository.

The default table access type in the Main Program is set to Read, and is
disabled - no locking is done in the Main Program. The default open mode is
set to normal, and is disabled.

The Cache strategy is set to No and is disabled for Main Program tables.

I/O File Repository

The Main Program does not have any I/Os. The I/O File repository is therefore
disabled.

Task Execution Window

The Main Program will have Task Prefix, Task Suffix and Record Main built-in
handlers. The Record Prefix and Record Suffix handlers do not exist for the
Main Program. Any other user-defined handler can be set to be used
throughout the application.

Main Program Variable Availability

The Main Program’s variables are available for all programs in the application.
In the Variable list they appear before any other program’s variables and will
be listed alphabetically.
Reference Guide 415

The variables names consist of 3 characters. When a variable is selected, its
name is automatically displayed.

MVCS

Because the Main Program’s variables are used throughout the application,
MVCS regards it as a separate entity, thus allowing for shared access.

Modification of the Main Program resources can only be done exclusively - as is
the case of tables and programs.

Whenever an object that uses the Main Program is being edited, the Main
Program cannot be checked in. When in the latter case you try to check in the
Main Program, the “Main Program already locked” error message appears.

Call Operation

The Main Program will not be available for Call operations – you cannot
explicitly call the Main Program.

Select Program

The Main Program, because it cannot be called explicitly, will not be available
for the Select Program property for column and Model definitions.

User Events

When you select the Expose check box, programs from other components can
call the main program event in the host application by using the Raise Public
Event operation. When Expose is not selected, the event cannot be called by
other loaded applications. You are also required to provide a public name for
the user event because eDeveloper will use the public name of the user event
and not of the program when searching for a corresponding handler.

Regardless of whether the Expose property is selected, the user event can be
raised by a program in the same application by using the Raise Public Event
operation.

For more information about the Raise Public Event operation, see page page
505.
Reference Guide 416

Other Main Program Characteristics

In addition to the runtime and toolkit behavior described above, the Main
Program has other intrinsic characteristics.

Main Program Task Prefix

The Task Prefix handler of the Main Program acts as the prefix phase for the
entire application. Use this handler to define any operation you wish to
perform for the initialization phase of the application.

You can initialize the Main Program’s global variables using the operation, or
call its initialization programs using the operation or any other relevant
operation.

Main Program Task Suffix

Similar to the Main Program’s Task Prefix, the Task Suffix handler can be
considered as the suffix phase of the entire application.

You can use this handler to define any operation you wish to perform for the
termination phase of the application.

RunMode function

Since the Main Program is executed before any other program, in both toolkit
and runtime, you may use the RunMode function to distinguish the runtime
state of the application.

Refer to Chapter 8, Expression Rules for more information.

Importing a Main Program

When importing from a file that contains a Main Program, you will be asked
whether you want to replace the current Main Program. If you select Yes, the
Main Program from the imported file will replace the current one. If you select
No, the Main Program will not be imported from the imported file. A Main
Program cannot be imported as a regular program.
Reference Guide 417

Main Program and Components

The Main Program cannot be exported as part of a component. See Main
Program and Components in Chapter 14, Components.
Reference Guide 418

Operations 7
t the heart of each eDeveloper task is its Execution Operation
repository. You fill in an Operation repository by selecting and tailoring
from the list of eDeveloper’s 14 high-level operations.

In this chapter:

• Operations and Context-Dependent
Behavior

• Operation Properties

• Passing Arguments

• Operation Usage

A

Reference Guide 419

Alphabetical Index to Operations

Introduction
At the heart of each eDeveloper task is its Execution Operation repository.
There is a Task Execution Operation repository (abbreviated to Operation
repository) for each level needed by the task: Task Prefix, Record Main, etc.
Each Operation repository contains programming operations specific to that
level. You fill in an Operation repository by selecting and tailoring from the list
of eDeveloper’s 14 high-level operations. You can further customize these
tabularized operations by adding expressions, using selections from the
eDeveloper library of over 387 functions. Together, these operations and
functions embody the “language” of eDeveloper.

Operation
Name

Operation
Number

Page

Block 5 page 447

Browse 12 page 500

Call 7 page 459

End Block 6 page 458

End Link 4 page 454

Evaluate 8 page 483

Exit 13 page 503

Input Form 11 page 497

Link 3 page 437

Output Form 10 page 492

Raise Event 14 page 505

Remark 0 page 422

Select 1 page 422

Update 9 page 486

Verify 2 page 433
Reference Guide 420

Each operation, its context-dependent behavior, and its properties, are
described in detail below. The Argument List, used by the Call Task and Call
Program operations, is also described below.

Whenever you create a new entry in one of the Operation repositories,
eDeveloper inserts a Remark line as the default. You can then select one of the
other 14 operations to replace this default.

Certain operations are allowed only in Operation repositories for specific levels
of a Task. Watch the Operation repository when you choose Select, Link, and
End Link operations: if you have selected the operation but the default
operation doesn’t change to display your selection, it means you have
attempted to use the operation at the wrong level. The Select operation is
used by eDeveloper for the definition of the dataview and therefore:

1. They can be defined in the Operation repository of the Record Main
and Handler levels.

2. In Batch tasks, Select, Link, and End Link are the only operations
executed at the Record Main level.

The Operation diagrams are presented according to the following conventions:

• Each operation is shown as the first operation of the Operations: Record
Main repository.

• The column headings and the in-line property names shown identify places
where the insertion point parks to accept the entry of a value.

• Property default values are shown.

• The specific commands available for each property are indicated (for
example, zoom).
Reference Guide 421

Remark

Purpose

• To insert a blank, or line of text, across the Operation repository to serve
as separator between groups of operations, improving the readability of
the repository, or

• To insert a comment text in the program.

• The Remark line is not an executable operation.

Usage

Program documentation.

Remark Operation Property

The default content of the entire row area is a blank in a graphical
environment, or a continuous line in a text environment.

You can type alphanumeric text the full property length, by moving the
insertion point right and starting to type.

Select

Purpose

To define all the task’s dataview logical record elements and to declare
variables to be used in the task. Declaring a variable with a Select operation is
referred to as selecting the variable.
Reference Guide 422

Usage

• To build the dataview logical record by doing one of the following: selecting
Real variables from either the main file or linked files, selecting Virtual
variables, or selecting ‘Parameter’ type variables to receive values from
called programs and tasks. Virtual variables, once selected, are
automatically inserted into the Virtual Variable list according to their
position in the Operation repository, relative to any other Virtual variables.
Regardless of where selected variables originate, once they have been
selected in the Record Main Operation repository, they are available
variables for task processing.

• To make the task dataview dependent on a variable’s actual value. The task
dataview is the set of all of the logical records to be used by the task. You
can make the task dataview dependent on a variable’s values by specifying
suitable expressions in the Range property of its Select Variable operation.

• To assign default initial values to real variables whenever new records are
created, define an Init expression in the Select Variable operation, as
explained in the property descriptions below.

• To implement computed variables, select the Virtual Variables property.

• To receive values from a called task or program, select the Parameter
variable-type option.

• To locate a record with a specific value in a variable, specify a suitable
expression in the first Locate field of the variable’s Select Variable
operation.

• To control the sequence of insertion point movement and to control which
variables the insertion point is allowed to park on, determine the sequence
of Select operations. You can also set the Cnd property.

Placement

The Record Main Operation repository is where the task dataview is
established. Therefore, Select Variable can be placed in the Record Main
Operation repository only.
Reference Guide 423

The sequence in which Select operations appear in the Operation repository
determines the sequence of insertion point movement from displayed control
to displayed control at runtime for Online tasks. The placement of controls
when you design the Form window does not affect the sequence of insertion
point movement at runtime.

The position of Select operations in the Operation repository does affect the
recomputation process of Init expressions, as explained below.

Select Operation Properties

Select

Each Select operation must specify variable types that are Real, Virtual, or
Parameter. Select Real is the default when you have specified a DB table as
main file in the Task Properties dialog. Otherwise, Select Virtual or Select
Parameter are the only variable options.

eDeveloper automatically creates a Virtual or Parameter variable in the task’s
local variable list for every Select Virtual operation. The variable number that
eDeveloper inserts is the sequence number of the newly created Virtual or
Parameter variable in the local variable list, according to its position in the
Operation repository. All subsequent Virtual or Parameter variables are
renumbered automatically.

Select Parameter and Select Virtual variables act the same in receiving
arguments that are passed by another task, and are available for selection in
any sequence. The Select Parameter option allows the developer to anticipate
the expected arguments of a called program or task. If no Select Parameter
variables are set in a task then the virtual variables will receive passed
arguments. Refer to the Argument Matching section.

Name

The default Name is ??. Once you have defined the selected variable, this
property automatically displays the name of the variable from the local
variable list containing both Parameter and Virtual variables.
Reference Guide 424

Init > 0 (optional)

The value of the Init property is the number of an expression. At runtime,
eDeveloper evaluates the expression and assigns the resulting value as the
initial value the variable will contain when it is created. The default value is 0,
which means that there is no Init expression for this variable.

The Init property is one way to assign a value computed by an expression to a
variable in eDeveloper, just as you would assign a formula to the cell of a
spreadsheet.

The Init expression does not need an = in it. The assignment is made implicitly
by eDeveloper. For example, if you need to initialize the variable Order Sum
with Price * Quantity, specify the Init expression for the Virtual variable named
Order Sum simply as Price * Quantity.

How Init Works

Init assigns values according to two scenarios: procedural and non-procedural.
In the procedural method, the same rules apply for Virtual and Parameter
variables, while different rules apply for Real and Virtual variables:

• Real Variables - are created only when the task runs in Create mode of
operation. Therefore, eDeveloper evaluates the Init expression and
assigns its value to a Real variable only when the task runs in Create mode
of operation and before the record is displayed on the screen. Real
variables within a link will be initialized by the Init expression if the link
fails. Refer below to The Effect of Link Failure on Init Expressions.

• Virtual Variables - are always created on-the-fly. Therefore, eDeveloper
evaluates the Init expression and assigns its value to a Virtual variable in
all modes of operation and before the record is displayed on the screen.

• Parameter Variables - are created and behave like Virtual variables.

A Virtual variable without an Init expression in its Select operation receives its
value through the Update operation. Such a variable is not zeroed out at the
beginning of the record process and retains its previous value. eDeveloper
adopts this approach to Virtual variables without an Init expression to support
the use of Virtual variables as accumulators.
Reference Guide 425

Automatic Non-Procedural Recomputing of Init Expressions

Regardless of the mode of operation of the task, eDeveloper automatically
recomputes and reassigns Init expressions just as in a spreadsheet, when any
of the variables participating in the expressions change during the execution of
the Record Main or Record Suffix. eDeveloper does the recomputation and
reassignment according to the following rules:

• Record Main

Init expressions are recomputed if any of their component variables have
been modified and the modified variable has been selected prior to the
declaration of the variable with the expression. The recomputing
mechanism in Record Main works forward only.

• Record Suffix

Any changes to variables in the Record Suffix will cause recomputation of
all the Record Main Init expressions that these variables participate in. The
scope of recomputation is from the modified variable’s selection position in
the Operation repository to the end of the Operation repository.

The recomputation of Initialized variables is one of several non-procedural
processes of eDeveloper’s engine. For more information, refer to Chapter 5,
Application Engine.

In the following explanation, a variable whose Select operation includes a non-
zero Init expression number is called an initialized variable. Any variable that
is a component of the Init expression, and whose modification causes the
recomputation of the initialized variable, is called a modifying variable.

Suppose that Real Variable A has value 5 and Real Variable B has value 6. If
Real Variable C’s Select Variable operation specifies as its Init expression A*B,
then while the end-user runs the task in Create mode, Variable C will be
initialized to the value 30. However, if the end-user later changes the value of
Variable A to 7, the Init expression for C will be automatically (non-
procedurally) recomputed to 42 without the insertion point moving to Variable
C.

A change to a modifying variable can be caused by:
Reference Guide 426

• User input, as in the example above

• An Update operation

• Its usage as a property of a subtask or program

• Data imported by an Input Form operation

• Its usage as a Return Code variable

A change to a modifying variable may occur either in the Record Main
(interactive) phase and any subtask called from the Main level, or in the non-
interactive Record Suffix phase.

Recomputation is carried out:

• For any variable with an Init expression that contains variables

• In both Create and Modify modes of operation

• In both Online and Batch tasks

• In both Fast mode and Step mode.

Recomputation proceeds repeatedly for all recomputed Initialized variables,
because a recomputed variable in its turn might be a modifying variable for
other Init expressions. One cycle of recomputation may cause another, until all
Init expressions are satisfied.

To be recomputed, the Initialized variable must meet both of the following
conditions:

• The Initialized variable’s Select operation must be positioned in the
Operations repository after the Select operation of the modifying variable.

• The Initialized variable’s Init expression contains the modifying variable.

The following two examples illustrate the influence of the above conditions on
recomputation.

Recomputation Example 1

As one of its task initialization procedures, eDeveloper builds its recomputation
tables. eDeveloper uses these tables to quickly perform any automatic non-
procedural recomputation that may be required during task execution.
Reference Guide 427

In this example, Condition 1 above is not met, and as a result Variable A is not
recomputed.

Suppose that a task contains two Select operations in its Record Main’s
Operation repository and two Update operations in its Record Suffix Operation
repository:

Record Main

Line No. 1 Select Variable A - Init expression: Variable B

Line No. 2 Select Variable B - Init expression: Variable A

Record Suffix

Line No. 1 Update A

Line No. 2 Update B

In the example above, eDeveloper does the following in order to build the
necessary recomputed information for Init expressions:

For every variable, search through the Record Main Operation repository, from
the line that selects it to the end of the repository. The search is for all Select
Variable operations with an Init expression where the variable participates.
Any such expression is registered in the recomputed repository.

In the example, eDeveloper will find that the Init expression in Line 2 contains
variable A, and because it appears after the Select operation of Var A in line 1,
will add a reference in the recomputed repository. The Init expression in line 1
will not be added to the recomputed repository, because it contains variable B,
which is declared in line 2, contradicting condition 1 mentioned above.

At runtime, while there is interaction with the record, any value input into A
will automatically cause a recomputation and be assigned to B. But changes to
B will not be reflected in A, because there is no reference for B in the
recomputed repository.

When interaction with the record terminates and execution passes to the
Record Suffix, the Update for Variable A will cause another recomputation of B,
because the update operation causes A to change and A has an associated
entry in the recomputed repository. The update for Variable B will not cause
any recomputation.
Reference Guide 428

Recomputation Example 2

Suppose that the Record Main’s Operation repository contains the following
operations:

Assume the task is in Modify mode and that the variables have the following
values:

• A=2

• B=5

• C=3

• D=5

The user inputs the value 3 to variable A (the modifying variable). The
variables then have the values:

A=3 (modified by user)

B=6 (recomputed by eDeveloper)

C=3 (unchanged)

D=6 (recomputed by eDeveloper)

Then the Update C operation at Line 5 is executed. Assume that Variable C is
updated to the value 10. The variables then have the values:

A=3 (unchanged)

B=6 (unchanged - not recomputed)

C=10 (modified by the Update operation)

D=13 (recomputed by eDeveloper)

Line 1 Select Variable A

Line 2 Select Variable B Init: A + C

Line 3 Select Variable C

Line 4 Select Variable D Init: A + C

Line 5 Update C
Reference Guide 429

In this example, Variable B is not recomputed because Condition 1 was again
not met: the Select Variable operation for Variable B is not after the Select
Variable operation for the updated Variable C.

Range (optional)

Range expressions are one way to customize the task’s dataview. They can
define a subset of records from the physical files selected for the dataview.

You can specify two expression numbers in the Range column. The first
expression represents the lower value and the second the upper value of the
Selected variable used to delimit the range of the records you want to be
included in the task dataview. Range expressions may be applied to any
variable of the Main table, linked tables, and the virtual table.

The expressions must evaluate to a value matching the variable’s attribute. If
you need a logical condition to delimit the range, you can specify the condition
in the Range Expression property in the Range/Locate dialog, or in the DB SQL
Where clause when working with SQL databases.

Range expressions for the Select operation are evaluated at the beginning of
the task. Be sure that all variables participating in expressions contain valid
values when the task is activated. The variables can be variables selected in a
parent task, arguments passed to the task, or any constant value.

At runtime in an online task, end-users are not allowed to browse records
outside the delimited Range, but they can additionally restrict the range by
selecting the default runtime menu option Range of Records from the Options
menu CTRL+R.

The task dataview is the result of the logical AND of all Range lower/upper
expressions from all Select operations, the expression from the Range Exp or
Range values, and the DB SQL Where clause.

If no Range expressions are specified, eDeveloper assumes the full range.

Implementation of the One-to-Many Relationship

eDeveloper implements one-to-many relationships by calling subtasks, via the
Call Task operation, together with putting Range lower/upper expressions on
the subtask’s selected variables. If the selected variables that carry such
Reference Guide 430

Range expressions are Real variables which were defined as index segments at
the Table Repository level, and if this index is the Main table’s index for the
subtask, then eDeveloper establishes the one-to-many relationship
instantaneously.

Locate (optional)

You can specify two expression numbers in the Locate column, one each for
lower and upper values. These values determine that the first dataview
instance processed will be the first record that is found between the two
expression values. The expressions must evaluate to a value matching the
variable attribute.

If you need to locate the first record using a logical condition, specify this
condition in the Locate Expression property in the Range/Locate dialog. For
more information refer to the Range and Locate Properties section in Chapter
6, Programs.

Locate expressions do not affect the dataview itself.

The display of records after a Locate operation in an online task is determined
by the setting of the Center Screen in Online property in the Environment
dialog. If the Center Screen in Online is set to Yes, then the task begins with
the located record presented in the middle of the Form screen, with the
insertion point parked on its first parkable variable. If Center Screen in Online
is set to No, then the task begins with the located record presented at the top
of the Form screen.

Unlike Range, Locate allows the end-user at runtime to refer to dataview
records outside the domain of Locate lower/upper expressions and to move
the insertion point to those records.

If you specified both lower/upper Locate expressions for a variable which is an
Index variable or a segment of an Index for this task, and no record meets the
specified criteria, the processing pointer moves to the first record with a higher
index than the upper expression value and the message Record not found -
Positioned at next is displayed. If no record with an index higher than the
upper expression value exists, the insertion pointer moves to the first record in
the dataview and the message Record not found - Positioned at beginning is
displayed.
Reference Guide 431

If you specify only a lower Locate expression and a matching record could not
be found, the processing pointer moves to the first record with a higher index,
but no message is displayed. If you specified only an upper Locate expression
and a matching record could not be found, the processing pointer moves to the
first record of the dataview.

If the Locate Expression variable is not an index and a record matching the
specified criteria is not found, then the processing pointer will be positioned at
the first record in the dataview.

Flow

Flow qualifiers for the Select variable operation allow you further control over
insertion point parking on the variable, beyond the logical condition you can
put in the Cnd property, because they permit specification of movement
direction and the interaction mode.

There are two columns for Flow properties: flow mode and interaction mode.
The default value for flow mode is S (for Step) and for interaction mode is C
(for Combined).

When Flow Mode is... the engine executes the
operation if...

S for Step The task is now in Step mode

F for Fast The task is now in Fast mode

C for Combined The task is in either Step or Fast
mode

B for Before The end-user selects Zoom (F5) in
the previous control.

A for After The end-user selects Zoom (F5) in
the next control.
Reference Guide 432

Cnd (for Condition)

This property contains a logical condition that controls whether the insertion
point will park on a control displayed on the screen. The possible values are:

• Yes (the default) - means that the logical condition is True. At runtime the
insertion point is allowed to park on this control.

• No - the logical condition is False. At runtime the insertion point skips the
control.

• Expression number - Points to a logical expression whose value at runtime
will determine whether the insertion point can park or not. Zoom from
here to add the expression to the Expression Rules repository.

Note: The condition specified here has no influence on the operation other
than the insertion point control.

Verify

Purpose

When the Mode property is set to Error and a related Condition expression
evaluates to True, Verify allows you to display an error message and halt
execution, so you can require the user to correct the error.

When Interaction Mode
is...

The engine executes the
operation if...

F for Forward The insertion point moves forward
according to the Record Main
Operation repository

B for Backward The insertion point move backwards

C for Combined The insertion point moves forwards
or backwards
Reference Guide 433

When the Mode property is set to Warn and a related Condition expression
evaluates to True, Verify allows you to display a warning message without
halting execution of the task.

Usage

• Input Validation

• Debugging - by inserting warning messages to trace the task execution

Verify Operation Properties

Exp > 0

After you select the Verify operation, the insertion point moves to the right
part of the Operation column that displays a 0.

You can zoom from here to the Expression Rules repository and specify a
string expression of one screen width, containing the message. The message
characters can be a concatenation of constant text, numeric variables
converted to strings, and string variables, so you can dynamically vary the
contents of the message.

Name

If you selected an expression in the Exp property, this column shows the first
part of the expression and the insertion point skips it when you move right.

If you left the Exp default property 0, you can type a constant string directly in
the column itself. If the text is longer than one column width, an expansion
box will open automatically.

If at runtime, the Cnd expression of the operation evaluates to True, the
message is displayed in the message line or display box together with the
sound of a beep. If the expression number is zero and there is no message in
the Name column, nothing is displayed and a beep is not issued but the
operation is still in effect.
Reference Guide 434

Mod (for Mode) = Warning (default)

Verify operations with Mode set to Error executed in the Task Prefix level of
execution cause the task to terminate (see below). Verify operations in other
task levels are followed by resumption of execution according to the rules
described below.

The available values for Mode are:

• Warning – This is the default setting. eDeveloper beeps and displays the
message, but does not stop the task’s execution. The user is free to ignore
the message and continue. The message disappears as soon as the end-
user presses a key in a message line or clicks OK in the related display
box.

• Error – After the message is displayed, eDeveloper will behave according
to the following rules:

• If you use the Verify operation in the Record Main of an Online task,
processing stops, and the insertion point parks on the last parkable
control, and eDeveloper waits until the end-user corrects the error.

• If you used the Verify operation in the Record Suffix of an Online
task, processing stops, control returns to the last visited parkable
control of the current record on the Form, and eDeveloper waits
until the end-user corrects the error.

• If you used the Verify operation in the Record Suffix of a Batch task,
processing stops, eDeveloper skips to the next record and awaits
user input. Pressing any key except ESC restarts the task with the
next record. ESC terminates the task. The message should instruct
the user to correct the error before pressing any key except ESC.
You can use this feature as a break point for debugging.

• If you used the Verify operation in other non-interactive levels -Task
Prefix or Suffix for all tasks, Group levels for Batch Tasks, and
Record Prefix - processing stops and execution of the level is
aborted.

• Revert – This mode is available for Control and User-Defined handlers only
and works the same as the Verify Error mode for the Record Main level.
Reference Guide 435

When Verify Revert is executed, an error message box is displayed. The
cursor returns to the previously parked control by executing the operations
that precede the Verify operation in reverse order, back to the first
operation in the handler.

For a Block operation, the Verify Revert mode performs the Block opera-
tions in reverse order. For a Block loop, The Verify Revert mode causes
eDeveloper to exit the Block operation and perform the operations preced-
ing the Block loop in reverse order.

Display Mode

The Display Mode property lets you specify the type of message format that is
displayed for the Verify operation. The following display modes are:

• Box (default) -The message text is displayed in an dialog box. The
eDeveloper engine will only continue to the next operation when the dialog
box is closed.

• Status - The message text is displayed on the status line of the client
window.

Flow

The Flow property is relevant only when you define the Verify operation in the
Record Main Operation repository of Online tasks. The purpose of the Flow
property is to allow you to make the execution of the operation dependent on
how the end-user moves the insertion point on the task’s main window.

Cnd (for Condition)

The Cnd property contains a logical condition that controls whether or not the
operation is executed. For more information about the Cnd property.

Usage Considerations

Use the Verify operation to warn the end-user about a possible error, by
setting the Mode to Warn.

Use the Verify operation in the Record Main of an Online task whenever you
want to require the end-user to enter valid input, by setting the Mode to Error.
Reference Guide 436

Link

General Information about eDeveloper’s Link

eDeveloper’s Link operation establishes one-to-one relationships between
related database tables. The current record of the task main file is correlated
(linked) to a specific single record of another database table (the linked file)
whose index segments contain values which match the Link criteria (Link
expressions). Links can be established to:

• perform validity checks, to verify that a particular record exists in the
linked table,

• extend the record dataview by selecting variables from linked files, or view,
modify or create records in the linked table.

The Link mechanism is part of eDeveloper’s record dataview preparation: once
the link is established, Select Variable operations can be used to add variables
of the linked table to the record dataview. Linked variables are treated exactly
the same as the variables selected from the Main table.

An important characteristic of the link is that it is dynamic. If the Link
operation’s expression values change during the processing of the Main table,
the link is automatically re-established and new linked record variable values
are set.

Link Categories

There are two reasons to use Link:

• to access an existing record from the linked file, or

• to create new records in the linked file.

Link types are explained with the Link operation later in this chapter. Link
types for accessing existing records are: Validate, Query, Write (only if the
linked record exists) and Join. Link types for creating new records are: Write, if
the linked record does not exist, and Create.
Reference Guide 437

Regardless of the purpose of the link, all variables selected from a linked file,
including the variables that contain the access index segments, can be
modified during task execution. The modified linked file rows are written back
to the disk once all Record Suffix operations are executed, just as for modified
main file rows and resident tables.

Link Order

The Link is part of the dataview definition, and therefore the link operations
are included in the Record Main level definition of the task only. The minimal
configuration of operations for a link consists of the following, shown in the
order in which they are placed in the Operation repository:

• Link operation to specify which database table must be linked, which Link
type, and by which index.

• Select Variable operations, with Locate lower/upper expressions to select
the linked file index segments and to define the Link criteria using Locate
expressions for each index segment.

• End Link operation to terminate the link’s specifications.

The creation of the minimal Link configuration is a semi-automatic feature of
eDeveloper. Once you have selected a Link operation, eDeveloper generates a
matching End Link operation immediately after it. Further, once you have
selected a file to link to and an index to be used as the Link Index to the file,
eDeveloper creates a set of Select Variable operations between the Link and
End Link operations, corresponding to every Index segment of the specified
index. For example, if the access Index used contains two Index segments,
two Select Variable operations are automatically created following the Link
operation, each selecting an index segment of the specified link index. To
complete the link specification, you just have to define Locate expressions for
each index segment.

If you change the Index specified for the linked file, eDeveloper creates a new
set of Select Variable operations for the new index segments.

To use the link to implement table lookup and to allow the task to refer to
other variables belonging to the linked file, these variables must have Select
operations between the Link and End Link operations. The variables are joined
to the record dataview.
Reference Guide 438

You cannot nest one link inside another link, even if the Index value used to
establish the second link is selected by a Select Variable operation defined for
the first link. In such a case, create a new link immediately after the first one,
and use the linked variables for the locate expression of the index segments.
The result is similar to nesting the two links.

Link Criteria

If the link’s purpose is to access an existing record rather than to create a new
one, the link is considered successful if eDeveloper finds a linked record whose
index segment values match the values resulting from the evaluation of the
Link expressions. The Return Code value for a successful link is True (Logical)
or 1 (Numeric). If no matching record is found, the link fails and the Return
Code is set to False (Logical) or 0 (Numeric).

Note: It is recommended to use Logical variables for link return codes, since
the meaning is consistent with the Logical attribute. Numeric return codes are
supported only for compatibility with previous versions of eDeveloper.
eDeveloper will automatically recognize whether the return code variable is
Numeric or Logical.

The following matching criteria can be used for links:

• Single value for matching - To specify a single index value for matching,
make the Locate lower expression identical to the Locate upper expression
for each index segment.

• Range of values for matching - When you define a range of possible
matching values for one or more index segments by using two different
Link expressions as Locate lower/upper expressions, eDeveloper will
establish a link to the first record of the linked file for which the value of an
index segment is included within the range of values specified. By using
the Ascending/Descending property in the Link operation, you can control
the order of access to the linked file, and thereby determine whether the
match is with the first or the last record of the range.

• Partial Matching - To specify partial matching, define Locate lower/upper
expressions for only those index segments you want used for matching.
eDeveloper will establish a link to the first record of the linked file for
Reference Guide 439

which the values of those index segments specified match the range of
values specified.

• Extended Matching - In addition to the Locate lower/upper expressions you
define in Select Variable operations for the linked file, you can also:

• Specify additional Locate lower/upper expressions for any of the
link’s selected variables and on any Virtual variables selected within
the link. eDeveloper will establish the link only if all Locate lower/
upper expressions defined inside the link are satisfied. The only
difference between link expressions for index segments and link
expressions for other selected variables is that eDeveloper uses a
different technique to perform the match: index segments are
matched using the very fast index access, and all other variables
are matched using a sequential search starting at the point where
index segments were matched.

• Specify Range lower/upper expressions for any of the link’s selected
variables and for any Virtual variable selected within the link. In
such a case, all Range lower/upper expressions are evaluated when
the task is invoked (regardless of whether the Select Variable
operations they are associated with are defined over the main file or
over any of the linked files). Later, the link is established, and the
selected variables of the linked record are added to the record
dataview. Then eDeveloper checks that the link’s selected variables
having Range expressions match these Range criteria.

If not, the current main file row is skipped and the next is read.

Establishing the Initial Link

Link operations are part of the instructions to eDeveloper for creating the
dataview’s Logical Record, just as Select operations are. Thus eDeveloper
establishes initial Links during the record dataview preparation prior to the
execution of the Record Main operations. During Record Main processing,
eDeveloper can re-establish the links non-procedurally.
Reference Guide 440

Recomputing Link Expressions

Link is one of eDeveloper’s non-procedural facilities. During the execution of
Record Main or Record Suffix operations, whenever the value of a variable that
is a component of any of the Locate lower/upper expressions used with link’s
selected variables changes, and is declared in the Operation repository prior to
the link, eDeveloper recomputes the Link expression and re-establishes the
link. Thus all the link’s selected variables can receive new values. Refer to the
description of Recomputing Init Expressions in the Select operation.

A modifying variable is a component variable of the link expression, declared
in the Operation repository prior to the Link definition, and whose modification
causes the recomputation of the link. The modifying variable can be changed
because of user input, an Update operation, data import by an Input Form
operation, another link’s return code re-evaluation, or as a result of having
been passed as an argument and changed in the called task.

Link recomputation can occur in Create or Modify modes, in Online or Batch
tasks, in Step or Fast modes. The change which triggers the recomputation
can occur in either the Record Main or Record Suffix stages of processing.

Warning: Be careful when you use the Update operation in the Record Suffix
Operation repository on a variable that is a component of a Locate lower/upper
expression of a link. The execution of the Update operation may cause the Link
expression to be re-evaluated and the link to be re-established, thus causing
the loss of the updated values of other variables selected from the Linked
record. Conversely, you can use such an Update operation in an Online task’s
Record Main to force a revaluation of the link.

The Effect of Link Failure on Init Expressions

When a link has failed, all Init expressions defined in the Select operations
specified for that link are still evaluated and assigned to related variables
following the same rules as select variables that are not within a link.

Note: The Create type of link always fails, by definition.
Reference Guide 441

Link Usage

• To implement one-to-one relationships between the main file and other
database tables.

• To search for individual rows in a file.

• To validate information against data from another file.

Placement

You can define Link operations in the Record Main Operation repository only,
where the task dataview is established.

Link Operation Properties

The Operation column for Link operations is divided into three areas: the word
Link, the link category (Write, Query, Create or Join), and the identification
number of the linked file.

When you select the Link operation, eDeveloper displays Link Query as the
default.

Move the insertion point to the word Query if you want to change to one of the
other categories. Link Category - Click on the combo box to see the five link
categories and select the one you want.

• Query links are used to search for an existing record.

• A Write link is used when the matching row may or may not exist, and you
want to read it if it exists or create one if none exists.

• Create link creates a new row with the row index value specified.

• Link Join operations, Inner Join or Left Outer Join, uses the RDBMS Join
capabilities for the reading and hooking modes of the task in conjunction
with the eDeveloper mechanisms.
Reference Guide 442

Link Types

Query

Validation = Yes

When you define a Link Query operation with the Validation property set to
yes, eDeveloper attempts to establish the link. If the link is successful, data
from the linked record’s selected variables are included in the record dataview.

If the link has failed for online tasks, the execution of the task is interrupted
and the following error message is displayed, accompanied by a warning beep:

Record not found in table: <filename>

where <filename> is the name of the linked file taken from the Table column
of the Table repository.

eDeveloper then waits for the user to input another value for the link key or to
select Edit/Cancel to undo the record updates to this point.

For linked variables whose Select operation has no Init expression, the
variables are filled with zeroes (if they are Numeric, Date or Time variables),
with blanks (if Alpha), left empty (if Blob or Memo), or with the logical value
False (if they are logical variables). The Default values determined in the
Application properties can be overridden at the Model and Column levels.

For linked variables whose Select operations have Init expressions, the
variables are filled with the value of the expression, according to the Init
evaluation rules for the Select operation.

If the link has failed for batch tasks, the execution of the task continues and
ignores the failed link.

Validation = No

When the Link category is Query, eDeveloper attempts to establish the link.

If the link is successful, data from the linked record’s selected variables are
included in the record dataview.

If the link fails:
Reference Guide 443

• The linked variables whose Select operations have no Init expression are
filled with zeroes if the variables are Numeric, Date or Time, with blanks if
they are Alpha, left empty for variables that are Blob or Memo variables,
with the logical value False (if they are logical variables).The Default
values determined in the Application properties can be overridden at the
Type and Column levels.

• The linked variables with Init expressions are initialized with the value of
the expression according to Select operation Init rules.

Hint: When using the Link Query, you can customize an error message to be
displayed when the link fails. To do this, insert a Verify operation with a
Condition expression based on the return code property of the link, as shown
in the explanation of Ret (below).

Write

When the Link category is Write, eDeveloper attempts to establish the link. If
the link is successful, data from the linked row’s selected variables are
included in the dataview.

If the link fails, eDeveloper creates a matching record by filling the linked
variables according to the following rules:

• Linked variables whose Select operation has no Init expression, are filled
with zeroes if they are Numeric, Date, or Time variables, with blanks if
they are Alpha, or left empty with Blob, or Memo variables. The Default
values determined in the Application properties can be overridden at the
Type and Column levels.

• Linked variables whose Select operations have Init expressions, and which
are in an Online task or in a Batch task in Modify mode, are initialized with
the value of the expression.

Create

When you define a Link Create, eDeveloper doesn’t attempt to establish the
link and always creates a new record filling the linked variables as follows:

Linked variables without Init expressions are filled with zeroes if they are
Numeric, Date, or Time variables, with blanks if they are Alpha variables, or
Reference Guide 444

left empty if they are Blob or Memo variables. The default values determined
in the Application properties can be overridden at the Type and Column levels.

Linked variables with Init expressions are initialized with the Init expression
value.

InnerJoin

The Link Inner Join operation uses the RDBMS Join capabilities for the reading
and joining of different database tables, in conjunction with eDeveloper
mechanisms, to create a one-to-one relationship. When the user updates a
record or when an eDeveloper recompute is taking places, the Link Inner Join
operation will behave as a Link Query operation with the Validation property
set to True.

The Link Inner Join operation is valid only for SQL databases. Only tables from
the same database can be joined.

The Link Inner Join operation will generate an SQL inner join statement among
all the participating tables.

In a regular Link operation (Query), for each row being read from the Main
table, eDeveloper adds a second SELECT statement to retrieve the linked row.
The rows for the Main table are read by a loop that fetches all the rows as
described above. To perform the link, every time the FETCH operation of a row
in the Main table is performed, another cursor is opened to retrieve the rows of
the linked table. If there are two links on a Main table, eDeveloper opens a
cursor for the Main table and in a loop opens a cursor per each linked row. For
example, a task with 10 records in the Main table and 2 linked tables will open
21 cursors: one cursor to fetch all the 10 records in the Main table, 10 cursors
to fetch one record at a time from the first linked table and another 10 cursors
to fetch one record at a time from the second linked table.

A regular Link operation is different than a Link Inner Join operation:

• A Join of several tables makes them into one entity, and only one cursor
will be opened and retrieved.

• If the row in the Main table does not exist in the joined table, the row will
not be retrieved.
Reference Guide 445

• A regular link in eDeveloper results in slower response time than a Link
Inner Join because the regular link communicates and requests more from
the SQL Database than a Link Inner Join.

It is advisable to:

• Use a view that joins tables in reports and read- only queries.

• Cache the linked tables, especially if the linked tables contain only a few
rows, or if the linked tables result in repeatable identical rows.

Link Inner Join differs from Link Query (with Validation=True) in the following
ways:

• In Link Query (with Validation=True), a sub-select is done to fetch each
linked row. If a linked row is not found, the corresponding row from the
Main table is still available.

• In Link Inner Join, an inner join SELECT statement is used for the main and
joined table. For this reason, integrity constraints are important.

When a dataview is created for the task, eDeveloper generates a Join
statement for all of the Joined tables. eDeveloper creates a WHERE clause that
consists of the constants and the matching clauses with the names of the
columns from the Main table and the Joined table. Then eDeveloper builds the
rest of the dataview.

When Link Inner Join generates a Join Statement, it will always return a True
variable. When the Link Inner Join behaves as a Link Query (with
Validation=True), it will attempt to establish a link where data from the linked
record’s selected columns are included in the record dataview. Listed below
are general rules about Link Inner Join Operation usage:

• All the index segments of the joined table must be selected and each of the
index segments should have a Locate expression.

• For the Joined tables, an exact range is needed. Therefore, the Minimum
Locate expression must be equal to the Maximum Locate expression.

• Locate expressions on Joined tables can only be:

• A constant
Reference Guide 446

• A variable reference to a column from the Main table that was
selected in the task

• A variable reference to a column from a join table that was
previously selected in the task

The cache that the Link Inner Join operation utilizes is cleared in the following
cases:

• When changing the index

• When a column from a joined table is updated

• When a locate/range/sort is performed

• When changing the task mode to Create

Usage Considerations

• The Link Inner Join operation is valid only for SQL databases. Only tables
from the same database can be joined

• Because DB2 and Informix require separate locks for each table, Link Inner
Join in batch tasks with immediate locking strategies will be implemented
as a Link Inner Join operation without a lock for each table joined, and as
a Link Query operation for each row fetched

• When eDeveloper generates a SELECT statement with multiple tables,
eDeveloper uses aliases for the table names, such as in A for a Main table,
B for the first join and so on

• Do not try to create duplicate records when you define a link based on a
unique index. eDeveloper will not create duplicate records and will not
issue any message about the failed attempt.

Left Outer Join

eDeveloper can implement the Link operation as a Left Outer Join if both the
Main and Joined tables are SQL tables from the same database. Also, the
relationship between the Main and Joined tables must be a many-to-one
relationship: at least one main record that links to either one or no
supplemental records in the Joined table. A Left Outer Join operation joins a
Reference Guide 447

record from the Main table in eDeveloper to either a matching record in the
Joined table, or a set of Null values returned if no matching record is found.

When a matching row is found, a true value is returned. If no matching row is
found, a false value is returned.

The Left Outer Join Link Operation syntax for each available DBMS is described
in the table below.
Reference Guide 448

Left Outer Join and ISAM Databases

In the Record Main table of the Task Execution repository, you can select the
Link Outer Join option for the link regardless of the main table source. For
ISAM tables, eDeveloper opens the table and retrieves the linked data as a
Link Query operation.

Left Outer Join Usage Considerations

Important considerations when using the Left Outer Join Link are:

• The developer cannot nest Left Outer Join Link operations. If the developer
attempts to do a Left Outer Join Link to a control that is already part of a
Left Outer Join Link block, the following error appears:

Error. Link operations cannot be nested.

• If the developer attempts to link a secondary table that is from a different
database than the Main table, the following error appears:

Error. All Join tables must be from the same database.

DBMS Syntax Structure Example

MSSQL, DB2,
and ODBC

SELECT {column list} FROM
main_table Left OUTER JOIN
linked_table ON
(link_condition)

SELECT Dname, Ename
FROM departments a Left
OUTER JOIN employees b
ON (a.deptno=b.deptno)

Oracle SELECT {column list} FROM
main_table, linked_table
WHERE
main_table.column=linked_ta
ble.column

SELECT Dname, Ename
FROM departments a,
employees b WHERE
a.deptno=b.deptno(+)

Informix SELECT {column list} FROM
main_table, OUTER
linked_table WHERE
main_table.column=linked_ta
ble.column

SELECT Dname, Ename
FROM departments a, OUTER
employees b WHERE
a.deptno=b.deptno
Reference Guide 449

• If the developer attempts to assign a non-unique index to the database
files of the Left Outer Join Link operation, the following error appears:

Error. Databases have no unique indexes.

• If the developer does not select all of the index segments, the following
error appears:

Error. All Join table’s index segments must be selected and
have locate expressions.

• If the developer does not indicate Min and Max Locate expressions for all
index segments, the following error appears:

Error. All Join table’s index segments must be selected and
have locate expressions.

• If the developer defines the index segments with a complex expression
(A+B), the following error appears:

Error. Locate on Link Inner or Outer Join fields must be either
a variable or a constant.

• If the developer defines a virtual variable within the Left Outer Join block
and sets the locate expression with the defined virtual variable, the
following error appears:

Error. Locate on virtual variables are ignored inside a Link.

Link Properties

Table Identification Number Property

This part of the Link operation properties contain the Table Identification
number of the table to be linked.

Zoom from the Table Identification property for a list of supplemental tables
that are in the same database as the Main table.
Reference Guide 450

Indexing

Only a unique index can be used between the main and the linked file, a
many-to-one relationship. Zoom from the Index property for a selection list of
unique indexes.

Locking

When eDeveloper needs to lock a record, eDeveloper generates a lock in the
underlying RDBMS.

In SQL gateways that use logical locking, the logical locking is done
simultaneously for the main and the joined tables when Access/Share modes
on the Main table are Write/Write.

In SQL gateways that use physical locking, the SQL gateway checks whether
the RDBMS allows a FOR UPDate clause for a joined table Select:

• If the RDBMS, such as Oracle, allows a FOR UPDate clause for a joined
table Select, the Lock is done simultaneously for those main and joined
tables that are in Write Access mode.

• If the RDBMS, such as DB2 or Informix, does not allow a FOR UPDate
clause for a joined table SELECT, the lock is done separately for each table.

If a join table was opened in the task with read access, eDeveloper will try to
lock only the Main table and not the joined table.

When eDeveloper needs to update the database, it updates each joined table
separately according to the position index for that table. For more information,
refer to Chapter 25, SQL Considerations.

Direction: Ascending (default)

The direction in which eDeveloper scans the records, according to the selected
access index. Specify Asc for Ascending (the default) or Des for Descending.
By specifying Des, you reverse the sequence of all scan operations for all
Locate lower/upper and Range lower/upper expressions associated with the
Select Variable operations inside the link.
Reference Guide 451

Flow

This property is irrelevant to the Link operation and the insertion point skips it.

Cnd (for condition)

By entering Yes, No, or an expression in the Cnd column of the task’s Flow
table, you define the Link condition. The expression should evaluate to a
logical value.

If the Cnd column value is Yes or evaluates to a True value, the Link condition
fetches the required record.

If the Cnd column value is No or evaluates to a False value, the record will not
be fetched. The record link will behave as a failed link, and the following will
occur:

• All values of the Link operation’s selected columns return to their default
values.

• The return value of the link is False.

• Update operations do not take effect until the condition evaluates to True.

• If the link condition is evaluated to False at the end of the Record Suffix,
any modification is disregarded.

Link Property Dialog

The validation condition properties are located within the Link Property dialog.
Link Properties define the way the link condition will be evaluated for any Link
operation. The dialog contains the following properties:

Return: for Returned Value

The Return property is optional. It allows you to specify a variable that will
receive the return code indicating whether the link succeeded or failed. At
runtime, after link execution, the variable specified in the Ret property will
receive the value True (Logical) or 0 (Numeric) if the link was successful, and
the value False (Logical) or 1 (Numeric) if the link failed.
Reference Guide 452

Usually a Virtual variable is used for a Ret property, defined outside of the link.
The Virtual should be defined as Logical or Numeric in the Local Variable
repository.

Hint: You can use the return code to customize an error message for link
failure to the end-user, by specifying a link type other than Validate and
inserting a Verify operation, following the End Link operation, with a Condition
expression as follows:

Where X is the letter code of the variable selected for the Ret property.

Validation

The Validation property, located in the Link Properties dialog box, is optional
and is enabled for Link Query and Link Inner Join operations.

The Validation property combined with the Link Query replaces the use of the
Link Validate operation from previous versions, which has been removed.

Imports from previous versions of eDeveloper will be automatically created as
Link Query operations with the condition of the Link Validate operation placed
in the Validation property.

In the Link Query operation, this property behaves as follows:

Yes - means that the logical condition is always True. eDeveloper attempts to
establish the link. If the link is successful, data from the linked record's
selected variables are included in the record dataview. If the link has failed,
eDeveloper issues an error message.

No (the default) - means that the logical condition is always False, which
causes the validation to always behave as a Link Query operation.

Expression number - Zoom from the Validation property to specify an
expression that will determine the behavior of the link validation at runtime. If
the expression evaluates to True, the link validation works normally. If the
expression evaluates to False, the link validation works as a Link Query
operation.

X <> 0 for a Numeric return variable

not X for a Logical return variable
Reference Guide 453

In the Link Inner Join operation, this property behaves as follows:

When you use Link Inner Join, you are fetching the data from the database
using a SELECT JOIN statement.

When you update the linked column in the main table, you are not sending a
JOIN statement; you are only sending a SELECT statement to the linked table
to bring the proper data.

No - means that if in the linked table there is no corresponding record there
will be no error message and when the record is refreshed, it will not be
displayed.

Yes - means that eDeveloper will attempt to establish a link. If in the linked
table there is no corresponding record there will be an error message.

Evaluate Link Condition

When the property is set to Task, the condition will be evaluated only once
before the entire view is retrieved. If the condition returns a False, the link will
not be part of the SELECT statement. Should the condition evaluate to True,
the link will not be recomputed as a link query.

When the property is set to Record, and using either a Link Inner Join or Link
Outer Join, a record is fetched. Should the link condition evaluate to True, the
link will be recomputed as a regular query link. If the link condition evaluates
to False, the linked data will not be fetched and it will be replaced by the
default values.

End Link

Purpose

The End Link operation closes the link opened by its counterpart Link
operation. End Link indicates to eDeveloper that the list of variables from the
linked file has ended. All the variables selected by Select Variable operations
placed in the Record Main Operation repository between a Link and an End
Reference Guide 454

Link operation will come from the linked file. Any variable whose Select
Variable operation is outside a link will come from the Main table.

Usage

Refer to the explanations of the Link operation above.

Placement

The End Link operation is allowed only in the Record Main Operation
repository.

End Link Operation Properties

The End Link operation has no properties.

Usage Considerations

eDeveloper automatically defines the End Link operation when you define a
Link after the Link operation in the Operation repository.

Do not remove or override the eDeveloper-generated End Link operation if you
have not deleted its related Link operation.

If you erroneously deleted an End Link operation, restore it by defining it
manually.

The Syntax Checker tells you if an invalid Link configuration exists in the
Operation repository, such as nested links or unpaired Link/End Link
operations.
Reference Guide 455

Block

Purpose

Block and End Block operations enclose a group of procedural operations
within a logical block. The execution of all operations in the block is dependent
on the Block operation type and the condition of the Block operation.

Usage

The developer can determine the condition of the execution of an operation set
as a single unit in one place.

The developer can create a set of operations where one set is executed when a
condition is met and another set is executed when the condition is not met.

The developer can repeat the execution of a set of operations.

Block Operation Types

There are three Block operation types:

• If

• Else

• Loop

You can determine the Block operation in the Type box at the right of the
operation name.

If

The If type is the basic Block operation.

The If type must correspond with an End Block operation. When the
eDeveloper engine reaches the If type, it evaluates the operation condition. If
the condition is met, the operations within the block are executed. If the
Reference Guide 456

condition is not met, the eDeveloper engine skips to the operation after the
corresponding End Block operation. The Block If operation and the
corresponding End Block Operation can be nested in another Block operation.

Else

The Block Else operation is an extension of the Block If operation.

The Block Else Statement does not have a corresponding End Block operation
of its own because it is considered to be within the same logical block as the
preceding Block If operation. You may define several Block Else operations as
an extension of the same Block If operation.

When the Block If operation condition is met, the operations defined from the
Block If operation to the first Else operation are executed, and the eDeveloper
engine skips the remaining Block Else operations until the next End Block
operation.

When the condition of the Block If operation is not met, the eDeveloper engine
skips to the first Block Else operation and evaluates the condition. If the
condition of the Block Else operation is met, the eDeveloper engine executes
the Block Else operations until the next Block Else operation and skips to the
End Block operation.

When the Block Else operation condition is not met, the eDeveloper engine
skips to the next Block Else operation until all the Block Else operations have
been evaluated.

Block Loop

The Block Loop operation instructs the eDeveloper engine to repeatedly
execute the operation within the block.

When the eDeveloper engine reaches a Block Loop operation, it evaluates the
Block Loop condition. If the condition is met, eDeveloper executes the set of
operations within the block. When the eDeveloper engine reaches the
corresponding End Block operation, it returns to the eDeveloper Loop
operation and evaluates its condition again. As long as the condition is met,
the eDeveloper engine will execute the Block Loop’s set of operations. If the
condition is not met, the eDeveloper engine skips to the End Block operation
and continues the task flow.
Reference Guide 457

You can monitor the number of times the Block Loop operation was executed
by using the LoopCounter function. For more information, see the LoopCounter
function in Chapter 8, Expression Rules.

Flow

The Flow property is available only when the Block operation is defined in the
Record Main Operation repository of an Online task. The purpose of the Flow
property is to allow you to make the execution of the Block operation
dependent on the end-user’s interaction with the calling task’s main window.

Cnd (for Condition)

The Cnd property contains a logical condition that determines whether or not
the operation execution occurs.

Usage Considerations

Block If or Loop and End Block operations can be nested to any level.
eDeveloper follows the nesting hierarchy by automatically matching each Block
operation with the corresponding End Block operation.

eDeveloper allows for only one Block Else option without a condition within a
Block-End Block, and this unconditional option has to be the last sequentially.

A Block- Else option will not have its own End Block.

A Block Loop operation set to a permanently True condition will run
indefinitely.

End Block

Purpose

The End Block operation closes the block opened by its counterpart Block
operation. All operations between the Block and End Block operation belong to
the same block.
Reference Guide 458

Usage

Refer to the explanations of the Block operation above.

End Block Operation Properties

The End Block operation has no properties.

Usage Considerations

• eDeveloper defines this operation automatically when you define a Block,
following the Block operation in the Operation repository.

• Do not remove or override the eDeveloper-generated End Block operation
if you have not deleted its related Block operation.

• If you erroneously delete an End Block operation, restore it by defining
manually.

• The Syntax Checker tells you if an invalid Block configuration exists in the
Operation repository, such as unpaired Block/End Block operations.

Call Operations

Purpose

There are eight kinds of Call operations used to execute different types of
subroutines:

• Call Task to call subtasks

• Call Program to call eDeveloper programs

• Call Exp to call Expressions

• Call Public to call a public program

• Call UDP to call user-defined procedures
Reference Guide 459

• Call COM to call a COM object

• Call Remote to call programs from the eDeveloper broker to a remote
terminal

• Call Web Service (Web S) to call a Web service by using a SOAP protocol

You can optionally pass arguments to the called subroutine and receive values
back
from it.

Passing Arguments

eDeveloper uses the following two devices for passing arguments:

• The Argument dialog associated with the Call operation in the calling task.
This dialog contains all the variables or expression values you want to pass
as arguments.

• The Local Variable repository of the called subroutine. Beginning at the top
of the Local Variable repository, you define Virtual variables corresponding
precisely in sequence and data type to the arguments in the Argument
dialog.

The Argument List

The Argument list, accessed by zooming from the Arg column, displays the
passed arguments on the left-hand side, and the Variable list on the right-hand
side. You access the list of variables by zooming from the Var column in the
Argument list.

The following entry columns appear in the Argument list.

#

The sequential repository entry number automatically assigned by eDeveloper.
The insertion point skips this column.
Reference Guide 460

Var (for Variable)

The Var column, together with the Name column, is used to identify a variable
or expression to be passed to the subroutine, with the option to receive back
data from the subroutine. This method of passing an argument is known as
by-reference. The other method, by-value, is explained below, under Exp.

Zoom to the Variable list to select a variable, or type the letter code of the
variable and go to the next variable. The letter code is displayed in this column
and the variable name appears in the ‘Name’ column.

If you want to pass a constant value as an argument, skip the Var column and
move to Exp.

The Var column is skipped if an expression is already defined.

Exp

The Exp column is used to pass to the subroutine a constant value by means of
an expression. This is the by-value method of passing an argument to a
subroutine. Note that you cannot receive data back from the subroutine in this
property. The Expression number appears in this column and the Name
column shows the first section of the expanded expression text. You can zoom
to the Expression Rules repository to select an existing expression or to define
the expression you want to pass. The expression may evaluate to any valid
eDeveloper data type.

The Exp column is skipped if a variable is already defined as an argument.
Remove the variable identifier if you want to use an expression as an
argument instead.

Skip

Allows the user to skip an entry by checking the Skip column. If an entry is
checked, no value will be passed to the receiving variable.

Description

Description of the passed variable or expression.
Reference Guide 461

Prm Desc

Name of the parameter or virtual variable that will receive the passed
argument.

Attribute

Attribute of the parameter to be matched with a passed argument. This
attribute could be logical, alpha, or numeric.

Picture

The picture setting will indicate how the matched parameter or variable will
appear. For example, a passed argument may be received by a 5-character
string, as specified in the Prm Picture setting.

How eDeveloper Passes Arguments

In runtime eDeveloper passes arguments in the following ways:

1. When, at runtime, eDeveloper performs a Call Task, Program, or Exp
operation in the program flow, it copies the current values of the
variables listed in the Arguments list of the current task into the
corresponding variables, defined as either Parameter or Virtual type
variables.

2. When a Select Parameter is defined in the called program or task,
arguments will be sent to Parameter type variables in sequential
order. In this case, any Virtual variables will be ignored. If no Select
Parameter is set in the called task or program, arguments will be
passed to Virtual variables.

The receiving variables of the called task contain a copy of the
information passed from the calling task. These variables can be used
for any purpose in the called task: form display or user input.

3. Upon termination of the called task, the Virtual or Parameter variables
used to receive passed arguments are copied back to all of the calling
task’s list of variables. There is no backtracking to variables that use
Reference Guide 462

an expression for passing data in the called task. Hence, all passed
arguments that are variables reflect any changes to their counterpart
called task Virtual or Parameter variables. This has the effect of what
is usually called argument passing by reference. All of the passed
Expression operation values are one-way only, which means that the
values are used in the called task, but any changes made in the called
task are not returned to the calling task. This has the effect of
argument passing by value.

Because argument variables receive back any changes to corresponding
variables in the called task, a recomputation of Init and Link expressions may
occur in the calling task, according to the rules defined in the Select and Link
operation descriptions. Changing a value in a called task means changing it by
end-user input or by an Update operation. If the changed argument variable is
displayed on the screen, its display will be refreshed as soon as the called task
returns to the calling task.

Call Operation Qualifiers

Call, Call Category, Identification Number of Called Entity

The Operation column for Call Operations is divided into three areas: the
Operation list, the Call category - Task, Program, Exp, Public, UDP, COM,
Remote, and Web S - and the identification number of the called entity.

1. When you select the Call operation, eDeveloper displays Call Task as
default. Move the insertion point to the word Task if you want to
change to one of the other categories.

2. Call category - Click on the combo box to see the eight Call types and
select the one you want.

3. Number identifier - depends on the specific Call category (see below).

Name

The content of this column depends on the specific Call type and is explained
later.
Reference Guide 463

Arg: 0 (default)

The Arg field is optional and shows the number (quantity) of arguments
passed to the called task and defined in the Argument list.

If you want to pass arguments, zoom from here to the Argument list and
define the variables you want.

Frm (for Form)

The Form property is optional and shows the identification number of a Form in
the calling task. If you leave the default setting, which is 0, then the Main
window of the called task will appear in its own window. If you specify a
number in this property, then the corresponding form will be used as the
window to contain the called task’s main window. That is, when the called
subtask or program starts running, its main window will appear inside of the
window specified by Form.

The form specified in this property must be defined as Class 0, and can be
whatever size and position you like. Do not define any text or variables in this
window. For more information about Open Window as Child, refer to the Forms
properties in Chapter 10, Form Concepts.

Flow

The Flow property is available only when you define the Call operation in the
Record Main Operation repository of Online tasks. The purpose of the Flow
property is to allow you to make the execution of the Call operation dependent
on the end-user’s interaction with the task’s main window.

Cnd (for Condition)

The Cnd property contains a logical condition that determines whether the
operation execution occurs or is bypassed.
Reference Guide 464

Call Task

Purpose

To invoke the execution of a subtask from a parent task. Each subtask can
manage a main file different from the parent’s main file and bring up its own
window.

Usage

• To invoke subroutines.

• To implement One-to-Many relationships.

• To implement pick list windows.

• To implement any type of pop-up windows.

Call Task Operation Properties

You enter the Call Task Properties dialog by pressing CTRL+P or right-clicking
the mouse in the Task Prefix Operation repository.

Lock

When a task or a program is called, eDeveloper suspends processing the
current view record until the call returns. The called task or program has
access to all the current view record’s variables; in the case of programs, this
access is to variables passed as arguments, while tasks have direct access. In
either case, the called task or program may also update some of the current
view record’s variables.

When using the On Modify Locking Strategy (the Locking Strategy is specified
in the Task Properties dialog, see Chapter 6, Programs), the view record is
locked immediately on the first change, or after a complete variable was
accepted.

If a called subtask or a program is about to change the current record, the
developer should ensure that the current record is locked. Because subtasks
and programs are complete execution units that can take some time to
execute, it should be made impossible for other users to gain access to the
Reference Guide 465

current view record and modify it while the subtask or program is executing.
Otherwise, a situation could arise where the current record could not be saved
when the called subtask or program terminates. Therefore, the current record
should be locked before executing the subtask or program. However, if the
called subtask or program is not about to modify the current view record, the
current view record should not be locked before executing the subtask or
program, so as not to block other users’ access to resources.

The purpose of the Lck property is to control locking when calling task or
programs. Allowed values are:

• No - means that eDeveloper will not lock the current view record when
executing the task or program. It is the programmer’s responsibility to
verify that no updates will occur from the called process to the calling
record variables. If such updates do occur they may be lost if the current
view record cannot be saved due to changes made by other users.

• Yes - means the current view record will be locked immediately on
executing the called task or program. Specify Yes for this property always
when the called task or program are going to update the current view
record, or the updates performed by the called task or program must be
done together with the current view record.

• Expression - an expression can be used to specify the value of the Lck
property. Zoom to the Expression Rules repository.

There are a few exceptions that will not lock the current dataview record even
though the developer specifies Yes as the Lock property:

The locking strategy of the task is defined as Before Update or No Lock. In this
case, the task locking behavior overrides the Lock property of the Call
operation.

No arguments are passed to the called program, or all the arguments are
passed as expressions (by value).

Sync Data

This property is enabled for Call Task, Call Program, Call Exp, and Call Public
operations at the Record, Control, and Handler levels. This property is enabled
Reference Guide 466

for Deferred, Nested Deferred, and Within Active Transaction modes. The
property:

• Lets eDeveloper control the execution order of Data Manipulation
statements.

• Defines a logical expression that can be evaluated as Yes or No.

Destination Frame

This property is relevant for browser-based programs, and is used to open a
task in a named frame within a particular frame set.

Exp

This property is used to dynamically direct browser-based programs or tasks
to a particular frame within a frame set.

Usage Considerations

• The Call Task operation is often used to implement zoomable windows. For
a detailed explanation about using the Zoom modes of the Flow property
refer to the Task Dataview section in Chapter 5, Application Engine.

• A called subtask automatically has access to all variables of its ancestors
and it may update them. Therefore you do not usually need to pass
arguments to a subtask. If you want to call a subtask multiple times during
task execution, each time with different values, then you would need to
pass a argument to contain the different values.

• A called subtask automatically has access to the operating system text files
opened in its ancestors. For example, a subtask which prints does not
need to define its own operating system text file if the file is already
defined in its parent task.

• A called Online subtask must have at least one variable selected in its
Record Main Operation repository and assigned to its Main window where
the insertion point can park. Otherwise the subtask will not run.
Reference Guide 467

Call Phantom Tasks

A phantom task is a closed task with a window not in focus. You can open a
phantom task by triggering the corresponding Call operation defined in a
handler. Phantom tasks can also be called from a program, public program, or
expression.

When clicking a phantom task window, the engine scans for the corresponding
Call operation in parent and ancestor task handlers, and goes to the handler
with the corresponding Call operation.

The engine scans the following handlers:

• Control Prefix

• Control Verification

• Control Suffix

• System

• User Event

• Internal Event

System, User, and Internal events can be defined with either control-specific
or not control-specific handlers. The engine scans for handlers located in the
phantom’s parent or ancestor tasks from bottom to top.

To find the corresponding handler, the following three conditions must evaluate
to True:

• The handler property is enabled

• The Call operation corresponds to the Phantom task

• The Block condition is not a Block Loop

Note: Block Loops are always evaluated as False.

If no valid Call operation is located, the engine stays on the last selected
control and does not open the phantom task.

If the corresponding Call operation is found in a handler that is not control-
specific, the engine only triggers the event to activate the Call operation for
Reference Guide 468

the phantom task. After the phantom task is executed, the engine resumes to
the regular behavior of the current event as defined in the Event repository.

If the conditions evaluate to True for the Call operation in a control handler, the
engine moves to that control and executes the corresponding Call operation
for the phantom task.

If the corresponding operation is located in the Control Prefix handler, the
engine executes the Call operation and parks on that control. If the
corresponding Call operation is found in the Control Verification or Control
Suffix handlers, the engine executes the Call operation and parks on the next
control.

 Call Program and Call Exp

Purpose

To invoke the execution of a program defined in the Program repository. Call
Program and Call Exp operations are similar to the Call Task operation. The
differences between called programs and subtasks are:

• Programs share data via passed arguments, while subtasks inherit access
to all their ancestor variables automatically.

• Programs are reusable, while subtasks are permanently attached to their
parent task and, therefore, cannot be called by other tasks.

• Call Exp allows dynamic calls to selected programs at runtime.

Usage

To invoke subroutines which need to be used throughout the system.

Call Program Properties

Only the properties which are specific to the Call Program appear below. All
the other properties common to all the Call types are explained above in the
Call Operation Qualifiers section.
Reference Guide 469

The only difference between the Call Program and the Call Exp operation is the
way you tell eDeveloper which program you want to call.

Call Category

You must click the Call Category combo box to select the Program option from
the list of Call categories.

Identification Number of the Called Program

The Identification Number of the Called Program is required. It is the number
of the program as it appears in the Program repository.

Type the number of the program you want or zoom to the Program list to
select the program.

Name

After you have selected the program, its name is displayed in this column.

Call Exp properties

Only the properties which are specific to the Call Exp operations appear below.
All the other properties common to all the Call types are explained above in
the Call Operation Qualifier section.

The only difference between the Call Program and the Call Exp operation is the
way you tell eDeveloper which program you want to call.

Call Category

You must click the Call Category combo box to select the Exp option from the
list of Call categories.

Identification Number of the Called Expression

The Identification Number of the Called Expression is required. It is the
number of the expression as it appears in the Expression Rules repository,
which evaluates, at runtime, to the Identification Number of the program to be
executed.
Reference Guide 470

Warning: To allow eDeveloper to automatically update the program number
inside the expression when the sequential number of the referred program
changes in the Program repository, use the literal Prog in the expression. For
example, suppose you want to execute either program number 3 or program
number 4, depending on the value of the logical variable BA. The Exp you
define should be IF(BA,’3’Prog,’4’Prog). For more information, see the
discussion of Literals in the Chapter 8, Expression Rules.

Name

After you have selected the expression, the first part of its definition appears
in the Name column, for display only.

Usage Considerations

• The Call Program operation is often used to implement zoomable windows.
For details about using the Zoom modes of the Flow property, refer to
Chapter 5, Application Engine.

• A program can be invoked in three ways: as a program called by the Call
operation, using the CallProg function, and as a standalone from a menu
entry. When it runs as a standalone program, any argument passed is
assigned null values: numeric, alpha, or blob.

• A program can call itself and even pass arguments to itself. That is,
eDeveloper programs are fully recursive up to the maximum execution
nesting depth.

Call a Public Program

The Call Public Program option lets an eDeveloper application call other
components that are only recognized by the application at runtime.

Examples are:

• Components for an eDeveloper application that were not yet created or
were created separately from the eDeveloper application

• A local application that can call dynamic programs
Reference Guide 471

You can zoom from the last cell in the Operation column to open the Call Public
Program dialog box as shown in Figure 7-1.

You can call a public program from:

• A database application by selecting expressions for the application
database, table, and public program.

• A flat-file application by selecting expressions for the application file and
public program. A flat-file application does not need a database.

• The current application by selecting an expression for the public name.
eDeveloper searches for the local program in the host application, the
loaded components, predefined components, and other previously loaded
applications. The first program found to match the public name is
executed. If a corresponding program is not located, the operation fails.

The selected expression must return a string value. When an expression
number is entered into the field, the expression is displayed. The Public name
for an event is case sensitive.

After the Call Public Program fields have been specified, the expressions
appear in the Call Public Operation Name column.

Figure 7-1 Calling a Public Program
Reference Guide 472

Runtime Behavior

When the database name is not a blank or Null value:

• The database name is matched with one of the databases in the Database
list of the current eDeveloper session.

• The string of the second expression is regarded as an application table
name.

• The string of the first expression is regarded as the public name of a
program in the application.

If the database name is a blank or Null value:

• The string of the first expression is regarded as a public name of a program
in the flat-file application. The public name is defined in the first
expression.

• The string of the second expression is regarded as a flat-file name.

If the Database Name, Magic Control File application (MCF) or Magic Flat-File
application (MFF), and Public Name are valid values, the following behavior
occurs:

• The application is loaded.

• The Task Prefix operations of the main program are executed.

• The program that corresponds to the public name is executed, and the
arguments of the Call operations are passed to the program.

• The Task Suffix operations of the main program are executed.

• When the called program ends, the Call operation is completed. Arguments
passed as variables are updated. The variable set as the return value is
also updated.

Loading the Application

The application remains resident as an eDeveloper component application until
the runtime execution of the host application is terminated. Global handlers of
the loaded external application may be invoked when the underlying event is
Reference Guide 473

triggered. Global handlers of the loaded external application may be invoked
when the underlying event is triggered.

All public programs of the loaded application are available by using external
requests such as remote calls, Web services, Enterprise Java Beans (EJB), and
Internet requests.

Closing the Host Application

When the host application is closed, the Task Suffix operations of the loaded
application are executed.

The sequence of the Task Suffix execution is as follows:

• Host Application Task Suffix

• Components Task Suffix

• External Application Task Suffix

Handling Exceptions

The handler fails because:

• The specified table is not a valid application table.

• The specified file is not a valid Magic application flat file (MFF).

• The application is from a different eDeveloper version.

• The application has been located, but the public program has not been
located.

i The Flow Monitor reports the handler exceptions.
Reference Guide 474

Call UDP

Purpose

To invoke the execution of a 3rd generation language program and optionally
to pass arguments. eDeveloper uses the C language calling convention when
calling this program. The call is done in memory as if the user procedure is an
internal subroutine of eDeveloper, using the simplest call or jump instruction of
the machine.

Usage

Implementation of eDeveloper extensions: user-supplied routines that perform
specific tasks or functions not supported internally in eDeveloper.

Utilization within eDeveloper of existing code written outside of eDeveloper.

Implementation of specialized calculations that have been optimized for speed
in the external procedure.

Call UDP Operation Properties

Only the properties which are specific to the Call UDP operation appear below.

Call Category

You must click the Call Category combo box to select the UDP option from the
list of Call categories.

Identification Number of the UDP Expression

The Identification Number of the UDP Expression is required. It is the number
of the expression in the Expression Rules repository that at runtime returns a
string with the name of the called program.

Name

After you have selected the expression, the first part of its text appears in the

Name , for display only. For example, if you are calling the Set Focus function,
Reference Guide 475

@user32.setForegroundWindow is displayed.

Cnv

You can select from one of the C conventions below:

• C - Enables a dynamic and direct call to a DLL from within eDeveloper.

• Standard - Enables a dynamic and direct call to a DLL from within
eDeveloper to an external Stdcall function.

• Fast - Enables a dynamic and direct call to a DLL from within eDeveloper to
an external Fastcall function.

Call UDP Argument Example

If you call the SetForegroundWindow function,
@user32.setForegroundWindow is displayed.

The Argument values are entered as described below:

44 - A string where each character represents the argument type. The last
character

represents the return value type of the function.

Argument types are:

1 - Char

2 - Short

4 - Long

F - Float

8 - Double

D - Double pointer

E - Float pointer

L - Long pointer

A - Null terminated string pointer
Reference Guide 476

V - Void pointer

0 - Void Arg1, Arg2 - The function arguments from the DLL.

@user32.SetForegroundWindow - External function name called by the
Call UDP operation

WINHWIN - eDeveloper's Window's window handler function

RETUDL - Return value handler

Usage Considerations

The eDeveloper distribution media contains sample C language programs that
may be called from eDeveloper using the Call User Proc operation. All the
necessary libraries for linking your function to eDeveloper’s User Procedure
facility are also provided on the distribution media.

Call COM

The Call COM operation lets an eDeveloper program call an ActiveX and OLE
COM object, which means that all available COM objects can now be accessed
from an eDeveloper application.

For information about Calling a COM object, see Chapter 15, COM Object
Support.

Call Remote

The Call operation defines the service, program, arguments, and properties
that will be executed when calling a program from a remote terminal. You
cannot use the Soap protocol to define service parameters from a remote
terminal.

Call Remote Operation Properties

Only the properties which are specific to the Call Remote operation appear
below.
Reference Guide 477

Wait

When a Call Remote command is encountered during runtime, the runtime
engine checks for a valid server, and then passes the requested command to
the eDeveloper RT requester. If the operation’s Wait property is set to No, or
evaluates to No, eDeveloper will continue. If the Wait property is set to Yes, or
evaluates to Yes, eDeveloper waits for the completion of the request or until a
time-out failure occurs. After the request has been completed, the variables
that were sent are recomputed, and the flow of the program continues.

Call Web Service

Purpose

Call Web Service lets you call a Web service by using the SOAP protocol.

Call Category

You must click the Call Category combo box to select the Web S option from
the list of Call categories.

Web Service Parameters

When you select Call Web S (Service) from the Operation column in the Record
Main section, you can only select a service that has been defined in the Service
Reference Guide 478

repository as a SOAP type. Double-click on the cell to the right of Web S. to
open the Web Service dialog box as shown in Figure 7-2.

The Web Service parameters are:

• Service - Select the Web Service defined as a SOAP type; for example,
Airport Temperature. You must define the SOAP server in the Server
repository before you can create a Web Service as a SOAP type.

• SOAP Action - eDeveloper displays the request identifier specified in the
Web Service Provider’s Web Service Description Language (WSDL).

• Style - You can select either the Remote Process Call or Document, as
described below:

Figure 7-2 : The Web Service Dialog Box
Reference Guide 479

• Remote Process Call - eDeveloper sends arguments to the remote
Web Service according to the argument types defined in the calling
task. A developer must send matching arguments according to the
types defined by the Web Service provider.

• Document - eDeveloper sends one argument as an outgoing XML
document and receives one incoming XML document as the
returned value of the call. A developer must generate these
documents according to accepted XML schemas, as described in the
Web Service Provider’s WSDL.

• Input XSD - Displays the file location of the Input XML Schema, a local
copy of the schema from the WSDL. This is relevant only for Document
style.

• Output XSD - Displays the file location of the Output XML Schema, a local
copy of the schema from the WSDL. This is relevant only for Document
style.

• Operation - Enter the method name as defined in the WSDL of the Web
Service Provider; for example, getTemperature. This field is for Remote
Process Calls.

• Name Space - A unique identifier for the service as defined in the WSDL;
for example, capeconnect:AirportWeather:com.
capeclear.weath. This field is for Remote Process Calls.

• Return Value - Enter a variable to receive the response returned from the
Web Service. If you have selected a Web Service operation from the WSDL
Call Web Service dialog box, described below, the data type appears next
to the Return Value field.

• Completed - Enter a boolean variable that indicates whether the Web
Service is completed.

• Fault - Enter a fault string that is returned when the Web Service fails.

You can click Assist to open the WSDL Assist dialog box, which is explained
below.
Reference Guide 480

WSDL Assist

The WSDL Call Web Service dialog box lets you update the Web Service fields,
described above, by selecting an operation from a WSDL file, as shown below
in Figure 7-3.

From the URL field, you can enter a WSDL file or click F5 to browse. When an
eDeveloper client is accessing a web server that requires a user name and
password, the URL should be HTTP://User:Password@[URL]. You can also use
secret names, for example:
HTTP://%user_secretname%:%pass_secretname%@[URL].

The operations in the WSDL file are displayed in the columns below:

• # - eDeveloper automatically generates an internal identifier.

Figure 7-3 : WSDL Call to a Web Service
Reference Guide 481

• Name - eDeveloper displays the Operation names entered in the WSDL file.
You can modify the name if the argument header is In or In/Out.

You can click History to display a list of called WSDL files.

After you have selected a current WSDL file or have entered the URL for a new
WSDL file, choose an operation and click Select to enter the values into the
Web Service dialog box.

WSDL Arguments

You can zoom from the Arg (Arguments) field to specify the WSDL argument
information listed below:

• Var - Zoom to select the variables or parameters for the argument.

• Exp - Zoom to create an expression that passes the argument when the
conditions are met in runtime.

• Description - Displays the WSDL argument description.

• Remote Name - You can specify the remote server.

• WSDL Name Space - You can specify the WSDL Name Space identifier.

• Xsd Type -You can specify the XML data type.

• Mode - Determines whether the WSDL argument is server input, output, or
input and then output.

• Header Information - When the Header Information check box is selected,
the argument data is sent in the SOAP header. If you do not want to send
the data in the SOAP header, you can delete the argument is displayed in
the SOAP header by clicking F3.

WSDL Assist Usage Considerations

• You can select only one operation. If no operation is selected, eDeveloper
updates the Web Service dialog box with the values from the first
operation.

• If you are updating values manually in the Call Web Service dialog box or
by selecting another Web Service operation in the WSDL Assist dialog box,
Reference Guide 482

eDeveloper displays a confirmation message to override the current Call
Web Service values.

Evaluate

Purpose

This operation executes an Action function by evaluating the specified
expression that comprises such a function.

The Actions are a special category of functions that perform an input/output-
related action every time eDeveloper evaluates them. Each Action returns a
logical value in the Return variable to report about success or failure in
execution.

Usage

The action functions are:

• Blb2File - saves a Blob object to a file.

• DbDel - deletes a database table.

• DbCopy - copies a database table.

• DbReload - loads a resident table during runtime.

• DDEGet - returns a string value from a DDE server.

• DDEPoke - provides the identifier of the DDE service.

• DDExec - transfers a command string from eDeveloper to a DDE server.

• Delay - causes a delay in processing.

• File2Req - sends file specifications to the requester.

• FileDLG - accesses a Windows Open File dialog and returns a file name.

• GetParam - accepts values passed as global variables to programs.
Reference Guide 483

• GroupAdd - assigns a user to a user group in the Security file from within
an application.

• INIPut - sets a property in the MAGIC.INI file. For more information refer
to Chapter 8, Expression Rules

• IOCopy - copies an I/O file.

• IODel - deletes an I/O file.

• IORen - renames an I/O file.

• KbPut - simulates keyboard entry, including short-keys, and to execute
System Actions.

• Logon - allows you to logon as a user to the current application.

• MAXMagic - maximizes the eDeveloper Window.

• MINMagic - minimizes the eDeveloper Window.

• MMStop - causes handling of a current running record to stop.

• MnuCheck - displays or hides a check mark in front of a menu entry.

• MnuEnabl - enables or disables a menu entry.

• MnuShow - hides or shows a menu entry.

• ResMagic - restores the eDeveloper window to normal size.

• RightAdd - assigns a Right to a user in the Security file from within an
application.

• Rollback - allows rollback of a transaction to a specified nesting level save
point.

• SetLang - sets the active language.

• SetParam - sets global variables.

• UDF - calls a User Defined Function.

• UserAdd - adds a user record to the Security file from within an application.

• VARSET - sets a variable to a given value.
Reference Guide 484

Additional information on the action functions can be found in Chapter 8,
Expression Rules.

Evaluation Operation Properties

Identification Number of the Expression

The expression number to be evaluated is required. Zoom to the Expression
Rules repository to select or define the function you want.

Name

After you select the expression, the first part of its text appears in the Name
property for display only.

Range

The Range property is irrelevant to the Evaluate operation and the insertion
point skips it.

Ret (for Return Code)

The Ret property is optional. It allows you to specify a variable that will receive
the return code indicating whether the action function included in the
expression succeeded or failed. At runtime, after execution of the Evaluate
operation, the variable specified in the Ret property will receive the value True
if the operation was successful, and the value False if the operation failed.

The Ret property will usually receive a Virtual variable. The Virtual variable
should be defined as Logical in the Local Variable repository.

Flow

This property is relevant only when you define the Evaluate operation in the
Record Main Operation repository of Online tasks. The purpose of the Flow
property is to allow you to make the execution of the operation dependent on
how the end-user moves the insertion point on the task’s main window.
Reference Guide 485

Cnd (for Condition)

This property contains a logical condition that controls whether or not the
operation is executed.

Usage Considerations

• The Evaluate operation is significant only if you define an action function in
the expression to be evaluated. Otherwise this operation is ineffective.

• Inside the expression you can combine as many action functions as you
need. If you do so, the Ret code of the operation will evaluate to True only
if all the action functions have succeeded.

Update
Output to assign a value to a variable.

Usage

• To place a particular value in a variable.

• To accumulate totals in reports and Online tasks.

• To update variables in Batch update tasks.

• When copying records between tables.

• To maintain data integrity, through the use of the non-abortable
incremental update.

Update Operation Properties

Variable Identifier Letter

The identification letter of the variable is required.
Reference Guide 486

It is the letter of the variable as it appears in the Variable list. This variable is
referred to below as the updated variable. It is possible to update variables
originating in ancestor tasks.

Name

After you have selected the variable, its name is displayed in this column.

Identification Number of the Expression

The Identification number of the expression is required. It is the number of the
expression as it appears in the Expression Rules repository. The result of this
expression will be posted to the updated variable.

The expression should be defined for either Normal or Incremental update
according to the guidelines explained in the following section on the property
How:

Update Expression for Normal Update

The expression value replaces the current value of the updated variable. For
example, if you want to keep accumulating the value of B into a sum in the
variable A, define A+B as the update expression.

Update Expression for Incremental Update

This method is intended to preserve data integrity when working with linked
files. The expression value increments the current value of the updated
variable, as explained below. Therefore the update expression must specify
only the increment value. For example, to increment the updated variable A by
the value in B, you must specify the expression: B, and not the expression:
A+B.

How: Normal (default)

The available values for the How property are:

• Normal - The updated variable is replaced by the evaluated value of the
update expression. This is the normal way to update a variable.

• Incr (for Incremental) - The incremental update is relevant only for Online
tasks. For Incremental, eDeveloper evaluates the update expression and
Reference Guide 487

adds this value to or subtracts this value from the updated variable
according to the following rules:

1. If the current mode of operation of the task is Create, eDeveloper
adds the value of the expression to the updated variable.

2. If the current mode of operation of the task is Modify, eDeveloper

subtracts the Olda value of the update expression from the updated

variable, then adds to it the Newb value of the update expression.

3. a) The Old value of the update expression means: the value resulting
from the update expression evaluated when the values of its
component variables are those present when the record is read.

4. b) The New value of the update expression means: the value resulting
from the update expression evaluated when the Update operation is
executed.

5. If the current mode of operation of the task is Delete, eDeveloper
subtracts the value of the update expression from the updated
variable.

6. If the updated variable is a variable selected within a link definition,
and if the link criteria are changed during the record interaction,
resulting in a new linked record being read, eDeveloper will still
maintain the integrity of data as follows: eDeveloper will decrement
the Old value of the update expression from the original variable of
the original linked record, and eDeveloper will increment the new
variable from the newly-linked records by the New value of the update
expression.

Example of Incremental Update Usage

Assume you have two files: a receive file, and a linked item file. You want to
update your stock count, which is kept in the Stock variable in the linked item
file by the amount of stock you receive, which is kept in the Quantity variable
in the receive file. Stock is variable A and Quantity is variable B. The Operation
is: Update A with Expression B in Incremental mode. If the contents of Stock
(A1) is 30 when you start, then:
Reference Guide 488

• In Create mode, if Quantity (B1)is entered as 5, Stock will end up (A2) as
35.

• In Modify mode, if Quantity (B1) is currently 5 and you modify (B2) to
equal 7, Stock will be 35-5+7=37, that is (A2)-(B1)+(B2) = A3.

• In Delete mode, if you delete the Receiving transaction record and it still
has 7 (B2) in the Quantity variable, stock will be 37-7=30, that is (A3)-
(B2)=(A4).

• Assume that you did not yet delete the record with Quantity = 7 and that
Stock = 37, and then you change the linked Item Record to another one
whose Stock = 50. The result will be: Stock of the original record will be
37-7=30 and Stock of the new linked record will be 50+7=57.

This special behavior of Incremental update saves you having to implement
additional procedures to preserve data integrity.

Undo: Yes (default)

The Undo property determines whether the Edit/Cancel F2 command is
available to the end-user after the execution of the Update operation.

When Undo is set to Yes, the end-user can Select Edit/Cancel after an Update
operation has been executed, to reset the current record dataview to its
original state and so cancel the effect of the update.

No. When Undo is set to No, Edit/Cancel is disabled after the Update
operation. The end-user cannot undo the changes made to the record
dataview at the task level of the updated variable.

- This hard update is generally used in the Record Suffix level, in cases where
resetting the updated variable to its original value could damage data integrity.
A typical case is when the operation is intended to change data in the record
dataview of a parent task. The Undo option set to N will prevent the user’s
canceling the parent record after the subtask’s records have already been
accepted.

- Just one Update operation with Undo = N in any one of the subtasks
updating the parent record dataview variable is sufficient to prevent the user
undoing the update.
Reference Guide 489

Flow

This property is available only when the Update operation is defined in the
Record Main Operation repository of an Online task. The purpose of the Flow
property is to allow you to make the execution of the operation block
dependent on the end-user’s interaction with the calling task’s main window.

The Flow property contains two columns, each containing a one letter code:

The first column specifies which task "Interaction Mode" conditions the
execution of the operation. Basically, Flow modes are related to the end-user's
insertion point movements. The default setting for Flow in Update operation is
C (for Combine). You can zoom from this first column to see (and optionally
set) all the available Flow Modes: Step, Fast, Combined (means Step and
Fast), Before and After.

The second column specifies which "Insertion point Direction" movement
conditions the execution of the operation. Its default setting for Update
operations is C (for Combine). Zoom from this column to see (and optionally
set) all the available Insertion point Directions: Forward, Backward and
Combine (which means Forward and Backward).

Cnd (for Condition)

The Cnd property contains a logical condition that determines whether the
operation execution occurs or is bypassed.

Usage Considerations

• Use the Update operation in the non-interactive levels of a task for all
levels except Record Main. Set Undo to N.

• The Update operation on real variables can be used only in the Record
level. Record data is not available in any other level, and should not be
updated directly.

• The Incremental Update operation is relevant for Online tasks only. In
Batch tasks, always use the Normal Update operation.
Reference Guide 490

• When you use the Incremental Update operation, always place it in the
Record Suffix Operation repository. This way, eDeveloper executes the
Update operation once and only once after the record has been edited.

• Use the Incremental Update operation to accumulate totals in parent task
or in variables of linked records. In these cases, set the Undo property to N
to prevent end-user cancellation of the parent records after the subtask
records have already been accepted.

• In general, variables selected from a linked file are affected by the Update
operation in the same way as variables selected from the main file. An
exception is the case where an Incremental Update operation is used in a
Modify Online task on variables selected from a linked table, where the link
expression changes while processing the record. In this case, the original
value of the linked variable in the previous record is decreased by the
original value of the update expression of the Update operation, and the
link variable in the new record is increased by the new value of the
expression.

For example, in an Online Order Entry program running in Modify mode, the
user may replace the customer number, which is used as a link expression to
the customer’s file in order to accumulate the orders’ total value. In this case
when eDeveloper executes the Update operation, eDeveloper subtracts the
total for the current (modified) order from the original customer record and
adds it to the new customer record, regardless of whether any other changes
in the order’s total value have been made.

• As a rule, do not use constants in the update expression for an Incremental
Update operation. When the task is in Modify mode, such constants are
canceled by the process of decrementing and incrementing. However, such
an expression will have full effect while the task is in the Create or Delete
mode. For example, the constant “1" may be used as the expression of an
Incremental Update operation, to keep count of the number of records in a
subtask’s dataview, where the count is held in a variable selected in a
parent task or from a linked file in the current task. As long as the subtask
is in Modify mode, no change will occur to the count, but when a record is
deleted from the subtask’s dataview or a new record is created in it, the
count will immediately be updated correctly.
Reference Guide 491

Comparison of Update Assignment with Init Assignment

Both the Update operation in Normal mode and the Init expression of the
Select operation can be used to assign a value to a variable. Sometimes they
work the same way.

However, there are important differences in their usage:

1. eDeveloper executes the Update operation when it encounters it. If
the operation is placed in the Record Main Operation repository, the
end-user causes the operation to execute by moving the insertion
point, refer to Chapter 5, Application Engine. If the Update operation
appears in the Record Suffix Operation repository, eDeveloper
executes it during the execution of the other Record Suffix operations.
In contrast, an Init expression is always computed and assigned.

2. A Normal Update expression is not recomputed and assigned when its
component variables change (procedural operation), while Init
expressions are recomputed and assigned as soon as their component
variables change (non-procedural operation).

3. An Update expression is evaluated in Create and Modify mode as well
as Query mode if the environment setting Allow update in query mode
is set to Yes, while Init expressions are assigned to Real variables only
if the task runs in Create mode.

Output Form

Purpose

Output Form writes a record to an output text file or to an output device
according to the layout specified in the related form. Since a report is an
output text file, and its layout is specified in a form, this operation is essential
for printing reports.

If the output form is an HTML Merge form, the operation merges data with an
independent Internet HTML template file. For more information on the HTML
Merge, see Chapter 10, Output Forms.
Reference Guide 492

Usage

• Production of reports

• Exporting user data in text format

• Communication with external Device drivers

• Merge data from an eDeveloper task with a predefined HTML template file
containing predefined eDeveloper merge tags.

• Include eDeveloper predefined tags into an HTML template developed
independently of the eDeveloper application.

• Implement the eDeveloper Web Online feature, using event handlers
activated on input fields on an HTML Merge form.

Output Form Operation Properties

Form Identification Number

The Output Form Identification Number property is required and shows the
Identification number of a Form in the Form list. The class of the form you
specify here must be greater than 0. The Form you specify is expected to
define the format of the output record. It can represent the layout of a text file
or an area of a report (Header, Footer, Page Header, Page Footer or Detail). To
specify the Output Form Identification Number, zoom to the Form list and
select the Form you want. Note that if you need to define a new form, you
must go to the Forms repository from Task/Forms or from the Forms toolbar
button.

Name

After you have selected the Output Form, its name is displayed in this column.

I/O Number

The I/O Number is required. It specifies the number in the I/O File list, of the
device to which you want to write the form. Its default setting is 1, the first
Reference Guide 493

device. For HTML Merge and Web Online Response forms, the I/O file must be
either a Requester or a Standard File.

The device you specify must have its Access property set to Write or Append in
the I/O File repository. The Access property of an I/O file used by an HTML
Merge form must be set to Write.

You can specify a device defined (that is, opened) in an ancestor of the current
task.

Zoom to the I/O File list and select the I/O File you want. If you need to define
a new I/O File, zoom from the I/O File list into the I/O File repository. For more
information on the I/O File repository, refer to Chapter 6, Programs.

Pag (for Page)

The End of Page Behavior property is relevant for reports to a Printer or
Console Media only. This property determines eDeveloper’s behavior whenever
an End of Page state occurs.

The End of Page (EOP) state occurs when the form about to be output is larger
than the space remaining on the current page. The page size, number of lines,
that eDeveloper uses for evaluating the EOP state is logical, and is not related
to the physical page size of any printer. You can use the Printer repository to
establish the relationship between the printer’s physical and eDeveloper’s
logical page sizes. This logical page size is determined either by:

• The Rows property of the I/O File associated with the Output Form
operation (refer to I/O File repository in Chapter 6, Programs).

If rows are not specified, then by:

• The Lines property specified for the printer associated with the I/O file
used for the current Output Form operation, refer to Chapter 2, Settings.

The End of Page state is cleared by the next Output Form operation that
causes a page jump. Output Form operations specifying Automatic or Top (see
below) clear the EOP state indicator.

Because eDeveloper allows simultaneous output to multiple I/O files and
output media, the End of Page state is specific for each device. Therefore, an
Reference Guide 494

End of Page state on one I/O file does not affect any Output Form operations
to other I/O files.

The Page property has three possible values:

• Auto (for Automatic) - This is the default. When Auto is specified,
eDeveloper jumps to a new page at the End of Page indicator, and then
automatically reprints all the header forms having the same class number
as the form printed by the current Output Form operation, and which
precede it in the Form repository. Header forms appearing after the
current one will not be printed at the top of the new page. Auto is the
normal choice for report programs.

• Skip - When Skip is specified, before printing the current form to the
output file, eDeveloper checks if there is sufficient space left on the
current page to accommodate the Form in full. If enough space is
available, eDeveloper writes the Form to the output media. Otherwise, it
skips the form and does not write it to the output media. Instead, the End
of Page state indicator is switched on. You can query this indicator with the
EOP function.

• Top - When Top is specified, eDeveloper issues a form feed to the printer
before sending the form for printing. This causes the form to be printed on
at the top of a new page. This is a way to force page breaks. In this case,
the headers are not automatically reprinted.

Note: It is up to you, as a developer, to define what action should be taken
based on an End of Page indicator. For example, you can force a page break,
using an Output Form operation with Top as its Page setting, and continue with
normal output.

When the End of Page indicator occurs, any further output of forms using Skip
mode will be ignored. Output with Skip mode will resume when the EOP state
is cleared.

Use the Skip mode for applications where you require complete control over
output. In such cases, you can condition Output Form operations based on the
EOP and Line functions.
Reference Guide 495

Flow

The Flow property is available only when you define the Output Form operation
in the Record Main Operation repository of an Online task. The purpose of the
Flow property is to allow you to make the execution of the operation
dependent on how the end-user moves the insertion point on the task’s main
window.

Cnd (for Condition)

The Condition property contains a logical condition that controls whether or
not the operation is executed.

Usage Considerations

• You can use the Program Generator to automatically generate a data
output program.

• The purpose of the Output Form operation is to handle external text files,
not eDeveloper DB tables.

• The external text file in the Output Form operation may be re-directed to a
console, a disk file, a printer, or a device driver, refer to the I/O File
repository in Chapter 6, Programs.

• When you design reports, you should define a separate Output Form
operation for each part of a report format, e.g., Headers, Footers, and
Detail lines. You can define Output Form operations for printing all parts of
a report in the task where the text output file is defined (in its I/O File
repository) or in any of its child tasks.

• To reset the EOP condition you must execute an Output Form operation
with its Page setting defined as Automatic or Top.
Reference Guide 496

Input Form

Purpose

To read a section from a text file or an input device and to load the contents
into variables defined in the related form.

Usage

Importing user data in text format.
Communication with external Device Drivers.

Input Form Operation Properties

Identification Number

The Input Form Identification Number property is required and shows the
identification number of a Form in the Form list. The class of the form you
specify here should be greater than 0. That is, you should not use the Form
number of the Main window of the task. To specify the form into which to read
the I/O file, zoom to the Form list and select the form you want. If you need to
define a new Form, zoom from the Form list into the Form repository. For more
information, refer to Chapter 10, Form Concepts.

Name

After you have selected the Input Form, its name is displayed in this column.

I/O File Identification Number: (default)

This I/O File Identification Number is required. It specifies the number of the I/
O file, as it appears it the I/O File list, from which you want to read. Its default
setting is 1.

The I/O file you specify must have its Access property set to Read or Direct.
Reference Guide 497

You can specify a file defined (that is, opened) in an ancestor of the current
task. If you need to define a new I/O file, zoom from the I/O File list into the I/
O File repository. Zoom to the I/O file list and select the file you want.

For more information, refer to Chapter 6, Programs.

Field Delimiting Method > Column

The Field Delimiting Method (Dlm) property defines how the fields of the input
record are delimited. The possible values are:

• Column - This is the default. When Column is specified, the input fields are
located in fixed columns without delimiter characters. The Form used in
the operation must match this layout exactly, including the spaces
between the fields in the record.

When you specify Column, the Char property that follows is irrelevant and the
insertion point skips it.

• Single - When Single is specified, the fields in the input record are
separated by a single delimiter, added after (to the right side of) each
input data item. For example, in the input record.

“123, ABCDE, -23.57”, the character comma (,) is used as the delimiter and
you will have to specify it in the Char property.

When you specify single, the spacing between fields in the form is not
significant.

• Double - When Double is specified, the fields in the input record are
separated by a double delimiter, one added before and one added after (to
the left and right sides of) each input data item. For example, in the input
record “123” “ABCDE” “-23.57”, the character Quote (“) is used as the
delimiter and it is specified as such in the Char property.

When you specify Double, the spaces between the fields in the file record and
those between the variables in the Form are not relevant.

The Input Form operation with a single delimiter automatically strips leading
and trailing double quotes from fields of the input file. For example, the
following input
Reference Guide 498

“A”,"B","C"

when read with the Input Form operation using ‘,’ (comma) as the single
delimiter character, will read the values A, B, and C, not “A”, “B”, “C”, into the
corresponding eDeveloper variables.

Chr

The Chr property contains the actual character used as the delimiter. This
property is available only when you set the Dlm property to Single or Double.

Flow

This property is relevant only when you define the Input Form operation in the
Record Main Operation repository of an Online task. The purpose of the Flow
property is to allow you to make the execution of the operation dependent on
how the end-user moves the insertion point on the task’s Main window.

Cnd (for Condition)

The Condition property contains a logical condition that controls whether or
not the operation is executed.

Usage Considerations

• You can use the Program Generator to automatically generate a data input
program.

• Side Effect: Loading data from an input text file into a variable that is part
of an Init or Link expression triggers their non-procedural recomputing.

• Be sure to specify a separate Input Form operation with a separate form
corresponding to each different record layout present in the input text file.

• When used in Batch tasks using the 0 Scratch file, you have to define an
End Task expression in the Task Properties dialog to terminate the
execution of the Batch task either when the input text file has reached its
end, using the EOF (End-of-File) function, or when a predefined number of
records has been read from the file.

• You can define a Form with multiple lines, to read an equivalent number of
physical records from the external input text file using one Input Form
Reference Guide 499

operation. Use this technique when you are copying data from an input
text file to create a DB table, and each row of the DB table is based on
data spanning several lines of the input text file.

• Each line in a form can have a maximum width of 9999 bytes. Thus, you
can use the Input Form operation to read input records containing up to
9999 bytes.

• The maximum Content Size of one Form, that is, the product of lines
multiplied by columns, is 32KB.

• The numeric fields of the input text file records may include minus signs,
commas and decimal points (edited numeric values).

• For each Input Form operation, eDeveloper will attempt to read from the
Input file records whose length equals the width of the form used with the
operation. If a line terminator appears before the Form Width number of
characters have been read, eDeveloper will terminate the Input Form
operation at this point. For more information about line delimiters in Input
files, refer to I/O Files in Chapter 6, Programs.

Browse

Purpose

To display a text file in a pop-up window and allow the end-user to scan or edit
the text file.

Usage

• To display messages stored in text files.

• To show or edit parts of text files.
Reference Guide 500

Browse Operation Properties

Identification Number of the Browse File Expression

The Identification Number of the Browse File Expression property is required.
It is the number of an expression in the Expression Rules repository that at
runtime returns a string with the name of the text file to be browsed. This file
name can contain a filename, including server and OS path.

Unlike the Output Form and Input Form operations, the I/O file for the Browse
operation need not be defined in the I/O File repository.

Name

After you have selected the expression, the first part of its text appears in the
Name property, for display only.

Edt: (for Browse File Edit) > Scn

The Edt (Browse File Edit) property specifies whether the user can scan only or
modify the text file. The possible values are:

• Scn (for Scan) - This is the default. When Scn is specified, eDeveloper
displays the text file for browsing (viewing) only.

• Edt (for Edit) - When Edt is specified, the end-user can edit the file by
utilizing the same Screen Editor you use to define Help Screens, refer to
Chapter 14, End-User Helps.

If you have specified Edt and the record of the text file does not fit into the
Form you defined to receive it, eDeveloper switches the Edit property to Scan
and displays an error message. This prevents the end-user from making
changes that cannot be saved properly.

Browse File Form Identification Number

The Browse File Form Identification Number property shows the Identification
number of a form in the Form list. This Form will be used for display of the
browsed file. The Form you specify for a Browse file must be of Class 0. If you
leave this property empty, eDeveloper uses the Main Form of the task as
default.

To specify the Browse File Form identification number, zoom to the Form list
and select the Form you want. If you need to define a new form, zoom from
the Form list into the Form repository, refer to Chapter 10, Form Concepts.

Locate

This property is irrelevant for the Browse operation and the insertion point
skips it.

Flow

The Flow property is available only when you define the Browse operation in
the Record Main Operation repository of an Online task. The purpose of the
Flow property is to allow you to make the execution of the operation
dependent on how the end-user moves the insertion point on the task’s Main
window.

Cnd (for Condition)

The Condition property contains a logical condition that controls whether or
not the operation is executed.

Usage Considerations

• The external text (I/O) file to be scanned or edited must be a disk file, not
redirected to any other device.

• When the Browse operation is activated, the external text file to be
scanned or edited must be closed, that is, not in use by any external
application, or other user on the network, or a parent task.

• The Browse operation is interactive, by definition. Even if it is used from
within a Batch task, the user can still interact with the Form window.
Reference Guide 502

Exit

Purpose

To execute an external program or a Batch/Command file at the Operating
System level. eDeveloper suspends the execution of the current task when it
encounters an Exit operation. When the external program or Batch/Command
file completes, eDeveloper resumes the execution of the task at the next
operation.

Usage

Executing processes outside the scope of eDeveloper and then returning to
eDeveloper; for example, branching to a Spreadsheet or a Word Processor.

Exit Operation Properties

Identification Number of the Exit Destination Expression

The Identification Number of the Exit Destination Expression property is
optional. It is the number of an expression in the Expression Rules repository
that a runtime returns a string containing the name of the Operating System
object to be executed. If you leave the default value, 0, you can specify the
Operating System object directly in the Name column.

Name

If you selected an expression in the previous property, the first part of its text
appear in the Name property and the insertion point skips it when you move
right.

If you left the expression property empty (value 0), you can type a string
containing the name of the Operating System object to be executed, specified
without quotes. This string is usually just the program name. The string can be
column width or to the maximum length allowed by the specific Operating
System. For example, DOS allows 128 characters.

Wait > No

The Wait property specifies if the eDeveloper program waits for the called
program to complete before it continues.

• No - This is the default setting. When No is specified, the eDeveloper
program will not wait for the called program to complete before
continuing.

• Yes - When Yes is specified, the eDeveloper program will wait for the called
program to complete before the eDeveloper program continues.

Shw (for Show) > Normal

The Show property determines the appearance of the external program. The
possible values of the Show property are Hide, Normal, Maximize, and
Minimize.

• Hide - Hide specifies that the external program will run behind the visible
windows. The external program will not be visible.

• Normal - Normal is the default setting. Normal specifies that the external
program will run in the top, visible window.

• Maximize - Maximize specifies that the external program will run in the top
visible window and that its window will be maximized to the full screen.

• Minimize - Minimize specifies that the external program will run minimized,
and that only its icon will be visible.

Note: When the external application runs hidden or silent it is advisable to
redirect standard output messages of the external program from the screen to
either a disk file or a null file.

Ret > (for Return Code)

The Ret property is optional. It allows you to specify a numeric variable that
will receive the return code from the Operating System of the executed
program. If the returned value is greater or equal zero, the external program
was successfully executed by eDeveloper, and the return code should be
interpreted according to the specifications of the operating system. If the
value returned is -1, eDeveloper could not allow execution of the external

program, usually because the wrong name or wrong path was specified, or
insufficient memory was available, or the command processor was not found.

When you specify a Ret property, make sure there is a Select Virtual operation
for the receiving variable. The Virtual should be defined as Numeric in the
Local Variable repository.

Flow

The Flow property is available only when you define the Exit operation in the
Record Main Operation repository of Online tasks. The purpose of the Flow
property is to allow you to make the execution of the operation dependent on
how the end-user moves the insertion point on the task’s Main window.

Cnd (for Condition)

The Cnd property contains a logical condition that determines whether or not
the operation is executed.

Raise Event
The Raise Event operation runs a handler that has been defined for a specific
event. This operation enables the user to force events through various
mechanisms during the flow of the eDeveloper engine. These events will be
handled the same way as other events generated by the system.

The interaction between an application and its components often requires
handlers from the host application. eDeveloper now lets components raise an
event by using the user event’s public name as specified in the host
application.

Raise Event Properties

The properties for the Raise Event operation are described below.
Reference Guide 505

Event Name

This property lets you define the type of event or trigger that is used in the
Raise Event operation. Zoom from the Name column to specify an event type
and name from the Event dialog.

The event types are:

• System - Events triggered by defined keystroke combinations.

• Internal - eDeveloper internal actions.

• User - Events defined in the User Events repository.

• Public Event - A selected expression number that represents the public
name of a user event. The expression must be a string attribute.

The Expose property must be selected in the User Events repository of the
main program in the host application to let programs from other compo-
nents call a user event handler from the host application. For more infor-
mation about the Expose property, see User Events on page 416.

Wait

The Wait property has three possible options: Yes, No, and Expression. This
property indicates whether the event handler or trigger should be performed
immediately or placed at the end of the event queue. The default setting is
Yes.

Wait=Yes

When a Raise Event operation is performed with the Wait property set to Yes,
it is similar to a Call operation, where the event handler is invoked before
executing the command following the Raise Event operation. The status of the
task cannot be changed, and the Force Exit property of the event that is raised
will be ignored.

The search mechanism also resembles a Call operation. When the operation is
performed with a handler that is executed in a parent task, the search for the
appropriate event handler will be undertaken with the parent handler’s task as
the current task. For example, if the parent task has a Task Scope handler on
Reference Guide 506

the event that was invoked by the Raise Event operation, the Task Scope
handler will be executed.

Wait=No

When a Raise Event operation is performed with the Wait property set to No,
the invoked event is written into the event queue, but is not performed
immediately. After the execution of the current handler is completed, and only
when the eDeveloper engine reads events from the queue, will it search for the
appropriate handler for the raised event, using the search mechanism outlined
above.

Wait=Expression

When the Wait property is set to an expression that is True, the handler or
trigger for the event will be performed immediately. If it returns False, the
invoked event is written into the event queue as described above.

Arguments

This property defines the arguments that will be sent to the event handler
once an event handler or trigger is invoked and is active regardless of whether
the Wait property is set to Yes or No. The argument field displays the number
of arguments passed from the raised event. The user can zoom from this field
to bring up the Argument list containing the following columns:

Var (for Variable) - The Var column is used to identify a variable or
expression to be passed to the subroutine, with the option to receive back data
from the subroutine. This method of passing an argument is called by-
reference. The other method, by-value, is explained below, under Exp.

Zoom to the Variable list to select a variable, or type the letter code of the
variable and go to the next variable. The letter code is displayed in this
column.

If you want to pass a constant value as an argument, skip the Var column and
move to Exp.

The Var column is skipped if an expression is already defined.

Exp - The Exp column is used to pass a constant value to the subroutine by
using an expression. This is the by-value method of passing an argument to a
Reference Guide 507

subroutine. Note that you cannot receive data back from the subroutine in this
property. The Expression number appears in this column and the Name
column shows the first section of the expanded expression text. You can zoom
to the Expression Rules repository to select an existing expression or to define
the expression you want to pass. The expression may evaluate to any valid
eDeveloper data type.

The Exp column is skipped if a variable is already defined as an argument.
Remove the variable identifier if you want to use an expression as an
argument instead.

Description - The description of the passed variable or expression.

Arguments can be sent to the Raise Event command only if the Wait property
is set to Yes.

Flow

The Flow property is available for the Raise Event operation in the Record
Main.

Cnd (for Condition)

The Cnd property contains a logical condition that determines whether or not
the operation is executed.

Destination Context Name Property

This property lets contexts communicate with each other on an enterprise
server by using handled events. You can specify the Destination Context Name
expression to raise the event in a specified context. The context name is
defined by using the CtxSetName function. Contexts are also able to share
resources by using shared values and database files.

This property is available for batch tasks only.
Reference Guide 508

Raise Public Event Runtime Behavior

When the Raise Public Event operation is executed, the expression defined for
the operation is evaluated. The evaluated string is regarded as the public
name of a user event. The public name is case sensitive.

eDeveloper automatically looks for a corresponding user event handler defined
with the user event public name in the runtime tree for the current task of the
task tree. eDeveloper searches for the handler from the current task up to the
main program of the top application. The corresponding handler that is found
will be executed.

No event will be executed when the Expose property is not selected or no
corresponding handler is found for the host application.

After the first corresponding handler is found and executed, the Propagation
property is selected. If the property is False, the handling of the event is
completed. If the property is True, eDeveloper will propagate the user event.
The Propagation property does not use the event’s public name but the
reference to the actual user event as specified in the User Events repository.
Reference Guide 509

Expression Rules 8
xpressions may include literals, operators, variables, and special
functions.

In this chapter:

• eDeveloper Expressions Overview

• Function Tables

• Alphabetical Directory of Functions

E

Reference Guide 510

Literals
Numeric values are written without any special identification. For example,
123 and 15.52 are numeric literals.

Literals other than numeric values are treated as alpha strings, and are
normally enclosed within single quotes. All alpha strings, except for plain text,
include a literal code that identifies the type of the data enclosed within the
single quotes. The literal code, however, is itself not enclosed in quotes, and
immediately follows the string to which it refers. For example ‘abcd’ is treated
as plain text, while ‘01/01/92’Date is treated as a date.

eDeveloper translates literal strings into an eDeveloper internal representation
while it parses an expression containing the string. At runtime eDeveloper
uses the actual internal values for expression evaluation. As internal values,
eDeveloper keeps track of any changes that may occur to the values
represented by the literals.

For example, the string ‘1’FILE represents the first entry in the Table
repository. If a new entry is inserted before the first entry, causing it to
become the second entry, eDeveloper will automatically update the literal
string to read ‘2’FILE. This will preserve the original meaning of the
expression.

Another use of literals is to improve portability of the eDeveloper program
from one natural language environment to another. For example, it may be
desirable for the task mode mnemonic ‘MCDQLRUSFOE’ to have different
meanings in different languages. By specifying the MODE literal as in
‘MCDQLRUSFOE’MODE eDeveloper will automatically translate the valid task
modes within the string to their appropriate values in the specified target
language.

Literals make expressions more robust and less susceptible to unintentional
damage due to changes in other parts of an application.

Following is the list of available literal codes:

ACT Example: ‘Exit’ACT
Reference Guide 511

The string is interpreted as an eDeveloper action identifier. Actions are the
instructions that eDeveloper received as a result of a user interaction. Actions
are generated by translations of key strokes through the Keyboard Mapping
repository. The eDeveloper actions can be used in expressions for purposes of
testing user activity, and creating macros. Action names can be seen in the
settings/keyboard mapping action column. These names should be used in the
action string. It is enough to type the first few characters of the action
descriptor and eDeveloper will complete the literal. In cases of ambiguity, type
more letters.

Date Example: ‘01/01/97’Date

The string is interpreted as a date. It may participate in arithmetic operations
because its internal representation is of a numeric value. ‘01/01/97’Date+14 is
a valid expression which yields the date 15/01/97.

The Century entry in the Environment repository affects results of Date
actions. ‘01/28/97’Date will be interpreted as a date in 1997 if Century
contains a year greater than 1892 and less than or equal to 1997, and it will
be interpreted as a date in 2097 if Century contains a year greater than 1997
and less than or equal to 2097. eDeveloper expands year values to a full four
digit equivalent. Refer to Chapter 2, Settings for a full discussion of
Environment settings.

EXP Example: '3'EXP

Declares the string as an expression identifier. Used as input with the ExpCalc
function. The EXP literal will allow any relocation of the expression it
represents.

FILE Example: ‘1’FILE

The string is interpreted as the sequence number of a data table in the Table
repository. The use of the FILE literal enables eDeveloper to update the table
number as its relative position changes within the Table repository. ‘5’FILE
refers to the fifth line in the Table repository at the time of creation of the
entry. eDeveloper will automatically maintain the correct number.
Reference Guide 512

FORM Example: '2'FORM

Declares the string as an identifier of a specific form defined in the forms
repository. Used as input in the Main Display property of a task in order to
dynamically display a different form. The FORM literal will allow any relocation
of the form it represents.

HEB Example: HEB’xx‘

The string is processed as a Hebrew string with a right-to-left orientation in
every process it participates in. If assigned to the display, it receives a Hebrew
attribute.

KBD Example: ‘F2’KBD

The string is interpreted as a keyboard value. Keyboard values are the raw
input to eDeveloper. The keyboard values are translated to actions according
to the keyboard mapping repository. The same key may generate several
different actions according to context. KBD values may be used in expressions
for the purpose of testing user input and creating macros. KBD names can be
seen in the assigned key column of the settings/keyboard mapping. These
names should be used in the strings KEY.

KEY Example: ‘5’KEY

The string is interpreted as the sequence number of an index in the Index
repository. The use of the KEY literal enables eDeveloper to update the index
number as its relative position changes within the Index repository. ‘5’KEY
refers to the fifth line in the Index repository at the time of creation of the
entry. eDeveloper will automatically maintain the correct number.

LOG Example: ‘TRUE’LOG

The interpreted value of the string is either True or False (1,0 respectively).
The allowed strings are ‘TRUE’LOG and ‘FALSE’LOG. Any other string with the
LOG literal will be converted to ‘FALSE’LOG.
Reference Guide 513

MODE Example: ‘MC’MODE

The string is treated as a task operation mode. The available modes are all the
valid entries for the Initial Mode field in the Task Properties repository. When
an eDeveloper program is ported to another natural language environment,
the MODE literal can be used to preserve meaningful mnemonics in the new
language.

Prog Example: ‘5’Prog

The string is interpreted as the sequence number of a program in the Program
repository. The use of the Prog literal enables eDeveloper to update the
program number as its relative position changes within the Program
repository. ‘5’Prog refers to the fifth line in the Program repository at the time
of its creation. eDeveloper will automatically maintain the correct number.

Right Example: ‘Right #4’Right

Declares the string as a rights identifier. Used as input with the Rights
function, allowing you to query whether a user has the given right.

If the developer does not own a right, its literal will appear.

Time Example: ‘14:30:15’Time

The string is interpreted as a time value. It may participate in arithmetic
operations since its internal representation is a numeric value.
‘14:30:15’Time+5 is a valid expression. Values added to a time value are
treated as seconds.

VAR Example: ‘A’VAR

Declares the string as a variable identifier. Used as input with the VarAttr,
VarCurr, VarMod, VarName, VarPrev, and VarSet functions. The VAR literal will
allow any relocation of the variable it represents due to selection of other
variables.
Reference Guide 514

Operators
In eDeveloper expressions, you can use mathematical, logical, and string
operators.

Mathematical Operators

Logical Operators

All expressions involving logical operators return a logical True or False.

+ addition

- subtraction

* multiplication

/ division

^ exponentiation

-() unary negation; changes the sign of a
numeric expression

= equal to

<> different than (not equal to)

<= less than or equal to

< less than

> greater than

>= greater than or equal to

AND Returns True only if both operands are True.

CASE Switches between values.

IF Evaluates a logical expression and returns one
value if True (Then) and another if False (Else).
Reference Guide 515

String Operator

Use the & symbol to concatenate alpha strings. For example, ‘John’&‘Smith’
yields ‘JohnSmith’.

Variables
An expression may contain variables. Variables are real and virtual variables
selected in the current task and its ancestors. Variables are identified by an
alphabetical code representing their position in the program hierarchy (where
A is the first selected variable, B the second selected variable, BA the 27th
selected variable, and so on). Variables created in a parent task are listed prior
to variables in the current task. The variable identifier can be selected from the
Variable list window always open when editing an expression.

When evaluating an expression, eDeveloper replaces the variable’s code with
its value. Therefore, the variable represents a value. eDeveloper will
automatically update the variable code in an expression if the variable was
relocated.

If in an expression a variable is required and not the value it represents, the
VAR literal should be used to indicate to eDeveloper the proper use of the
variable identifier.

IN determines whether a selected value matches
any value in a given collection of values.

LIKE Determines whether a given character string
matches a specified pattern.

MOD modulus; returns the remainder of an integer
division. For example, A MOD B returns 3 if
A=13 and B=10.

NOT reverses the logical value of its operand

OR returns True if either operand is True
Reference Guide 516

Functions
Functions perform specialized operations such as setting conditions,
converting and manipulating data, accessing eDeveloper fields, returning a
result, or performing certain actions.

The tables following the Dynamic Data Exchange section list eDeveloper
functions according to the following subjects: Action, Alpha/Numeric
Conversion, Alpha Strings Manipulation, Application Partitioning, Comparison,
Database Interface, Date, DB Table Management, Dynamic Data Exchange,
Identification and Environment, I/O Functions, Language, Mathematics and
Trigonometry, Menu, Numeric Value Manipulation, Specialized Test, Time, User,
Variable Value Manipulation, and View functions.

The last section of this chapter beginning on page page 553 is a complete
alphabetic reference to all eDeveloper functions.

Dynamic Data Exchange

DDE implementation in eDeveloper uses the DDEML.DLL that is supplied with
Windows 95 and Windows NT. It will not work with earlier versions of Windows.
This DLL must be present in the Windows System directory.

eDeveloper’s DDE implementation is done through eDeveloper functions.
Every function initiates a complete DDE conversation, and terminates the
conversation before it returns. This means that the DDE exchange is a “cold”
exchange and it is always initiated by eDeveloper. eDeveloper will not be
aware of changes made by other applications and applied to data eDeveloper
obtains via a DDE exchange.

The DDE server application must be online for eDeveloper to communicate
with it. Trying to access a DDE server from eDeveloper without the server
being online will not cause the server to load, and the operation will fail.

The DDE servers do not get focus when accessed by a client application.
Therefore, if the eDeveloper DDE functions cause an error in the server
application, the server application will respond by issuing an error dialog, this
dialog will not get focus, and the eDeveloper DDE operation will time-out and
fail.
Reference Guide 517

The eDeveloper DDE functions are synchronous. This means that eDeveloper
will wait to receive the result of the DDE operation before it continues
processing.

Note that DDE functions are not portable. They can be used only under
Windows. If you attempt to execute DDE functions under a different operating
system DDEGet will always return empty strings; DDEPoke and DDExec will
always return False; and DDERR will always return code 15, meaning that a
DDE function was executed on an operating system other than Windows.

Buffer Management

A buffer is a BLOB variable containing a stream of binary data. Buffer
management functions let you manipulate the position, size, storage, and
length of the supported data types in the buffer.

A buffer can be a bundle of data, such as Alpha, Numeric, and Date values. All
data types must begin in a specified position with a selected storage type to
create a valid structure.

It is best to use the BufSetCnvPrm function before handling buffers. Various
programs and components can change the buffer conversion settings. The
BufSetCnvPrm function resets the conversion settings to their default values.

Vector Data

The eDeveloper Vector is an array that lets you store and retrieve data from a
specified cell index. The Vector attribute is based on the BLOB attribute with
an additional cell model property.

The Vector cell must be specified from an eDeveloper field model, as defined in
the Models repository. The model can be any field data attribute: Alpha,
Numeric, Logical Data, Time, Memo, BLOB, OLE, ActiveX, or Vector.

Vector indexing starts from one. The Vector attribute can only be selected from
Virtual and Parameter fields. You cannot directly store vectors in a table.
Reference Guide 518

Recursive vector definitions are not supported. You cannot put a Vector
variable on a GUI or Browser form. It is not recommended to store large
amounts of data in a vector because the array is stored in the computer’s
memory.

You can access and modify the vector cells by using the vector functions
described in this chapter.

XML Namespaces

You can use the XML functions when the Namespace Awareness mode is
activated or not activated. If no prefix is specified for an element, the
Namespace Awareness mode is not activated.

In the Namespace Aware mode, you should specify a prefix (namespace alias)
for an element. For each I/O file, an association between an alias and URI is
kept internally. For an XML file read by eDeveloper, an association between the
alias and namespace URI is created for elements with a namespace. The
XMLGetAlias function retrieves the alias related to a specific URI. The
XMLSetNS function defines the association between an alias and URI.

The prefix can be specified for each element in the element path. In the
Namespace Aware mode, each non-prefixed element is compared according to
the default namespace URI.

For example, in element path a.al1:b.c.al2:d

• Root element a has no prefix

• Element b has alias, al1

• Element c has no prefix

• Element d has alias, al2

To deactivate the Namespace Aware Mode, do not specify a prefix for any
element in the element path.
Reference Guide 519

XML Namespace Examples

Read XML

This section shows how to use the XML functions to read an XML file with a
namespace.

XML file:
<? xml version="1.0" encoding="UTF-8" ?>
<person ID="123" xmlns="http://server/person">
 <name>John Doe</name>
 <gender>male</gender>
</person>

When opening the XML I/O file, the following associations will exist between an
alias and an Namespace URI:

Create New XML

This section shows how to use the XML functions to generate an XML
document with a default namespace.

<? xml version="1.0" encoding="UTF-8" standalone="no" ?>
<person ID="123" xmlns="http://server/person">
 <name>John Doe</name>

Alias URI Remarks

http://server/person Default namespace

Update var1 XMLGetAlias(0,1,'http://server/person') Var1 is updated with an empty
spring.

XMLGet(0,1, 'person.name','') retrieves the name, "John Doe"
(non-namespace aware mode)

XMLGet(0,1, Trim(var1) &':person.name','') retrieves the name, "John Doe"

XMLGet(0,1, 'person.'&Trim(var1) &':name','') retrieves the name, "John Doe"

XMLGet(0,1, ':person.name','') retrieves the name, "John Doe"
Reference Guide 520

 <gender>male</gender>
</person>

XMLSetNS(0,1, '','http://server/person')
XMLInsert(0,1,'person','','')
XMLInsert(0,1,'person','ID','123')
XMLInsert(0,1,'person.name','','John Doe')
XMLInsert(0,1,'person.gender','','male')

Note: replacing person with :person should produce the same result.

Modifying an XML document

This section shows how to use the XML functions to modify a namespace.

XMLModify(0,1,'person.name','','New name') (non-namespace aware mode)

or

Update var1 XMLGetAlias(0,1,'http://server/person')
XMLModify(0,1,Trim(var1) & ':person.name','','New name')

Using a Wrong Alias

XMLSetNS(0,1,'al2',' http://server/another_person')

When the Wrong Alias is Used

XMLModify(0,1,'al2:person.name','','New name')
this function call fails, displaying the returning error code -4, Element path
not found.

When an Alias is Not Associated with a Namespace URI

XMLModify(0,1,'al3:person.name','','New name')
If al3 is not associated with a namespace URI, this function fails, returning
error code -4, Element path not found.
Reference Guide 521

Summary of XML Functions

eDeveloper XML functions are:

XMLBlobGet Returns the value of an XML element or an XML
attribute according to its element path.

XMLCnt Returns the number of occurrences of an XML element
or an XML attribute according to its path.

XMLDelete Lets you delete an XML element or attribute according
to its path.

XMLExist Returns a True value if an XML element or an XML
attribute can be located by the XML’s element path.

XMLFind Returns the index of an XML element that has a value
equal to a specified value or if one of its attribute values
is equal to the specified value.

XMLGet Returns the value of an XML element or an XML
attribute according to its element path.

XMLGetAlias Retrieves the alias associated with a namespace Uni-
form Resource Identifier (URI) for the root element.

XMLInsert Lets you insert an XML element or attribute value in a
specified path.

XMLModify Lets you modify an XML element or attribute according
to its path.

XMLSetNS Lets you create an association between an alias and a
namespace.

XMLStr Converts valid XML string into an Alpha string.

XMLVal Converts a string value into a valid XML string.
Reference Guide 522

XML General Error Codes

XML general error codes are displayed in the table below.

Function Summary

Error
Code

Description

-1 Invalid I/O file

-2 Inserted element or attribute alias is not defined

-3 I/O file not opened in Write mode

-4 Element path not found

-5 Attribute not found

-6 Attribute already defined for element

-7 Invalid Before/After flag

-8 Reference element not found

-9 The document contains a root element. Multiple roots not
permitted

-10 Invalid auto convert flag

-11 Invalid path, non-valid index

-12 Alias already used

-13 Invalid alias, qualified name

-14 Invalid argument type (for an optional argument)

-20 Invalid XML file (XML parsing failed)

BASIC see Mathematical Operators, page page 515, and Logical
Operators, page page 515.

Compound Storage

Function Description
Reference Guide 523

BlobSize Returns the BLOB size in bytes.

BufGetAlpha Converts a value stored in a certain position
in a buffer to an Alpha string.

BufGetBit Returns the value of a bit for a specified
byte position in a BLOB buffer.

BufGetBlob Converts a value stored in a specified
position in a buffer to an eDeveloper BLOB.

BufGetDate Converts a value stored in a specified
position in a buffer to an eDeveloper Date
value.

BufGetLog Converts a value stored in a specified
position in a buffer to an eDeveloper logical
value.

BufGetNum Converts a value stored in a specified
position in a buffer to an eDeveloper
Numeric value.

BufGetTime Converts a value stored in a specified
position in a buffer to an eDeveloper time
value.

BufGetVariant Retrieves a variant value stored in a
specified position in a buffer.

BufGetVector Converts a value stored in a specified
position in a buffer to an eDeveloper vector
value.

BufSetAlpha Converts an Alpha, Memo, or RTF string
variable to one of the supported storage
types.

BufSetBit Sets the value of a bit in a byte stored in
the BLOB buffer.

BufSetBlob Converts a BLOB variable into one of the
supported storage types at a specified
position in the buffer.

Compound Storage
Reference Guide 524

BufSetDate Converts an eDeveloper date to a binary
value in a specified position and storage
type in the buffer.

BufSetLog Converts a logical value into one of the
supported storage types at a specified
position in the buffer.

BufSetNum Converts an eDeveloper number into one of
the supported storage types at a specified
position in the BLOB buffer.

BufSetTime Converts an eDeveloper Time value into
one of the supported storage types at a
specified position in the buffer.

BufSetVariant Inserts an variant value into a specified
position in a buffer.

BufSetVector Converts an eDeveloper Vector value into
one of the supported storages at a specified
position in the buffer

SetBufCnvParam Sets parameters that determine the writing
and reading conversion values to and from
the buffer.

VariantAttr Retrieves the eDeveloper attribute
corresponding to the variant data type.

VariantCreate Creates a variant according to the specified
value of an eDeveloper data attribute.

VariantGet Retrieves the value of a specified variant
data type.

VariantType Retrieves the variant data type’s storage
type identifier.

VecCellAttr Returns the vector's cell attribute.

VecGet Returns the value of a specified cell.

Compound Storage
Reference Guide 525

VecSet Updates the value of a selected cell with a
given vector.

VecSize Returns the number of cells for the given
vector.

Conversion

Function Description

ANSI2OEM Converts data from ANSI to OEM.

Blb2File Saves a BLOB object to a file.

DStr Date-to-string conversion.

DVal String-to-date conversion.

EuroCnv Returns the converted value from currency
to currency based on the conversion values
of the Euro currency in the European
Currency table.

File2Blb Saves a file to a BLOB object.

File2OLE Moves a file to an OLE variable.

HStr Converts decimal to hexadecimal.

HVal Converts hexadecimal to decimal.

Lower Returns a string in lowercase.

MStr Converts number to alpha (any format).

MVal Converts alpha to number (any format).

OEM2ANSI Converts data from OEM to ANSI.

TStr Translate a time value to an alpha
character.

Compound Storage
Reference Guide 526

TVal Alpha to time conversion.

Upper Returns a string in uppercase.

UTF8FromAnsi Converts data encoded in ANSI to UTF8.

UTF8ToAnsi Converts data encoded in UTF8 to an ANSI
string. This function uses code pages
defined in the CodePage function. If you are
not using the CodePage function, the
default OS code page is used in a similar
way as with Java functions.

Val Convert an alpha character to a number.

Database

Function Description

ClrCache Clears the database of the current task

CurrPosition Returns the internal position of the current
record

DbCache Returns the database cache hit ratio

DbCopy Copies an existing data file to a new file.

DbDel Deletes an eDeveloper table

DbDiscnt Disconnects the current database
connection.

DbERR Returns and clears a database error
message.

DbExist Checks existence of the Database
repository.

DbName Database table name.

Conversion
Reference Guide 527

DbRecs The number of rows in the Database
repository.

DbReload Loads a resident table during Runtime

DbRound Database round function for SQL
databases.

DbSize Returns the database table size.

ErrDatabaseName Returns the name of the database on which
the error has occurred

ErrDbmsCode Returns the DBMS original error code

ErrDbmsMessage Returns the DBMS original error message

ErrMagicName Contains the eDeveloper literal of the error
that occurred

ErrPosition Refers to the internal position of the record
on which the error occurred

ErrTableName Returns the physical name of the table on
which the error has occurred

InTrans Evaluates if a transaction is currently
open.

MTblGet Retrieves the content of a memory table
as a BLOB variable.

MTblSet Creates records in a memory table where
a BLOB variable is used as the table’s
content.

Rollback Allows rollback of a transaction to a specified
nesting level save point

TransMode Provides information about the current
active transaction.

Database

Function Description
Reference Guide 528

ViewMod Checks whether records were changed
since the last save.

Date and Time

Function Description

AddDate Performs calculation on date

AddTime Performs calculations on a time variable.

BOM Returns start date of month specified

BOY Returns end date of year specified

CDOW Name of the day (e.g. Sunday) from date

CMonth Name of the month (e.g. January) from date

Date System date

Day Day of month (1-31) from date

DOW Number of the day of the week (1-7) from
date

DStr Date-to-string conversion

DVal String-to-date conversion

EOM Returns date of end of month specified

EOY Returns date of end of year specified

Hour Returns the hour portion of the time value.

MDate Returns the Magic date as input in logon
screen

Minute Returns the minute portion of the time
value.

Month Month of a date expression (1-12)

Database

Function Description
Reference Guide 529

mTime Retrieves the time value in milliseconds
from midnight to the current time.

mTStr Converts a time value in milliseconds to a
specified Alpha string picture format.

NDOW Converts the number of the day to the name
of the day

NMonth Converts the number of the month to the
name of the month

Second Returns the second portion of the time
value.

Time Returns the system time.

TStr Converts the time value to an alpha string.

Year Returns the year of a date (0000-2999)

Enterprise Server

Function Name Description

CtxGetAllNames Returns the names of all open contexts on
the server engine where the function is
evaluated.

CtxGetId Retrieves the context identifier by a defined
context name. You can define a name for a
context identifier by using the CtxSetName
function for a specific context.

CtxKill Removes a context from the active context
list.

CtxLstUse Returns the number of seconds since the last
activation of a context.

Date and Time

Function Description
Reference Guide 530

CtxNum Returns the number of active contexts that
are currently defined in an enterprise server.

CtxProg Returns the public name of the top-level
program of the context.

CtxSize Returns the size of the context.

CtxStat Returns the status of a context.

DiscSrvr Disconnects the server

File2Req Sends a file specification to the requester

GetParam Gets parameters

RqCtxInf Returns an information string of a given
context identified by the context ID.

RqCtxTrm Terminates a specified context.

RqExe Requests a MRB to load a new copy

RqHTTPHeader Sets the required HTTP Header information
for the returned result of the HTTP result of a
batch program.

RqLoad Requester load

RqQueDel Requester queue delete

RqQueLst Requester queue list

RqQuePri Requester queue priority

RqRtApp Requester runtime application information

RqRtApps Requester runtime applications

RqRtCtx Returns the information of a given context
entry of a given service or server name.

RqRtCtxs Loads the information of all of the opened
contexts of the enterprise server.

Enterprise Server

Function Name Description
Reference Guide 531

RqRtInf Requester runtime information

RqRts Requester runtime

RqRtTrm Terminates all enterprise servers associated
with a requester.

RqRtTrmEx Terminates all enterprise servers associated
with a requester by a graceful timeout.

RqStat Request status.

RqTrmTimeout Retrieves the remaining number of seconds
before the server termination occurs.

SharedValGet Retrieves a shared value according to its
name. A shared value is a value stored in the
memory of the eDeveloper process. Once
created, this value can be retrieved by all
active contexts and new contexts.

SharedValSet Creates a shared value, which is a value
stored in the memory of the eDeveloper
process. Once created, this value can be
retrieved by all active contexts and new
contexts.

Text Tests for the server background mode.

WSAttachmentAdd Attaches a BLOB variable to a web service
message.

WSAttachmentGet Retrieves an attachment by web service.

Environment

Function Description

Enterprise Server

Function Name Description
Reference Guide 532

ANSI2OEM Converts data from ANSI to OEM.

IniGet Query Magic.ini file.

IniGetLn INIT File Get Value.

OEM2ANSI Converts data from OEM to ANSI

OSEnvGet This function returns an alpha string
containing the value of the variable. If the
variable is not set, an empty string is
returned.

OSEnvSet This function sets the value of an operating
system environment variable. The duration
of this setting is until the eDeveloper
process terminates.

ParamsPack Packs a collection of global values that
have been set by the SetParam function
into a BLOB variable. The BLOB variable
can be transmitted to another engine
context or process to recreate the global
values by using the ParamsUnPack
function.

ParamsUnPack Unpacks the global values from a BLOB
variable created by using the ParamsPack
function and sets them for the current
engine context.

Pref Returns the application prefix from the
Application repository, including the path.

SetLang Selects the active language.

SharedValPack Packs a collection of shared values, set by
the SharedValSet function, into a BLOB
variable. The BLOB can be transmitted to
another process to recreate the global
values by using the SharedValUnpack
function.

Environment
Reference Guide 533

SharedValUnPack Creates shared values, retrieved by the
SharedValGet function, from a BLOB value
created by using the SharedValPack
function.

Sys Returns the name of the application as it
appears in the Name column of the
Application repository.

Term Returns the terminal number as specified in the
Environment table.

Integration

Function Description

BlobFromBase64 Decodes a BASE-64 BLOB variable to a
regular eDeveloper BLOB.

BlobToBase64 Converts an eDeveloper BLOB to a BLOB
variable encoded in the BASE-64 algorithm.

XMLBlobGet Returns the value of an XML element or an
XML attribute according to its element path.

CallDLL Enables a dynamic call to a DLL

CallDLLF Call to an external Fastcall function.

CallDLLS Call to an external Stdcall function.

CallJS Calls an external Java Script function that
can be used for the browser task interface.

CallOBJ Calls an external method of an object that
can be used for a browser task interface.

CallProgURL Calls a URL designated by an eDeveloper
program that resides on an enterprise
server.

CallURL Calls a URL through the Evaluate operation
in a browser task.

Environment
Reference Guide 534

Cipher Encrypts a buffer containing a BLOB.

ClipAdd Adds a value and its picture to the clipboard
for operating systems that support clipboard
functionality.

ClipRead Lets you display the contents copied to the
clipboard in CF_Text format.

ClipWrite The function places the buffer created by the
ClipAdd function into the clipboard by using
the CF_Text clipboard format.

ClientCertificateAdd Lets you define a certificate that will be sent
for subsequent Call Web Services and HTTP
Post and Get calls.

ClientCertificateDiscard Lets you remove a client-side digital
certificate from the list of certificates. Client-
side digital certificates verify the identity of
the user for highly secure Web applications.

COMError Retrieves information of the last error that
occurred when eDeveloper interacted with a
COM object.

COMHandleGet Retrieves the handle of a loaded COM object.
This handle can be stored as a numeric
value.

COMHandleSet Lets you refer to an object, previously
loaded from a COM object field, using a
handle number returned by the
COMHandleGet function.

Integration
Reference Guide 535

COMObjCreate You can manually create an instance of a
COM object based on a Select operation that
defines the object's details. The
ComObjCreate function can be executed only
for an ActiveX or OLE variable that has the
Stored Data control property set to
Reference.

COMObjRelease Releases a COM object loaded by the
COMObjCreate function or called by the Call
COM operation.

DDEBegin Creates a session.

DDEEnd Terminates a session.

DDEGet Returns a string value from a DDE server.

DDEPoke Transfers a string from eDeveloper to the
DDE server.

DDERR Retrieves the last error that occurred during
an eDeveloper DDE conversation.

DDExec Transfers a command string from eDeveloper
to the DDE.

DeCipher Converts an encrypted buffer to a buffer
containing an Alpha string or a BLOB.

DragSetCrsr Determines whether the cursor file is defined
as Copy mode or as None mode.

DragSetData Determines the data content and format for
a control that is not defined for automatic
data handling. This function also lets you
assign the data content to a different data
format.

DropFormat Checks that the defined data format is
supported for the Allow Dropping property.

Integration
Reference Guide 536

DropGetData Retrieves the data from the drag and drop
operation by the defined format.

DropMouseX Retrieves the Mouse Cursor X coordinate
relative to the current form at the time the
dragged data value is dropped on a form or
control.

DropMouseY Retrieves the Mouse Cursor Y coordinate
relative to the current form at the time the
data value is dropped onto a form or control.

HTTPGet Retrieves the returned HTML result of an
HTTP request as a BLOB object.

HTTPLastHeader Retrieves the value of an HTTP header entry
from the entry name. The function queries
the HTTP header information received from
the last HTTP retrieval from the HTTPGet or
HTTPPost functions.

HTTPPost Posts information via an HTTP message and
returns an HTML\XML result of the HTTP
request as a BLOB object.

LDAPError Returns the last error message from the
LDAP server. The function scope is per
context.

LDAPGet Retrieves the user information stored in a
Lightweight Directory Access Protocol
(LDAP) operating system directory.

MailBoxSet Switches to another mailbox connected to
the IMAP mail server.

MailConnect Opens a connection to a mail server.

MailDisconnect Closes a connection to an email server.

Integration
Reference Guide 537

MailError Translates a given mail error code that has
been returned from one of the functions
described above to a readable error
message.

MailFileSave Saves a message attachment to a file on a
disk.

MailLastRC Retrieves the most recent error message
that occurred when using any of the mail
functions.

MailMsgBCC Retrieves the BCC string of the selected mail
message.

MailMsgCC Returns a comma-delimited string of all the
CC addresses.

MailMsgDate Retrieves the date and time information of
the selected mail message.

MailMsgDel Deletes a message from the server mailbox.

MailMsgFile Returns the file name of the specific
attachment of the message.

MailMsgFiles Returns the number of attachments of the
message.

MailMsgFrom Returns the address from which the message
was sent.

MailMsgHeader Retrieves the header information of the
selected mail message.

MailMsgId Returns the email message identifier.

MailMsgReplyTo Retrieves the reply to string of the selected
mail message.

MailMsgSubj Returns the subject string of the message.

MailMsgText Returns the body text string of the message.

Integration
Reference Guide 538

MailMsgTo Returns a comma-delimited string of all the
main addresses to which the message is
sent.

MailSend Used to send an email

UDF Calls a user defined function.

WSAttachmentAdd Attaches a BLOB variable to a web service
message.

WSAttachmentGet Retrieves an attachment received by a web
service.

XMLBlobGet Returns the value of an XML element or an
XML attribute according to its element path.

XMLCnt Returns the number of occurrences of an
XML element or an XML attribute according
to its path.

XMLDelete Lets you delete an XML element or attribute
according to its path. The function deletes
the value and tags of the element or
attribute.

XMLExist Returns a True value if an XML element or
XML attribute exists according to its element
path.

XMLFind Returns the index of an XML element that
has a value equal to a specified value or if
one of its attribute values is equal to the
specified value.

XMLGet Returns the value of an XML element or an
XML attribute according to its element path.

Integration
Reference Guide 539

XMLGetAlias Retrieves the alias associated with a
namespace Uniform Resource Identifier from
the namespaces internal table. A
namespace uniquely identifies an element
type and attribute name. A URI is an
alphanumeric character string identifying an
Internet Resource.

XMLGetEncoding Retrieves the encoding of an XML document.

XMLInsert Lets you insert an XML element or attribute
value in a specified path.

XMLModify Lets you modify an XML element or attribute
according to its path.

XMLSetEncoding Sets the encoding of an XML document that
was opened for Write access. The encoding
affects both the encoding attribute in the
document header, such as encoding=UTF 8,
and the encoding of the actual XML
document.

XMLSetNS Defines the namespace-alias Uniform
Resource Identifier (URI). A namespace
uniquely identifies an element type and
attribute name.
A URI is an alphanumeric character string
identifying an Internet Resource.

XMLStr Converts valid XML data into an Alpha string.

XMLVal Converts a string value into a valid XML
string.

Integration
Reference Guide 540

Interface

Function Description

CHeight Returns the position on the y-axis that
represents the height of a specified
control or of the last control

CLeft Returns the position on the x-axis
relative to the window of a specified
control or of the last parked control

CLeftMDI Returns the position on the x-axis of a
specified control or of the last parked
control relative to the eDeveloper

ClickCX Returns the X position of the last click,
relative to a control

ClickCY Returns the Y position of the last click,
relative to a control

ClickWX Returns the X position of the last click,
relative to the window

ClickWY Returns the Y position of the last click,
relative to the window

CTop Returns the position on the y-axis
relative to the window of a specified
control or of the last parked control.

CTopMDI Returns the position on the y-axis of a
specified control or of the last parked
control relative to the eDeveloper MDI

CtrlGoto Lets you park on a defined control.

CtrlHWND Returns the Window handle of a control.

CtrlName Returns the control name of the last
clicked control

CurRow Returns the number of the current
parked row within a table control
Reference Guide 541

CWidth Returns the position on the x-axis that
represents the width of a specified
control or of the last parked control

HitZOrdr Returns Z-Order number of a control

LastPark Returns the name of the control on
which the user last parked in the
specified area

MAXMagic Maximizes the eDeveloper window.

MINMagic Minimizes the eDeveloper window.

ResMagic Restores the eDeveloper window to
normal size.

SetCrsr Set Cursor Shape.

WINBox Returns window dimensions

WINHWND Returns Windows window handle

I/O

Function Description

Blb2File Saves a BLOB object to a file.

EOF End-of-file signal in I/O file.

EOP End-of-page signal in I/O file

File2Blb Saves a file to a BLOB object.

File2OLE Moves a file to an OLE variable.

FileDLG Accesses a Windows Open File dialog.

FileListGet Returns a list of the file names in a
directory based on a set of file-name
filters.

IOCopy Copies file.

Interface

Function Description
Reference Guide 542

IOCurr Returns the position of an IO file in the IO
File table.

IODel Delete disk file

IOExist Check existence of a disk file

IORen Rename file

IOSize Size of a disk file

Line Current line in output file

Page Current page in output file

Java

Function Description

EJBCreate Obtains a new instance of an Enterprise Java
Bean.

JCall Calls an instance method.

JCallStatic Calls a class method.

CodePage Sets the code page that would be used when
converting Java characters and strings to an
eDeveloper Alpha type, and from an
eDeveloper Alpha type to Java characters.

JCreate Obtains a new instance of a Java class.

JException Returns a pseudo-reference to the last
exception of the current context.

JExceptionOccurr
ed

Informs you that the last J* or EJB* function
threw an exception.

JExceptionText Returns a text image from the last exception
and an optional backtrace of the stack. This
function refers to the last exception thrown
during the last j* or ejb* function.

I/O
Reference Guide 543

JExplore Describes a class.

JGet Retrieves the value of an instance variable.

JGetStatic Queries a class variable.

JInstanceOf Simulates the Java's operator instance.

JSet Updates an instance variable.

JSetStatic Updates a class variable.

Miscellaneous

Function Description

CndRange Sets a conditional range for the value of a
variable.

EuroCnv Returns the converted value from currency to
currency based on the conversion values of
the euro currency in the European Currency
table.

EuroDel Deletes an existing currency from the
European Currency table.

EuroGet Accesses the Base Currency value in
Deployment mode.

EuroSet Modifies the Base CURrency value in
Deployment mode.

EuroUpd Modifies the European Currency table.

EvalStr Evaluates dynamic expressions that may be
constructed at runtime.

Java
Reference Guide 544

EvalStrInfo Checks a string representing an eDeveloper
expression that can be evaluated using the
EvalStr function and can retrieve information
about the expression.

ExpCalc Executes a function during the evaluation of
an expression.

NULL Sets a variable to a given value.

WinHelp Opens a specified Help file and performs a
selected command.

Numeric Values Manipulation

Function Description

* Multiplication

+ Addition

- Subtraction

/ Division

ABS Absolute value.

ACOS Arc cosine

ASIN Arc sine

ATAN Arc tangent

ChkDgt Check digit

CHR Number ACII character

COS Cosine

Miscellaneous
Reference Guide 545

EXP Exponential

Fix Extracts a portion of a number without
rounding

HStr Converts decimal to hexadecimal

LOG Natural logarithm

MAX Compares values and returns the largest one

MIN Compares values and returns the smallest
one

MOD Returns the remainder of an integer division

MStr Converts number to alpha (any format)

RAND Random number generator

Range Checks whether a number falls within a
specified range

Round Extracts a portion of a number with rounding

SIN Sine

Str Translates numeric value to an alpha string

TAN Tangent

Security

Function Name Description

GroupAdd Assigns a user to a user group in the
Security file from within an application.

Numeric Values Manipulation
Reference Guide 546

LMChkIn Checks in a user instance of a specified
feature license.

LMChkOut Checks out a use instance of a specified
feature license.

LMUVStr Returns the vendor string of the user
license that was checked out by a user.

LMVStr Returns the vendor string of the license that
is checked out by the eDeveloper engine.

Logon Entry to a current application.

PPD Programmable Protection Device Code.

RightAdd Assigns a right to a user in the Security file
from within an application.

Rights Queries whether the user owns a specific
right.

User User information from the User ID
repository.

UserAdd Add a user record into the Security file from
within an application.

UserDel Lets the supervisor delete a user
identification in a security file from within
an eDeveloper application.

 String

Function Name Description

& Use to concatenate alpha strings.

ANSI2OEM Converts data from ANSI to OEM

ASC ASCII value of a string character.

Astr Applies a selected format to a string value.

CRC Calculate redundancy check.

Security
Reference Guide 547

Del Delete characters from string

DStr Date-to-string conversion

Fill Repeat string

Flip Invert string

HVal Hexadecimal to decimal conversion

Ins Insert string in another string

InStr Search for first occurrence of string in
another string

Left Extract substring from left

Len String length

Logical Converts a visual representation to a logical
representation.

Lower Returns string in lowercase

LTrim Remove leading blanks

MID Extract substring

MlsTrans Returns the translation of a string.

MTVal Converts a time value in milliseconds from
an Alpha string to a numeric value.

MVal Alpha string to number conversion.

OEM2ANSI Converts data from OEM to ANSI

Rep Replaces substring within string

RepStr Replaces all occurrences of a defined
substring with another substring in a given
source string.

Right Extracts substring from right

RTrim Removes trailing blanks

SoundX Compares homonyms

 String

Function Name Description
Reference Guide 548

StrToken Returns a token from a delimited string

StrTokenCnt Returns the number of existing delimited
tokens in a given string.

StrTokenIdx Returns the token index in a delimited Alpha
string.

Translate Translates all logical names and nested
logical names to their actual values. Secret
names are not translated.

Trim Removes leading and trailing blanks

TVal Alpha to time conversion

Upper Returns string in uppercase

Val Converts an alpha character to a number

Visual Converts a logical representation to a Visual
representation

WebRef Converts a text string to an input field on an
HTML web page

Task

Function Description

CallProg Calls up a program and passes arguments to
it.

Counter Iteration counter.

Delay Freezes all activity for a second.

Flow The current flow mode of a task.

FlwMtr Appends a message to the Activity Message
list.

GetLang Gets the active language

 String

Function Name Description
Reference Guide 549

GetParam Retrieves values passed as parameters to
programs.

HandledCtrl Returns the name of the control from which
the current handler was executed.

Idle Check system inactivity time.

InTrans Evaluates if a transaction is currently open.

IsComponent Checks if the executed program or handler is
from a component or a host application.

IsFirstRecordCycle The Record Main conversion from previous
eDeveloper versions to eDeveloper Version
9.4 requires an indication of a conversion
procedure when executing the Record Prefix
in a task.

KbGet Last entry capture.

KbPut Key entry.

Level Task execution level.

Lock Returns an evaluated expression that locks a
table row or task

LoopCounter Returns the current count of the block loop
cycle.

Menu Menu path.

MMClear Clears marked records.

MMCount Provides the number of marked table rows.

MMCurr Provides the current row of the number of
marked rows in the counting process.

Task
Reference Guide 550

MMStop Stops the multi-mark handler.

MnuCheck Displays or hides a checkmark in front of a
menu entry.

MnuEnabl Enables or disables a menu entry.

MnuName This function sets the menu entry text of a
selected menu.

MnuShow Hides or shows a menu entry.

Prog Task path.

ProgIdx Returns the current index number of the
program selected in the Program repository.

Rollback Allows rollback of a transaction to a specified
nesting level save point.

RunMode Returns a numeric code corresponding to
the runtime engine mode.

SetLang Selects the active language.

SetParam Sets parameters.

SharedValGet Retrieves a shared value according to its
name. A shared value is a value stored in
the memory of the eDeveloper process.
Once created, this value can be retrieved by
all active contexts and new contexts.

SharedValSet Creates a shared value, which is a value
stored in the memory of the eDeveloper
process. Once created, this value can be
retrieved by all active contexts and new
contexts.

Stat Task operation.

Task
Reference Guide 551

TDepth Returns the current task depth.

THIS Directs a variable-related function or a task
generation function to the variable or task
from which an event was triggered.

TransMode Provides information about the current
active transaction.

TreeLevel Retrieves the current level of the selected
node in the data tree.

TreeNodeGoto Parks on a tree node that is identified by the
tree node identifier.

TreeValue Retrieves the node identification determined
by the current level of the selected node.

Unlock Returns an evaluated expression that
unlocks a table row or task that is locked.

ViewMod Checks whether records were changed since
the last save.

Variables

Function Description

EditGet Retrieves the control value in the edit mode.

EditSet Sets the edited value of the control that
invoked the last handler.

IsDefault Tests if the value of a variable is equal to its
default value.

ISNULL Checks for the existence of a NULL value in a
variable.

VarAttr Returns a column’s attribute.

VarCurr Variable identifier.

Task
Reference Guide 552

Alphabetical Directory of Functions

A LIKE A This function will determine whether or not a given character string matches a
specified pattern. The function will return a logical value. A pattern can include
regular characters and wildcard characters. During pattern matching, regular
characters must match the characters specified in the character string;
wildcard characters, however, can be matched with arbitrary fragments of the
character string. Wildcard characters include:

 ‘*’ - any string of zero or more characters.

 ‘?’ - any single character

VarCurrN Returns the current value of a variable
according to the variable’s name.

VarDbName Queries a selected dataview to retrieve the
physical definition of each variable.

VarIndex Returns the index of a variable according to
the variable’s name.

VarInp Identifies the last variable where the input has
occurred.

VarMod Variable modification check.

VarName Provides a variable’s origin and description.

VarPic Returns a string value that represents the
picture of the selected field.

VarPrev Retrieves the original value of a variable,
based on a dynamic value representing a
variable index within the Variable list.

VarSet Sets a variable to a given value

Variables
Reference Guide 553

It is possible to search for character strings that include one or more of the
wildcard characters. To search for a wildcard character as a regular character,
the ‘\’ character must be added before the wildcard character.

Syntax: ‘string’ LIKE ‘pattern’ (A LIKE A)
Parameter: Parameter string
Returns: True if the character string matches the specified pattern,

and False if it does not.
Note: When you perform string comparisons with LIKE, all

characters in the string’s pattern are significant including
leading and trailing blank spaces.

ABS Absolute Value
Returns the absolute value of a real number, without regard to sign.

Syntax: ABS(numeric)
Parameter: numeric: A number.
Returns: Absolute value of number.
Example: Where x=20 and y=30,

ABS(x-y)
returns 10

ACOS Arc Cosine
Returns the arc cosine value of a number, in radians.

Syntax: ACOS (numeric)
Parameter: numeric: A number.
Returns: Number (radians).
Example: Where x=1 and y=0.5,

ACOS(x-y)
returns 1.04719755

See also: COS, SIN, ASIN, TAN, ATAN

AddDate Performs calculation on a date variable
Constructs a date out of an input date and 3 values to be added to that
date: Years, months, and days. The resulting date is always a valid date.
Reference Guide 554

Syntax: AddDate (date,years,months,days)
Parameters: date: A date.

years: The number of years to add to date. May be zero.
months: The number of months to add to date. May be zero.
days: The number of days to add to date. May be zero.

Returns: Date value.
Example: AddDate(‘01/01/1992’Date,1,2,2)

returns 03/03/1993
See also: DVal

AddTime Performs calculations on a time variable.
Constructs an input time and three values that can be added to that input
time value - hours, minutes, or seconds.The resulting time is the original
input plus the number of hours, minutes, or seconds added to it.

Syntax: AddTime (time,hours,minutes,seconds)
Parameters: time: The time value.

hours: The number of hours that can be added to the time
input.
minutes: The number of minutes that can be added to the
time input.
seconds: The number of seconds that can be added to the
time input.

Returns: The Time value.
Example: AddTime(‘12:00:00Time1,2,3) returns 13:02:03

See also: TVal, AddDate

ANSI2OEM Converts an ANSI character set to OEM.

Syntax: ANSI2OEM (string)
Parameter: String: An OEM character string.
Returns: Parameter string returns a translation to ANSI

ASC ASCII Value of String Character
Evaluates the left most character of an alphanumeric string and returns its
value in the ASCII character set.
Reference Guide 555

Syntax: ASC(‘string‘)
Parameter: string: An alpha character or string of characters.
Returns: ASCII code.
Example: The expressions ASC(‘N’) and ASC(‘New’)

each return the same result, 78
See also: CHR

ASIN Arc Sine
Returns the trigonometric arc sine of a number, in radians.

Syntax: ASIN(number)
Parameter: number: A number.
Returns: Arc sine of a number (radians).
Example: Where x=1 and y=0.5,

ASIN(x-y)
returns 0.52359878

See also: SIN, COS, ACOS, TAN, ATAN

Astr Applies a selected format to a string value.

Syntax: Astr(source string, format string)
Parameters: source string - The string value to be formatted.

format string - The string value that determines the format
of the source string value.
The characters below are placeholders or modify a
corresponding character:
X - Any character
H - Any character
- Any character
U - Corresponding character is switched to uppercase
L - Corresponding character is switched to lowercase
The A character, used for Auto Skip in an Edit field, is
ignored.
Numbers define the repetition of the preceding format
character. If a format character does not precede the
Reference Guide 556

number, it will repeat the number of times the X format
character appears.
For example: The format of 2@3U5 is the same as
XX@@@UUUUU.
The backslash (\) character lets you define an operator as a
fixed character.
For example: Astr('abcd','2@3A\U\5\A') returns
'ab@@@U5A'
If the total length of the character placeholders provided in
the format string is smaller than the source string length,
the remaining characters are truncated.

Returns: The modified source string value determined by the format
string.

ATAN Arc Tangent
Returns the arc tangent of a number in radians.

Syntax: ATAN (number)
Parameter: number: A number
Returns: Arc tangent of a number (radians)
Example: Where x=2 and y=1,

ATAN(x-y)
returns 0.78539816

See also: TAN, COS, ACOS, SIN, ASIN

Blb2File Save BLOB to File
Blb2File saves a BLOB object to a file.

Syntax: Blb2File (BLOB variable, file name)
Parameters: BLOB variable: Variable.

file name: Alpha file name.
Returns: Logical True if succeeded.
Example: Blb2File(BE, ‘C:\bfile.blb’)

Moves a BLOB variable BE to a file named bfile.blb on the C
drive.
Reference Guide 557

Blob2Req Sends the data of a BLOB variable to the requester

Syntax: Blob2Req(data)

Parameters: The data as a BLOB value sent to the requester.
Returns: True if the data is a valid BLOB value that is not a Null and

the engine is executed as an enterprise server. If the value
is not a BLOB, is a Null, or the engine is not executed as an
enterprise server, this function returns False.

Example: Blob2Req(B) sends the data of BLOB Variable B to the
requester.

Note: Before you send data to the requester, you can define the
HTTP Header information by using the RQHTTPHeader
function.

See also: File2Req

BlobSize Returns the BLOB size in bytes.

Syntax: BlobSize(variable)
Parameters: variable - A BLOB value containing the selected BLOB.
Returns: The BLOB size in bytes. If the BLOB is a Null, the function

returns 0.

BlobFromBase64

Decodes a BASE-64 BLOB variable to a regular eDeveloper BLOB.

Syntax: BlobFromBase64(BLOB)
Parameter: A BLOB value encoded in BASE-64.
Returns: A BLOB value containing the decoded data.

BlobToBase64 Converts an eDeveloper BLOB to a BLOB variable encoded in the BASE-64
algorithm.

Syntax: BlobToBase64(BLOB)
Parameter: A BLOB.
Returns: Returns a BLOB variable containing the binary value

encoded in BASE-64.
Reference Guide 558

BOM Beginning of Month
Returns the date of the start of the month specified in the parameter.

Syntax: BOM(date)
Parameter: a date or a date expression.
Returns: Value of type Date.
Example: BOM (‘05/10/93’Date)

returns ‘05/01/93’
See also: BOY, EOM, EOY, AddDate, CDOW, and all Date functions.

BOY Beginning of Year
Returns the date of the start of the year specified in the parameter.

Syntax: BOY(date)
Parameter: date: A date or a date expression.
Returns: Value of type Date.
Example: BOY (‘10/05/93’Date)

returns ‘01/01/93’
See also: BOM, EOM, EOY, AddDate, CDOW, and all Date functions.

BufGetAlpha Converts a value stored in a certain position in a buffer to an Alpha string.

Syntax: BufGetAlpha(variable reference, position, storage, length,
value as pointer)

Parameters: variable reference - The reference to the BLOB variable
containing the buffer. For example, ‘A’VAR
position - The numeric value defining the starting position of
the conversion method.
storage - A numeric value representing a valid storage type
in eDeveloper. For a list of storage types, see the Magic
Storage Type table on page page 560.
length - A numeric value representing the storage length.
value as pointer - A logical value indicating if the Alpha
value should be written directly to the buffer or as a pointer
to the data. If you enter True, eDeveloper writes the Alpha
value as a pointer.
Reference Guide 559

Returns: An Alpha string when the conversion succeeds. An empty
string when the conversion fails.
The function fails when the:
• Position parameter has a negative value.

• Position and length parameters are not part of the BLOB’s
content.

• Storage parameter does not contain a valid number.

• Length parameter does not contain a valid value.

Note: The available storage types are displayed below in the Magic
Storage Type table.

Attribute Storage ID Storage Name Length

1 Alpha 1 String - non-Null
terminated string

<32K

2 Alpha 2 LString - String with a
short integer
containing the string
length

<32K

3 Alpha 3 ZString - Null
terminated string

<32K

4 Numeric 1 Signed Integer 1,2,4

5 Numeric 2 Unsigned Integer 1,2,4

6 Numeric 3 IEEE Float 4,8

7 Numeric 4 Float MS-Basic 4,8

8 Numeric 5 Float Decimal 4,8

9 Numeric 6 Packed Decimal

10 Numeric 7 Numeric

11 Numeric 8 Numeric Character

12 Numeric 10 C-ISAM Decimal

13 Numeric 11 Extended Float

14 Logical 1 Number containing 0,1
Reference Guide 560

See Also: SetBufCnvParam

BufGetBit Returns the value of a bit for a specified byte position in a BLOB buffer.

Syntax: BufGetBit(variable reference, position, bit number)
Parameters: variable reference - A BLOB reference containing a byte

value. For example, ‘A’VAR
position - A number defining the position of the byte in the
BLOB variable.
bit number - A value from 1 to 8 representing a bit number
in the byte.

Returns: True when the bit is on. False when the bit is off. If the bit
number is not valid, the function returns Null.

Example: BufSetNum(‘A’VAR,1,3,2,1) sets the binary value of the first
byte to 00000011 by using the default low-hi conversion
parameter.
BufGetBit(‘A’VAR,1,1) returns False
BufGetBit(‘A’VAR,1,7) returns True
BufGetBit(‘A’VAR,1,8) returns True

15 Logical 2 Dbase containing T,F

16 Date 1 Integer - days from
1/1/1

4

17 Date 2 Integer - days from
1/1/1901

4

18 Date 3 YYMD 4

19 Time 1 Integer 4

20 Time 2 HMSH 4

21 BLOB 1 4 bytes of storage
length + the buffer (16
bytes)

22 BLOB 2 The buffer (16 bytes)

Attribute Storage ID Storage Name Length
Reference Guide 561

BufGetBlob Converts a value stored in a specified position in a buffer to an eDeveloper
BLOB.

Syntax: BufGetBlob(variable reference, position, storage, length,
value as pointer, vector cell storage)

Parameters: variable reference - The reference to the BLOB variable
containing the buffer. For example, ‘A’VAR
position - The numeric value defining the starting position of
the conversion method.
storage - A numeric value representing a valid storage type
in eDeveloper. For a list of storage types, see the Magic
Storage Type table on page page 560.
length - A numeric value representing the storage type
length.
value as pointer - A logical value indicating if the Alpha
value should be written directly to the buffer or as a pointer
to the data. If you enter True, eDeveloper writes the Alpha
value as a pointer.
vector cell storage - If a Vector value is written to the buffer,
you need to specify the cell’s storage type. For more
information about the Vector data attribute, see Chapter 3,
Data Items and Chapter 3, Models.

Returns: A BLOB string when the conversion succeeds. An empty
string when the conversion fails.
The function fails when the:
• Variable reference does not refer to a valid variable identi-

fication.

• Variable reference does not refer to the BLOB variable.

• The position parameter has a negative value.

• The position and length parameters are not part of the
BLOB’s content.

• The storage parameter does not contain a valid number.

See Also: SetBufCnvParam
Reference Guide 562

BufGetDate Converts a value stored in a specified position in a buffer to a Magic Date
value.

Syntax: BufGetDate(variable reference, position, storage)
Parameters: variable reference - The reference to the BLOB variable

containing the buffer. For example, ‘A’VAR
position - The numeric value defining the starting position of
the conversion method.
storage - A numeric value representing a valid storage type
in eDeveloper. For a list of storage types, see the Magic
Storage Type table on page page 560.

Returns: A Date value when the conversion succeeds. 0 when the
conversion fails.
The function fails when the:
• Position parameter has a negative value.

• Position and length parameters are not part of the BLOB’s
content.

• Storage parameter does not contain a valid number.

• Conversion errors occur.

See Also: SetBufCnvParam

BufGetLog Converts a value stored in a specified position in a buffer to an eDeveloper
logical value.

Syntax: BufGetLog(variable reference, position, storage)
Parameters: variable reference - The reference to the BLOB variable

containing the buffer. For example, ‘A’VAR
position - The numeric value defining the starting position of
the conversion method.
storage - A numeric value representing a valid storage type
in eDeveloper. For a list of storage types, see the Magic
Storage Type table on page page 560.

Returns: A logical value when the conversion succeeds. A Null when
the conversion fails.
Reference Guide 563

The function fails when the:
• Position parameter has a negative value.

• Position and length parameters are not part of the BLOB’s
content.

• Storage parameter does not contain a valid number.

• Value is not valid.

See Also: SetBufCnvParam

BufGetNum Converts a value stored in a specified position in a buffer to an eDeveloper
Numeric value.

Syntax: BufGetNum(variable reference, position, storage, length)
Parameters: variable reference - The reference to the BLOB variable

containing the buffer. For example, ‘A’VAR
position - The numeric value defining the starting position of
the conversion method.
storage - A numeric value representing a valid storage type
in eDeveloper. For a list of storage types, see the Magic
Storage Type table on page page 560.
length - A numeric value representing the storage type
length.

Returns: A numeric value when the conversion succeeds. 0 when the
conversion fails.
The function fails when the:
• Position parameter has a negative value.

• Position and length parameters are not part of the BLOB’s
content.

• Storage parameter does not contain a valid number.

• Length parameter does not contain a valid value.

• Conversion causes an overflow.

See Also: SetBufCnvParam
Reference Guide 564

BufGetTime Converts a value stored in a specified position in a buffer to an eDeveloper
time value.

Syntax: BufGetTime(variable reference, position, storage)
Parameters: variable reference - The reference to the BLOB variable

containing the buffer. For example, ‘A’VAR
position - The numeric value defining the starting position of
the conversion method.
storage - A numeric value representing a valid storage type
in eDeveloper. For a list of storage types, see the Magic
Storage Type table on page page 560.

Returns: A Time value when the conversion succeeds. 0 when the
conversion fails.
The function fails when the:
• Position parameter has a negative value.

• Position and length parameters are not part of the BLOB’s
content.

• Storage parameter does not contain a valid number.

• Conversion errors occur.

See Also: SetBufCnvParam
Retrieves a variant value stored in a specified position in a
buffer.

BufGetVariant Retrieves a variant value stored in a specified position in a buffer.

Syntax: BufGetVariant(variable reference, position, value as pointer)
Parameters: variable reference - The reference to the BLOB variable

modified by the conversion operation. For example, 'A'VAR
position - The numeric value defining where the conversion
result is placed in the BLOB value.
value as pointer - A logical value indicating if the variant
value should be written directly to the buffer or as a pointer
to the data. If you enter True, eDeveloper writes the variant
value as a pointer.

Returns: A variant when the function succeeds. A null value is
returned when the function fails.
Reference Guide 565

See Also: SetBufCnvParam

BufGetVector Converts a value stored in a specified position in a buffer to an eDeveloper
vector value.

Syntax: BUFGetVector (blob, position, vector attribute, no. of
elements, value as pointer, cell storage, cell length)

Parameters: blob - A BLOB value that contains the value for vector.
position - The numeric value defining the starting position of
the conversion method.
vector attribute - A number defining the vector attribute
type. Valid vector attributes are displayed in the Vector Type
table.

no. of elements - A numeric value representing the length of
the vector.
value as pointer - A logical value indicating if the Vector
value should be written directly to the buffer or as a pointer
to the data. If you enter True, eDeveloper writes the Vector
value as a pointer.
cell storage - The storage type of the vector cells that will be
used when the external vector is read from the buffer. This
parameter can be any of the appropriate storage types that
relate to the cell attribute.
cell length - The storage length type of the vector cells that
will be used when the eDeveloper vector is created from the
external vector. This parameter can be any of the
appropriate lengths that relate to the storage type.

Value Attribute

1 Alpha

2 Numeric

3 Logical

4 Date

5 Time
6 BLOB
Reference Guide 566

For valid storage numbers and lengths, refer to the
eDeveloper Storage Type table on page page 560.

Returns: A Vector. Null is returned if the functions fails.
 The function fails when the:
• Position is a negative value.

• Position and length are not part of the contents of the
BLOB.

• The storage parameter does not contain a valid number.

• The length parameter does not contain a valid value.

See Also: SetBufCnvParam

BufSetAlpha Converts an Alpha, Memo, or RTF string variable to one of the supported
storage types.

Syntax: BufSetAlpha(variable reference, position, value, storage,
length, value as pointer)

Parameters: variable reference - The reference to the BLOB variable that
is modified by the conversion operation. For example,
‘A’VAR
position - The numeric value defining where the conversion
result will be placed in the BLOB value.
value - The Alpha value that will be converted.
storage - A numeric value representing a valid storage type
in eDeveloper. For a list of storage types, see the
eDeveloper Storage Type table on page page 560.
length - A numeric value representing the length of the
Alpha value.
value as pointer - A logical value indicating if the Alpha
value should be written directly to the buffer or as a pointer
to the data. If you enter True, eDeveloper writes the Alpha
value as a pointer.

Returns: True when the conversion succeeds. False when the
conversion fails.
The function fails when the:
• Variable reference does not refer to a valid variable identi-
Reference Guide 567

fication.

• Variable reference does not refer to a BLOB variable.

• Position parameter is a negative value.

• Storage parameter does not contain a valid number.

Example: BufSetAlpha(‘A’VAR,1,‘filler’,1,6,’FALSE’LOG) inserts filler
from the first byte to the sixth byte.

See Also: SetBufCnvParam

BufSetBit Sets the value of a bit in a byte stored in the BLOB buffer.

Syntax: BufSetBit (variable reference, position, bit number, logical
value)

Parameters: variable reference - The reference to a BLOB variable that is
modified by the conversion operation. For example, ‘A’VAR
position - A number defining the position of the byte in the
BLOB variable.
bit number - A value from 1 to 8 representing the bit
number in the byte.
logical value - A logical value to set the specified bit.

Returns: True when the bit number is set. False when the bit number
is not valid.

BufSetBlob Converts a BLOB variable into one of the supported storage types at a
specified position in the buffer.

Syntax: BufSetBlob(variable reference, position, value, storage,
value as pointer)

Parameters: variable reference - The reference to the BLOB variable that
is modified by the conversion operation. For example,
‘A’VAR
position - The numeric value defining where the conversion
result will be placed in the BLOB value.
value - The BLOB value that will be converted.
Reference Guide 568

storage - A numeric value representing a valid storage type
in eDeveloper. For a list of storage types, see the
eDeveloper Storage Type table on page page 560.
value as pointer - A logical value indicating if the Alpha
value should be written directly to the buffer or as a pointer
to the data. If you enter True, eDeveloper writes the Alpha
value as a pointer.

Returns: True when the conversion succeeds. False when the
conversion fails.
The function fails when the:
• Variable reference does not refer to a valid variable identi-

fier.

• Variable reference does not refer to a BLOB variable.

• Position parameter has a negative value.

• Storage parameter does not contain a valid number.

See Also: SetBufCnvParam

BufSetDate Converts a Magic date to a binary value in a specified position and storage
type in the buffer.

Syntax: BufSetDate(variable reference, position, value, storage)

Parameters: variable reference - The reference to the BLOB variable that
is modified by the conversion operation. For example,
‘A’VAR
position - The numeric value defining where the conversion
result will be placed in the BLOB value.
value - The numeric value that will be converted.
storage - A numeric value representing a Magic valid
storage type. For a list of storage types, see the Magic
Storage Type table on page page 560.

Returns: True when the conversion succeeds. False when the
conversion fails.
The function fails when the:
• Variable reference does not refer to a valid variable identi-

fication.
Reference Guide 569

• Variable reference does not refer to a BLOB variable.

• Position parameter has a negative value.

• Storage parameter does not contain a valid number.

Example: BufSetDate (‘A’VAR,1,Date(),1) converts a current date
into BLOB variable A starting from the first byte.

See Also: SetBufCnvParam

BufSetLog Converts a logical value into one of the supported storage types at a
specified position in the buffer.

Syntax: BufSetLog(variable reference, position, value, storage)
variable reference - The reference to the BLOB variable that
is modified by the conversion operation. For example,
‘A’VAR
position - The numeric value defining where the conversion
result will be placed in the BLOB value.
value - The numeric value that will be converted.
storage - A numeric value representing a valid storage type
in eDeveloper. For a list of storage types, see the Magic
Storage Type table on page page 560.

Returns: True when the conversion succeeds. False when the
conversion fails.
The function fails when the:
• Variable reference does not refer to a valid variable identi-

fier.

• Variable reference does not refer to a BLOB variable.

• Position parameter has a negative value.

• Storage parameter does not contain a valid number.

See Also: SetBufCnvParam

BufSetNum Converts an eDeveloper number into one of the supported storage types
at a specified position in the BLOB buffer.
Reference Guide 570

Syntax: BufSetNum(variable reference, position, value, storage,
length)

Parameters: variable reference - The reference to the BLOB variable that
is modified by the conversion operation. For example,
‘A’VAR
position - The numeric value defining where the conversion
result will be placed in the BLOB value.
value - The numeric value that will be converted.
storage - A numeric value representing a valid storage type
in eDeveloper. For a list of storage types, see the Magic
Storage Type table on page page 560.
length - A numeric value representing the storage length.

Returns: True when the conversion succeeds. False when the
conversion fails.
The function fails when the:
• Variable reference does not refer to a valid variable identi-

fication.

• Variable reference does not refer to a BLOB variable.

• Position parameter has a negative value.

• Storage parameter does not contain a valid number.

• Length parameter does not contain a valid value.

• Conversion causes an overflow.

See Also: SetBufCnvParam

BufSetTime Converts an eDeveloper Time value into one of the supported storage
types at a specified position in the buffer.

Syntax: BufSetTime(variable reference, position, value, storage)
Parameters: variable reference - The reference to the BLOB variable that

is modified by the conversion operation. For example,
‘A’VAR
position - The numeric value defining where the conversion
result will be placed in the BLOB value.
value - The time value that will be converted.
Reference Guide 571

storage - A numeric value representing a valid storage type
in eDeveloper. For a list of storage types, see the Magic
Storage Type table on page page 560.

Returns: True when the conversion succeeds. False when the
conversion fails.
 The function fails when the:
• Variable reference does not refer to a valid variable identi-

fier.

• Variable reference does not refer to a BLOB variable.

• Position parameter has a negative value.

• Storage parameter does not contain a valid number.

See Also: SetBufCnvParam

BufSetVariant Inserts an variant value into a specified position in a buffer.

Syntax: BufSetVariant(variable reference, position, value, value as
pointer)

Parameters: variable reference - The reference to the BLOB variable
modified by the conversion operation. For example, 'A'VAR
position - The numeric value defining where the conversion
result is placed in the BLOB value.
value - The variant vlaue to be written in the buffer.
value as pointer - A logical value indicating if the variant
value should be written directly to the buffer or as a pointer
to the data. If you enter True, eDeveloper writes the variant
value as a pointer.

Returns: True when the function succeeds. False is returned when the
function fails.

See Also: SetBufCnvParam

BufSetVector Converts an eDeveloper Vector value into one of the supported storages at
a specified position in the buffer.

Syntax: BufSetVector (variable reference, position, value, cell
storage, cell length, value as pointer)
Reference Guide 572

Parameters: variable reference - The reference to the BLOB variable that
is modified by the conversion operation. For example,
‘A’VAR
position - The numeric value defining where the conversion
result will be placed in the BLOB value.
value - The vector value that will be converted.
cell storage - The storage type of the vector cells that will be
used when the external vector is read from the buffer. This
parameter can be any of the appropriate storage types that
relate to the cell attribute.
cell length - The storage length type of the vector cells that
will be used when the eDeveloper vector is created from the
external vector. This parameter can be any of the
appropriate lengths that relate to the storage type.
value as pointer - A logical value indicating if the Vector
value should be written directly to the buffer or as a pointer
to the data. If you enter True, eDeveloper writes the Vector
value as a pointer.

Returns: True or False indicating the success or failure of the
function.
The function fails when the:
• Variable reference does not refer to a valid variable identi-

fication.

• Variable reference does not refer to a BLOB variable.

• Position is a negative value.

• Storage parameter does not contain a valid number.

See Also: SetBufCnvParam

CallDLL Call to DLL
Enables a dynamic and direct call to a DLL from within eDeveloper.

Syntax: CallDLL (modulename.functionname,argument type
string,arg1,arg2,...)

Parameters: modulename.functionname - The module and function
names from the DLL.
Reference Guide 573

argument type string - A string in which each character
represents the type of argument. The last character
represents the type of the return value of the function. The
Argument types are:
1 - Char
2 - Short
4 - Long
F - Float
8 - Double
D - Double pointer
E - Float pointer
L - Long pointer
A - Null terminated string pointer
V - Void pointer
T - A pointer to a buffer
0 - Void
arg1,arg2,... - The function arguments from the DLL.

Returns: The return value of the function in the DLL.
Example: CallDLL(‘mydll.lmath’,’1L44’,Action,A,B) where the C

function is: long lmath(char action, long *a, longb) gives
the return value of the lmath function in the DLL.
CallDLL (‘mydll.add_str’,’AAA’,A,B) where the C function is:
char*add_str(char*a,char*b) gives the return value of the
add_str function in the DLL.

CallDLLF Call to an external Fastcall function.

Enables a dynamic and direct call to a DLL from within eDeveloper to an
external Fastcall function.

Syntax: CallDLLF (modulename.functionname,argument type
string,arg1,arg2,...)

Parameters: same as CallDLL
Returns: same as CallDLL
Example: same as CallDLL
Reference Guide 574

CallDLLS Call to STDCALL
Enables a dynamic and direct call to a DLL from within eDeveloper to an
external Stdcall function.

Syntax: CallDLLS (modulename.functionname,argument type
string,arg1,arg2,...)

Parameters: same as CallDLL
Returns: same as CallDLL
Example: same as CallDLLF

 CallJS Call Java Script
Allows you to call an external Java Script function that is embedded
externally within the HTML template being used for a browser-task
interface.

Syntax: CallJS (name, parameters)
Parameters: name- The name of the Java Script function.

parameters- A comma-delimited sequence of parameters
that will be passed to the Java Script function

Returns: The return value of the Java Script function.
Example: Calling a Java Script function that has a single character and

is multiplied by a given factor: CallJS (‘my_function’, ‘A’,3) -
This function will return a string of ‘AAA’.

Note: You can also call a function and pass parameters in a single
string.
For example: CallJS(‘my_function(“A”,3)’)

CallOBJ Call Object
Allows you to call the external object of an object (Active -X) that may be
embedded externally within the HTML template being used for a browser-
task interface.

Syntax: CallOBJ (object, method, parameters)
Parameters: object: The identifier of the object as placed in the HTML

template.
method: The name of the object’s function.
Reference Guide 575

parameters: A comma-delimited sequence of parameters
that will be passed to the object’s method.

Returns: The return value of the object’s method.
Example: Calling a movie-clip player by passing it the name of the clip

to play:
CallOBJ(‘my player’,‘\clips\my_clips.mpg’)
This function will return a TRUE value if the player
succeeded in uploading and playing the clip, False if it failed.

CallProg Allows you to call a program and pass arguments to it.

Syntax: CallProg (program number, argument-1...argument-n)
Parameters: program number, argument -1...argument-n
Returns: The value returned by the called program.
Examples: ‘Your discount is’ & Str (CallProg (’23’prog,'', A, FG,

‘Preferred’, 23),’2P0’)
where program 23 returns a numeric value.

Note: NULL values cannot be passed as parameters of the CallProg
function.

CallProgURL Calls a URL designated by an eDeveloper program that resides on an
enterprise server.

Syntax: CallProgURL(application name, program’s public name,
destination, argument1, argument2...)

Parameters: application name - A string representing the name of the
application to be called.
program name - A string representing the program name to
be executed.
destination - A string representing the name of the frame or
window for the program display.
arguments - A series of arguments that must be passed to
the called program.

Returns: True
Example: CallProgURL(‘My App’,’My Prog’,'',A,5) issues a URL that calls

the specified program, My Prog, from the specified
application, My App, and passes to it the required set of
Reference Guide 576

arguments. The result of the program execution is displayed
in the defined destination frame or window. For this
example, the blank Destination string opens a new window.

CallURL Calls a URL through the Evaluate operation in a browser task.

Syntax: CallURL(URL, Destination)
Parameters: URL - A string representing the URL to open.

Destination - A string representing the name of the frame or
window that displays the URL.

Returns: True
Example: CallURL(‘http://www.magicsoftware.com’,’Magic’) opens the

Magic Web site in the frame named Magic.
Note: Defining the destination as an empty string opens the

requested URL in a new window.

CASE Switch Between Values
Switches between various values according to a controlling expression.
Eliminates the need for nested IF expressions.

Syntax: CASE(controlling expression, case1, value 1, case 2,
value2,..., default value)

Parameters: controlling expression: The expression by which to switch
between the various values.
case x: One of the possible values of the controlling
expression. When the controlling expression equals the
value of case x, value x is returned.
value x: The value to be returned when the controlling
expression equals case x.
default value: The value that is returned when the
controlling expression does not equal case x.

Returns: The value that is returned when the controlling expression
equals the case value. A default value is returned if the
controlling expression does not equal a case value.

Example: CASE(A,1,’Red’,2,’Green’,3,’Blue’,’Black’)
When A=1, the function returns ‘Red’.
When A=2, the function returns ‘Green’.
Reference Guide 577

When A=3, the function returns ‘Blue’.
When A is other than 1,2,3..., the function returns ‘Black’.

CDOW Character Day of Week
Returns the name of the day (e.g., Sunday, Monday) from a date or a date
expression.

Syntax: CDOW(date)
Parameter: date: A date or a date expression.
Returns: Day of week in character string.
Examples: CDOW(‘01/28/92’Date)

returns ‘Tuesday’
Where x contains, in effect, the date 01/28/92 (Tuesday),
then CDOW(x+1)
returns ‘Wednesday’

See also: Day, DOW, NDOW
Note: The use of Date following ‘01/28/92’ identifies the string as

a date literal string, and should not be confused with the
Date() function.
You can control the length of the day name by manipulating
the length of the alpha column that will hold it. For example,
if you update a 3-character alpha column with the result of a
CDOW operation, eDeveloper displays the first three letters
of the day name (e.g., ‘Mon’, ‘Tue’).

CHeight Control Height
Returns the position on the y-axis that represents the height of a specified
control or the last parked control.

Syntax: CHeight (control name, generation)
Parameters: control name: The name of the control. If you specify a null

string (‘’), the last parked control will be used.
generation: A number representing the task’s hierarchic
position in the task tree. 0 represents the current task, 1
the immediate ancestor, etc.

Returns: Position in units of measurement.
Reference Guide 578

Note: . Only parkable controls set the values for the function. A
parkable control is a control with data or a control that may
return an action. The relevant controls are: Check Box,
Combo Box, Edit, Image Control, List Box, OLE Control,
Push Button, Radio Button, Rich Edit, Slider, and Tab
control.

ChkDgt Generates a check digit. A check digit is a digit added to a number, either
at the end or the beginning, that validates the authenticity of the number.
A simple algorithm is applied to the other digits of the number which yields
the check digit. By running the algorithm and comparing the check digit
you get from the algorithm with the check digit encoded with the number,
you can verify that you have correctly read all of the digits and that they
make a valid combination. Check digits are used for credit cards and
identification numbers.

Syntax: ChkDgt(string,numeric)
Parameters: string: An alpha string representing the number for which

the check digit is calculated. The number should be
converted to alpha type before this function is applied.
numeric: A numeric value representing Modulus 10 or
Modulus 11, simple algorithms used to validate the number
on a credit card.
The following numeric values are:
0 - Modulus 10
1 - Modulus 11

Returns: A number
Examples: ChkDgt(‘6789’,0) returns 2

ChkDgt(x,0), where x contains the alpha string ‘6789’,
returns 2
ChkDgt(‘6789’,1) returns 1

See also: CRC

CHR Number to ASCII Character Conversion
Converts a number to a corresponding character in the ASCII character
set.
Reference Guide 579

Syntax: CHR(numeric)
Parameter: numeric: A number.
Returns: Alpha.
Examples: CHR(78)

returns ‘N’ (ASCII code 78)
Where the variable X contains 77,
CHR(X+1)
returns ‘N’

See also: ASC
Note: Use this function to display characters that have no

keyboard equivalent in a form class>0 and not in a Windows
display. For example, CHR(26) displays the right arrow
character.

Cipher Encrypts a buffer containing a BLOB.

Syntax: Cipher(Cipher ID, Buffer, Key [, Mode, IV])
Parameters: Cipher ID - A number representing the selected

cryptographic algorithm.
Buffer - The BLOB that will be encrypted.
Key - A BLOB containing the encryption key.
Mode - An Alpha string containing the selected mode for the
encryption method selected by the Cipher ID. If a mode is
not specified for a method that requires a mode, the CBC is
used as the default. See the Mode table below.
IV - A BLOB containing an initialization vector. This
parameter is optional.

Returns: A BLOB containing the encrypted buffer.
If the Cipher ID is not valid, or the key length does not
match the Cipher ID, the function returns a Null value.

Note: The supported encryption methods and modes are:
Reference Guide 580

Algorithmic
Name

Cipher Code Supported
Modes
and IV
Length

Key Length Symmetry

BLOWFISH 1 ECB - NA
CBC - 8
CFB - 8
OFB - 8

Minimum: 1

Maximum: 56

Recommend: 16

Symmetric

CAST 2 ECB - NA
CBC - 8
CFB - 8
OFB - 8

Minimum: 5

Maximum: 16

Recommend: 8

Symmetric

DES 3 ECB - NA
CBC - 8
CFB - 8
OFB - 8

Number of Keys:
1

Supported: 8

Recommend: 8

Symmetric

IDEA 4 ECB - NA
CFB - 8
OFB - 8

Minimum: 1

Maximum: 16

Recommend: 16

Symmetric

RC2 5 ECB - NA
CBC - 8
CFB - 8
OFB - 8

Minimum: 5

Maximum: 16

Recommend: 8

Symmetric

RC4 6 Not
Applicable

Minimum: 1

Maximum: NR

Recommend: 16

Symmetric

RC5 7 ECB - NA
CBC - 8
CFB - 8
OFB - 8

Minimum: 1

Supported: 255

Recommend: 16

Symmetric
Reference Guide 581

See also: DeCipher, EncryptionError

CLeft Control Left
Returns the position on the x-axis relative to the window of a specified
control or the last parked control.

Syntax: CLeft(control name, generation)
Parameters: control name: The name of the control. If you specify a null

string (‘’), the last parked control will be used.
generation: A number representing the task’s hierarchic
position in the task tree. 0 represents the current task, 1
the immediate ancestor, etc.

Returns: Position in units of measurement
Note: Only parkable controls set the values for the function. A

parkable control is a control with data or a control that may
return an action.
The relevant controls are: Check Box, Combo Box, Edit,
Image control, List Box, OLE control, Push Button, Radio
Button, Rich Edit, Slider, and Tab control.

DES3 8 ECB3 - NA
CBC3 - 8

Number of Keys:
2

Max: 16 or 24

Recommend: 24

Symmetric

RSA 9 Not
Applicable

Minimum: 48

Maximum: 2048

Recommend:128

Asymmetric

Algorithmic
Name

Cipher Code Supported
Modes
and IV
Length

Key Length Symmetry
Reference Guide 582

CLeftMDI Control Left MDI
Returns the position of a specified control or the last parked control on the
x-axis relative to the eDeveloper MDI.

Syntax: CLeftMDI(control name, generation)
Parameter: control name: the name of the control. If you specify a null

string (‘’), the last parked control will be used.
generation: a number representing the task’s hierarchic
position in the task tree. 0 represents the current task, 1
the immediate ancestor, etc.

Returns: Position in units of measurement
Note: Only parkable controls set the values for the function. A

parkable control is a control with data or a control that may
return an action.
The relevant controls are: Check Box, Combo Box, Edit,
Image control, List Box, OLE control, Push Button, Radio
Button, Rich Edit, Slider, and Tab Control.

ClickCX Click Control X
Gives the X location of the last click, relative to the control within which
the click occurred. The location is always expressed in the unit of
measurement that is in effect.

Syntax: ClickCX ()
Parameter: None.
Returns: Numeric value
Example: ClickCX ()

Returns the X coordination of where the user clicks the
mouse relative to a control.

Note: When checked after clicking on a tab control, the ClickCX
function returns the layer number of the clicked tab.

See also: ClickCY, ClickWX, ClickWY

ClickCY Click Control Y
Gives the Y location of the last click, relative to the control within which
the click occurred. The location is always expressed in the unit of
measurement that is in effect.
Reference Guide 583

Syntax: ClickCY ()
Parameter: None
Returns: Numeric value.
Example: ClickCY ()

Returns the Y coordinate of where the user clicks the mouse
relative to a control.

Note: When checked after clicking on a tab control, the Click CY()
function returns the layer number of the clicked tab.

See also: ClickCX, ClickWX, ClickWY

ClickWX Click Window X
Gives the X location of the last click, relative to the window. The location is
always expressed in the unit of measurement in effect.

Syntax: ClickWX()
Parameter: None.
Returns: Numeric value
Example: ClickWX ()

Returns the X coordinate of where the user clicks the mouse
relative to a window.

See also: ClickCX, ClickCY, ClickCY

ClickWY ClickWY()
Gives the Y location of the last click, relative to the window. The location is
always expressed in the unit of measurement in effect.

Syntax: ClickWY()
Parameters: None
Returns: numeric value
Example: ClickWY()

Returns the Y coordinate of where the user clicks the mouse
relative to a window.

See also: ClickCX, ClickCY, ClickWX
Reference Guide 584

ClientCertificateAdd
Lets you define a certificate that will be sent for subsequent
Call Web Services and HTTP Post and Get calls.

Syntax: ClientCertificateAdd (PKCS12-certificate, password
[,SSLCACertificates])

Parameters: Certificate URL - The certificate's URL.
PKCS12-Certificate - Public Key Cryptography Standard #12
is an industry format used for the transport, backup, and
restoration of a certificate and its associated public and
private key. This parameter must be an alphanumeric value.
Password - The Password can be a Null value when the
certificate is exported without a password.
SSLCACertificates - An intermediate Certificate Authority,
for example Certificates Service of Microsoft (CertSrv). For
the target server to process the Call Web Service or HTTP
Post or Get functions, the client can pass the
SSLCACertificates of the intermediate Certificate
Authorities. Certificate authorities are separated by the
semi-colon character (;).This parameter is optional.

Returns: True if a valid and authorized pKCS12 certificate was added
or False when the:

• Same certificate was added more than once.

• Certificate does not exist.

• Certificate is not in PKCS12 format.

• Password is incorrect.

Example: ClientCertificateAdd (my.pfx, %MY_PASS%,
%ROOT_CERTS%) where:
• My.pfx is the PKCS12 certificate.

• %MY_PASS% is the logical name for the user's password,

• %ROOT_CERTS% is the logical name for the intermediate
Certificate Authority. This parameter is optional.

Note: All client certificates will remain active for the current
context, sending subsequent calls, until the certificate is
removed from the current context by using the
Reference Guide 585

ClientCertificateDiscard function. You can call the
ClientCertificateAdd function several times to add multiple
client certificates. You cannot add the same client certificate
more than once. Certificates can be requested with an
option to make the private key non-exportable, which
means that PKCS12 certificates can not be imported to
eDeveloper.

See also: HTTPGet, HTTPPost functions, and the Call Web Service
operation.

ClientCertificateDiscard
Lets you remove a client-side digital certificate from the list
of certificates. Client-side digital certificates verify the
identity of the user for highly secure Web applications.

Syntax: ClientCertificateDiscard (PKCS12 certificate)
Parameters: PKCS12 certificate - The certificate's URL. This parameter

must be an alphanumeric value.
Returns: True when the certificate is discarded or False when the

certificate is not discarded. The certificate is discarded only
when the URL matches the certificate name previously
added to the context by using the ClientCertificateAdd
function or the Client Certificate application property.

Example: ClientCertificateDiscard (my.pfx) where my.pfx is the
discarded client-based digital certificate.

Note: The certificate specified in the environment settings will be
reissued when switching from runtime to toolkit, even when
the certificate was discarded during runtime by using this
function.

ClipAdd Adds a value and its picture to the clipboard for operating systems that
support clipboard functionality.

Syntax: ClipAdd (Value, Picture, [Value, Picture])
Parameters: This function receives a variable number of parameter pairs.

Each pair contains a value and its picture that are used
when placing the value on the clipboard.
Value - Any legal eDeveloper value except a BLOB storage
type.
Reference Guide 586

Picture - The corresponding picture for the value.
Returns: Boolean - For operating systems that support clipboard

functionality, the value returned is True. For operating
systems that do not support clipboard functionality, the
value return is False.

Note: This function places the values into a buffer for the
clipboard. Between the values a Tab character is inserted,
and a new line is placed at the end of the string.

ClipRead Lets you display the contents copied to the clipboard in CF_Text format.

Syntax: ClipRead()
Parameters: None
Returns: ClipRead returns a BLOB value containing the contents of

the clipboard in CF_Text format. If the operation cannot be
performed (for example, an empty clipboard, incompatible
formats, or an incompatible operating system), the function
returns a NULL value.

ClipWrite The function places the buffer created by the ClipAdd function into the
clipboard by using the CF_Text clipboard format.

Syntax: ClipWrite()
Parameters: None
Returns: If the buffer is successfully placed on the clipboard, the

function returns a value of True.

ClrCache Clear Cache
Clears the data cache of the current task, which enables eDeveloper to
read records directly from the database. This function can be used only in
online tasks.

Syntax: ClrCache()
Parameter: None.
Returns: True/False
Reference Guide 587

CMonth Character Month
Returns the name of the month (e.g., January, February) from a date or a
date expression.

Syntax: CMonth(date)
Parameter: date: A date or a date expression.
Returns: Alpha string
Example: CMonth(‘01/28/97’Date)

returns ‘January’
If X contains, in effect, the date 01/28/97, then
CMonth(X+30)
returns ‘February’

See also: Month, NMonth
Note: The use of Date following ‘01/28/92’ identifies the string as

a date literal string, and should not be confused with the
Date() function.
You can control the length of the month name by
manipulating the length of the alpha column that will hold it.
For example, if you update a 3- character column with the
results of a CMonth operation eDeveloper will display the
first three letters of the month name (e.g., ‘Jan’, ‘Feb’).

CndRange Allows for a conditional range for the value of a variable.

Syntax: . CndRange (condition, value)
Parameters: condition - Boolean expression to be evaluated during

runtime.
value - to return if the condition is True.

Returns: Any value
Example: CndRange (`TRUE’L, 10)

The function will return the value 10
 CndRange (`FALSE’L, 20)
The function will not execute.
Reference Guide 588

CodePage Sets the code page to convert incoming and outgoing data to eDeveloper.

When eDeveloper receives data, it is converted from the specified code
page to eDeveloper’s internal representation. When eDeveloper sends
data, it is converted from eDeveloper’s internal representation to the
specified code page. The code page is effective immediately for the
current context only, until the next code-page call made by the current
context. eDeveloper’s default code page is the default code page of the
operating system. This function is relevant for Java functions, XML
functions, and web services.

Syntax: CodePage(code page)
Parameter: code page - The numeric value that represents the code

page to be used. A zero value resets the code page back to
the default of the operating system.

Returns: A logical value. If the function is successful in locating and
setting the code page, a 'TRUE'LOG value is returned.

Example: CodePage(1252) sets the code page to Windows ANSI
Note: The Code Page Options table is located on 1107.

COMError Retrieves information of the last error that occurred when eDeveloper
interacted with a COM object.

Syntax: COMError(info type)
Parameters: info type - The numeric value that specifies the information

to be retrieved. The numeric values are:
1 - The error description.
2 - The COM object in which the error occurred.
3 - The index number in which the error occurred.
4 - The help file that describes the error.
5 - The context number of the error help topic.
0 - The HRESULT value that represents the actual error
number. The HRESULT is retrieved in hexadecimal
representation.

Returns: An Alpha string as defined by the info type parameter.
Numeric values, such as an argument index, are returned as
Reference Guide 589

Alpha strings. A blank is returned when there is no error or
when the info type parameter is set to an invalid value.

COMHandleGetRetrieves the handle of a loaded COM object. This handle can be stored as
a numeric value.

Syntax: COMHandleGet(object)
Parameters: object - A BLOB value representing a COM object field.
Returns: A positive numeric value representing the object's handle. A

negative number is returned when the function fails.
The negative numbers that the function can return are:
-1 - The attribute is not an ActiveX or OLE variable.
-3 - The object is not loaded by the defined variable.

Note: Handling objects using the COMHandleGet and
COMHandleSet functions should be done with caution.
Accidently assigning wrong handles to wrong objects may
result in unexpected behavior.

COMHandleSetLets you refer to an object, previously loaded from a COM object field,
using a handle number returned by the COMHandleGet function.

Syntax: COMHandleSet(variable reference, handle)
Parameters: variable reference - The value representing a variable index

in the Variable list.
handle - A numeric value of a handle that was retrieved
using the COMHandleGet function.

Returns: 0 when the function is successful. A negative number is
returned when the function fails.
The negative numbers that the function can return are:

-1 - The attribute is not an ActiveX or OLE variable.

-3 - The object is not loaded by the defined variable.

-4 - The handle provided by the variable is not a valid
handle.

Note: Handling objects using the COMHandleGet and
COMHandleSet functions should be done with caution.
Reference Guide 590

Accidently assigning wrong handles to wrong objects may
result in unexpected behavior.

COMObjCreateYou can manually create an instance of a COM object based on a Select
operation that defines the object's details. The ComObjCreate function can
be executed only for an ActiveX or OLE variable that has the Stored Data
control property set to Reference.

Syntax: COMObjCreate(variable)
Parameters: variable - A value representing a variable index within the

Variable list.
Returns: The handle number of the loaded object. A negative number

is returned when the function fails.
The negative numbers that the function can return are:
-1 - The attribute is not an Active-X or OLE variable.
-3 - The object has already been loaded by the defined
variable.
-4 - Undetermined failure.

Note: Any COM object loaded manually must be released
manually. The eDeveloper engine does not automatically
release objects that were loaded by this function. Use the
COMObjRelease function to release manually loaded
objects.

COMObjRelease

Releases a COM object loaded by the COMObjCreate function or through
automatic instantiation.

Syntax: COMObjRelease(variable)

Parameters: variable - The value representing a variable index within the
Variable list.

Returns: 0 when the function is successful. A negative number is
returned when the function fails.

The negative numbers that the function can return are:
-1 -The attribute is not an ActiveX or OLE variable.
Reference Guide 591

-3 - The object is not loaded by the defined variable.

COS Cosine
Returns the cosine of an angle, where the angle is expressed in radians.

Syntax: COS(numeric)
Parameter: numeric: A number that represents the angle in radians.
Returns: Number
Example: COS(0.7854)

returns 0.70711
See also: ACOS, SIN, ASIN, TAN, ATAN

Counter Batch Iteration Counter
Counts the number of iterations at a record level performed by a Batch
task.

Syntax: Counter(generation)
Parameter: generation: A number that represents the hierarchic

position of the task. 0 represents the current task, 1 its
immediate ancestor, etc.

Returns: Number
Example: Placed as an End Task condition with End Check=Yes, the

expression Counter(0)=5 ends the current task (task 0)
after five iterations on the record level.

CRC Calculate Redundancy Check
Performs a cyclic redundancy check value on an alpha string.

Syntax: CRC(string,numeric)
Parameters: string: An alpha string to which the CRC is applied.

numeric: A number that represents the CRC algorithm.
In this version of eDeveloper use 0 to apply CRC-16.

Returns: 2-byte string containing the CRC value.
Examples: CRC is used primarily for verification of a data stream. Since

the function’s algorithm uses all the elements of the input
Reference Guide 592

string for the calculation, the result can serve as a reliable
measure for insuring that the string isn’t altered.
A common application for CRC is communication between
two computers. In order to verify that the data transmitted
has actually arrived intact, calculate a CRC value from the
data prior to transmission. Then append the CRC word (2
bytes) to the information, and transmit. On the receiving
side, strip off the CRC information, and calculate a CRC
value of the remaining data. If the CRC calculated from the
received data and the CRC received with the data match,
then there were no faults detected during transmission. If
the two CRC values do not match, then the data probably
was corrupted during transmission.
Send ABC&CRC(‘ABC’,0)
Call it string
At the receiving end, ask whether
CRC(Left(string,3),0)=Right(string,2)

See also: ChkDgt

CTop Control Top
Returns the position on the y-axis relative to the window of a specified
control or the last parked control.

Syntax: CTop(control name, generation)
Parameter: control name: the name of the control. If you specify a null

string (‘’), the last parked control will be used.
generation: a number representing the task’s hierarchic
position in the task tree. 0 represents the current task, 1
the immediate ancestor, etc.

Returns: Position in units of measurement
Note: Only parkable controls set the values for the function. A

parkable control is a control with data or a control that may
return an action.
The relevant controls are: Check Box, Combo Box, Edit,
Image, List Box, OLE, Push Button, Radio Button, Rich Edit,
Slider, and Tab controls.
Reference Guide 593

CTopMDI Control Top MDI
Returns the position of a specified control or the last parked control on the
y-axis relative to the eDeveloper MDI.

Syntax: CTopMDI(control name, generation)
Parameter: control name: the name of the control. If you specify a null

string (‘’), the last parked control will be used.
generation: a number representing the task’s hierarchic
position in the task tree. 0 represents the current task, 1
the immediate ancestor, etc.

Returns: Position in units of measurement
Note: Only parkable controls set the values for the function. A

parkable control is a control with data or a control that may
return an action.
The relevant controls are: Check Box, Combo Box, Edit,
Image, List Box, OLE, Push Button, Radio Button, Rich Edit,
Slider, and Tab controls.

CtrlGoto This function lets you park on a defined control.

Syntax: CtrlGoto(‘control name’, row number, generation)
Parameters: control name: A string value that represents the name of

the control on which you wish to park.
row number: A numeric value that represents the number of
the row in a table control where the control is located. The
Zero value will be considered as the current row. This
parameter is ignored if the control only appears once in
table.
generation: A number representing the task's hierarchic
position in the task tree. 0 represents the current task, 1
the immediate ancestor, and so on.

Returns: The function returns a True value if it is successful in finding
the control by name and row in the window of the given
task. The function returns a False value if the selected
control name is not found, the control is invisible, the
specified row does not exist, the referenced task has no
window, or the referenced task does not exist.
Reference Guide 594

Example: CtrlGoto(‘Customer_Name’,3,0) switches the focus to the
control of Customer_Name in row 3 of the table in the
window of the current task.

Note: The focus that switches to the control occurs when the
application becomes idle after the evaluation of the function.

CtrlHWND Window Handle for Controls
Provides the window handle of a control. You can use this handle within a
user-defined function in an external DLL to determine the look and
behavior of the control or to get additional information about the control
styles or content.

You can use the function with these controls: Radio Button, List Box, OLE,
Push Button, Combo Box, Slider, RTF Edit, RTF Text, and Check Box.

Syntax: CtrlHWND (control name)
Parameter: control name as specified in the Form editor
Returns: The window handle as a long numeric value of 4 bytes. This

value can be passed by value to either a User-defined
Function (UDF) or Procedure (UDP).

Example: CtrlHWND(‘Olecontrol’) where Olecontrol is the name of a
control on the Form, and returns the control’s window
handle.

CtrlName Control Name
Returns the name of the last clicked control provided in the Control Name
property.

Syntax: CtrlName()
Parameter: None.
Returns: The name of the last clicked control.

CtxClose Gracefully removes a context from the Active Context list. When closing an
active context, the engine properly closes all running programs, and clears
the context from the Active Context list.

Syntax: CtxClose (context entry or identifier)
Reference Guide 595

Parameter: context entry or identifier - A number representing the
context. This number can be either the context entry
number in the current context list or the actual context
identifier.

Returns: True when the specified context is removed. If the context is
not found, the function fails and returns False.

Note: Only pending contexts can be removed.

The RqCTxTrm function behaves like the CtxClose function.

Before evaluating the CtxClose function, you should load the
contexts list by evaluating the CtxNum function.

See also: CtxKill

CtxGetAllNames

Returns the names of all open contexts on the server engine where the
function is evaluated.

Syntax: CtxGetAllNames()
Parameters: None
Returns: A string vector containing all the context names. For

contexts that were not explicitly set with a context name,
the context identification number is returned.

Note: The function returns an empty vector when executed on a
non-server engine.

CtxGetId Retrieves the context identifier by a defined context name. You can define
a name for a context identifier by using the CtxSetName function for a
specific context.

Syntax: CtxGetId(context name)

Parameters: context name - A string value representing the context
name.

Returns: A numeric value of a context identifier corresponding to a
specified name.

Example: CtxGetId('Dispatcher') returns the numeric identifier for a
context named Dispatcher.
Reference Guide 596

Note: If the context name parameter is empty, the returned
context identifier is for the current context. If the specified
context name is not found, a value of 0 is returned.

CtxKill Abruptly removes a context from the Active Context list. The purpose of
this function is to end active contexts waiting for the completion of certain
procedure like Block loops, Exit operations, or calling DLLs.

Syntax: CtxKill (context entry or identifier)
Parameters: context entry or identifier - A number representing the

context. This number can be either the context entry
number in the current context list or the actual context
identifier.

Returns: True when the specified context is abruptly removed. If the
context is not found or your trying to remove the current
context, the function fails and returns False.

Note: A running context can be removed at any time regardless of
its current activity, including synchronous external
operations such as the Call UDP operation.
The CtxKill function abruptly terminates all running threads
of the specified context. Terminating a running thread can
result in the improper release of resources, such as
database connections and Instantiated Java or COM objects,
which is similar to abruptly terminating the engine process.
When importing applications from previous versions of
eDeveloper, the CtxKill function will be replaced with the
current CtxKill function and not with CtxClose.
Before evaluating the CtxKill function, you should load the
contexts list by evaluating the CtxNum function.

See also: CtxClose

CtxLstUse Context Last Use Time

Returns the number of seconds since the last activation of a context.

Syntax: CtxLstUse(context entry or identifier)
Parameters: context entry or identifier - A number representing the

context. This number can be either the context entry
Reference Guide 597

number in the current context list or the actual context
identifier.

Returns: Active returns 0.
Pending returns the number of seconds since the last
activation.
Terminated returns -1.
Invalid returns -2.

Note: You must first evaluate the CtxNum function before using
the CtxLstUse function.

CtxNum Context Number

Returns the number of active contexts that are defined in an enterprise
server.

Syntax: CtxNum()
Parameters: None
Returns: A numeric value indicating the number of active contexts in

an enterprise server.
Note: You must first evaluate this function before using the

CtxLstUse, CtxProg, CtxSize, and CtxStat functions.

CtxProg Context Program

Returns the Public Name of the top-level program of the context.

Syntax: CtxProg(context entry or identifier)
Parameters: context entry or identifier - A number representing the

context. This number can be either the context entry
number in the current context list or the actual context
identifier.

Returns: The Public Name of the top-level program of the context.
Note: You must first evaluate the CtxNum function before using

the CtxProg function.

CtxSetName The function lets you set the name of the current context. The name is
used to post a message to the context.
Reference Guide 598

Syntax: CtxSetName (name)
Parameters: name - A string defining the context name.
Returns: True when the operation is successful.

The function fails when:
• A null value was passed.

• An empty string was passed.

• Another context has the same name.

Note: The name length cannot be more than 128 characters.

CtxSize Context Size

Returns the size of the context.

Syntax: CtxSize(context entry or identifier)
Parameters: context entry or identifier - A number representing the

context. This number can be either the context entry
number in the current context list or the actual context
identifier.

Returns: The number of the program. For terminated or invalid
contexts 0 will be returned.

Note: You must first evaluate the CtxNum function before using
the CtxSize function.

CtxStat Context Status

Returns the status of a context in the context table.

Syntax: CtxStat(context entry or identifier)
Parameter: context entry or identifier - A number representing the

context. This number can be either the context entry
number in the current context list or the actual context
identifier.

Returns: A string, indicating the status of the context. Possible values
are:
E for Executing when the current entry is currently
executing.
Reference Guide 599

P for Pending when the current entry is waiting for an event.
T for Terminated when the current entry has terminated.
I for Invalid when the entry number is invalid.

Note: You must first evaluate the CtxNum function before using
the CtxStat function.

CurROW Returns the number of the current parked row inside a Table control.

Syntax: CurRow(generation)
Parameters: generation: A number that represents the hierarchic

position of the task. 0 represents the current task, 1 its
immediate ancestor, and so on.

Returns: If a Table control exists in the task specified by the
generation, the function will return the number of the
parked row in that table.
If no table exists, the function returns the value of 1.
If the specified generation does not exist, the function
returns the value of 0.
If the specified generation is a batch task, the function
returns the value of 0.
If there is no table, the function returns zero.

Example: CurRow(0) returns the number of the parked row of the
table control in the current task.

CurrPosition Current Position

Returns the internal position of the current record of the Main Table of the
current task.

Syntax: CurrPosition(generation)
Parameter: generation: A number that represents the hierarchic

position of the task. 0 represents the current task, 1 its
immediate ancestor, etc.

Returns: BLOB expression
Reference Guide 600

CWidth Control Width
Returns the position on the x-axis that represents the width of a specified
control or the last parked control.

Syntax: CWidth(control name, generation)
Parameters: control name: the name of the control. If you specify a null

string (‘’), the last parked control will be used.
generation: a number representing the task’s hierarchic
position in the task tree. 0 represents the current task, 1
the immediate ancestor, etc.

Returns: Position in units of measurement.

Date System Date
Returns the system date.

Syntax: Date()
Parameter: None
Returns: Date
Examples: If the system date is 01/28/97,

Date()
returns 28/01/97
Date()+5
returns 02/02/97

See also: MDate, DStr, DVal
Note: eDeveloper automatically converts the date to the date format set in
Environment (default), or to the picture of the variable that holds it. If the
system date is set to the European format, you can display or print the
system date in American format by changing the relevant parameter in
Environment, or by defining a suitable picture for the variable that holds
the date.

Day Day of Month
Returns the day portion of a date, i.e., a number 1-31.

Syntax: Day(date)
Parameter: date: A date or a date expression.
Returns: Number
Reference Guide 601

Example: Day(‘01/28/96’Date)
returns 28
The following expression displays the word “Overdue” if the
system date is later than the 15th of the month:
IF(Day(Date())>15,’Overdue’,’’)

See also: CDOW, DOW, NDOW

DbCache Database Cache
Monitors the hit ratio, and returns an integer that specifies the cache hit
ratio. The hit ratio is defined as the ratio between the number of times a
record was found in a cache divided by the total number of times the
cache was searched. The cache efficiency is determined by the hit ratio.

Syntax: DbCache (number,generation)
Parameters: number: A number that represents the table’s sequence

number in the Table repository. This parameter is
mandatory.
generation: A number that represents the execution level of
the task.
0 = the current task, 1 = parent task, etc.

Returns: The function will return an integer between 0-100 that
specifies the hit ratio.

Example: DbCache (‘1’ FILE, 0) will return the hit ratio for the first
table defined in the Table repository in the current task.
Note: the FILE literal can be used.

For more information, see the section on The eDeveloper Cache in Chapter
20, Utilities.

DbCopy Database Copy
Allows you to copy an existing data file and its definition and data to a new
file. DbCopy supports both ISAM and SQL files.

Syntax: DbCopy (number, source file specification, destination file
specification)

Parameters: number: A number that represents the file’s sequence in the
Table repository.
Reference Guide 602

source file specification: An optional string that represents
the file specification name.
destination file specification: A string that represents the
destination file specification name.

Returns: Logical indicating success or failure.
The function returns False in the following cases:
• The source file is currently open
• The source file is a resident file
• The source file does not exist - displayed error: “Table
does not exist: source file specification”
• The destination file already exists - displayed error:
“Target table exists. Create failed for table: destination file
specification”
• The source file is a view - displayed error: “Can not drop/
copy a view, view: source file specification”
• Other errors - displayed error: “Failed to copy, table:
source file specification”

Notes: When using eDeveloper for iSeries, you can use the DbCopy
functions in SQL gateway by entering the database name in
the Owner table property. From the DBMS repository, you
must enter the NAMING=*SQL keyword in as a parameter
for AS400. For more information, see the Defining DBMS
Parameters in the iSeries Guide.

DbDel Database Table Deletion
Deletes an eDeveloper database that appears in the Table repository, and
returns a logical True or False indicating success or failure of the
operation. Removes all rows from a table that is residing as a parameter.
Subsequent opening of this table reloads the rows from its database.

Syntax: DbDel(number,tablespec)
Parameters: number: A number that represents the table’s sequence

number in the Table repository. This parameter is
mandatory.
tablespec: This parameter is used as an alternative to
number. If not needed, enter ‘’. If needed, enter an alpha
string that represents the table specification. The string may
Reference Guide 603

contain a path. If the path is not indicated, eDeveloper
assumes the current directory.

Returns: Boolean (True, False)
Examples: DbDel(1,’’) or

DbDel(‘1’FILE,’’)
attempts to delete the first table of the Table repository and
returns True if the operation is successful.
DbDel (1,’FSTFIL.DAT’)
attempts to delete the first table of the Table repository,
using the OS name ‘FSTFIL’ in the current directory.

Note: Using the literal FILE will insure that the correct table will be
deleted even if the table’s position in the Table repository
has changed. The table sequence number and path behave
exactly as defined in the Table repository. Refer to Chapter
4, Tables.

See also: DbRecs, DbExist, DbSize
The DbDel function, when given a table that is resident as a parameter,
will remove all rows from the resident table. Subsequent opening of this
table will reload them from the database.

DbDiscnt Database disconnect
Receives a database as a parameter and disconnects the current
connection of that database. The DbDiscnt function is relevant only for
SQL databases.

Disconnecting is allowed only if there is no cursor open on the database
that you are trying to disconnect from. If there is a cursor open and the
user issues a DbDiscnt command, an error message will be displayed.

DbDiscnt allows the developer to disconnect the current database
connection in order to disconnect a user from a database connection no
longer needed in the application, or to disconnect a user from a database
connection in order to connect another user to the same database
connection.

Syntax: DbDiscnt(string)
Parameter: string - An alpha string or alpha string expression containing

the database name.
Reference Guide 604

Returns: Boolean (True, False)
Returns True when the disconnect operation has succeeded,
and False when the disconnect operation has not succeeded
or when there is no connection to disconnect.

Example: Use DbDiscnt(‘MSSQL’), where MSSQL is the database name
defined in the Database repository.

DbERR Database Error Message
Returns the first database error message that causes an internal
processing error or chain of errors. This function enables the retrieval and
display of a database error code and message text for display to end-
users. Invoking the DbERR function also clears the error message.

Syntax: DbERR(string)
Parameter. string: An alpha string or alpha string expression containing

the name of the database.
Returns: For SQL: A string containing the error message.

For ISAM: A number representing the error code.
Example: Use DbERR with the Evaluate operation to clear the last

error, if one exists, immediately before the operation that
needs to be monitored for errors.

Note: The error number or text returned depends on the
underlying DBMS used for data storage.

DbExist Verify Table Existence on Disk
Checks whether a specified data table exists on disk, and returns a logical
True or False accordingly.

Syntax: DbExist(number,tablespec)
Parameters: number: A number that represents the table’s sequence

number in the Table repository.
tablespec: This parameter is used as an alternative to
number. If not needed, enter ‘’. If needed, enter an alpha
string that represents the table specification. The string may
contain a path. If the path is not indicated, eDeveloper
assumes the current directory.

Returns: Boolean (True, False)
Reference Guide 605

Examples: DbExist(1,’’) or
DbExist(‘1’FILE,’’)
return True if the table exists on disk.
DbExist (1,’FSTFIL.DAT’)
attempts to check the first line of the Table repository, using
the OS name ‘FSTFIL.DAT’ in the current directory.
Note: Using the literal FILE will insure that the correct table
will be found even if the table’s position in the Table
repository has changed. The table sequence number and
path behave exactly as defined in the Table repository. For
more information refer to Model Repositories in Chapter 4,
Tables.

DbExist with a table number parameter of 0 (zero), or greater than the
number of tables in the Table repository, will always return False.

See also: DbDel, DbRecs, DbSize

DbName Database table name
Identifies a database table by name from the Table repository.

Syntax: DbName(number)
Parameter: number: The row entry in a Table repository.
Returns: DB table name from row(number) in the Table repository.
Examples: DbName(3) or

DbName(‘3’FILE) each return
the name of the table shown in the 3rd row of the Table
repository.

Note: The use of the FILE literal will assure that the correct entry
will be chosen even if the table’s position in the Table
repository has changed. The table sequence number and
path behave exactly as defined in the Table repository. Refer
to the Model Repository in the Chapter 4, Tables.

DbRecs Table Rows Count
Returns the number of rows in a database table.

Syntax: DbRecs(number,tablespec)
Reference Guide 606

Parameters: number: A number that represents the table’s sequence
number in the Table repository.
tablespec: This parameter is used as an alternative to
number. If not needed, enter ‘’. If needed, enter an alpha
string that represents the table specification. The string may
contain a path. If the path is not indicated, eDeveloper
assumes the current directory.

Returns: Number (0 if empty).
Example: DbRecs(1,’’) or

DbRecs(‘1’FILE,’’)
returns the number of rows contained in the first table of
the Table repository.
DbRecs(1,’FSTFIL.DAT’)
returns the number of rows in the FSTFIL.DAT table in the
current directory.

Note: Using the literal FILE will insure that the correct table will be
counted even if the table’s position in the Table repository
has changed. The table sequence number and path behave
exactly as defined in the data dictionary. Refer to the Model
Repository in Chapter 4, Tables.

See also: DbDel, DEBEXIST, DbSize

DbReload Database Load

Reloads a resident table during runtime.
Returns a logical value indicating the success or failure of the load.

With a specific path as the second parameter, DbReload deletes the old
resident table path and loads the new path of the resident table.

Syntax: DbReload (number,tablespec)
Parameters: number: A number that represents the table’s sequence

number in the Table repository.
tablespec: This parameter is used as an alternative to
number.
If not needed, enter ‘’. If needed, enter the complete alpha
string that represents the table specification.
The string may contain a path.
Reference Guide 607

If the path is not indicated, eDeveloper assumes the current
directory.

Returns: True for a successful load
False for a failed load

Example: DbReload(3,’’)
Note: DbReload loads only the resident tables of the current

context.
This function can only be used if the Load Resident Tables
setting (Settings/Environment/Preferences) is set to Yes.

DbRound Database round function for SQL databases.

Returns a numeric expression, rounded to the specified number of decimal
places. The DbRound function rounds a number according to the behavior
of the SQL database. The returned value is different than the value
returned from the Round function.

Syntax: DbRound(numeric_expression,length)
Parameters: numeric_expression - Is an expression of a numeric variable

or constant.
length - Is the number of decimal places to which the
numeric expression is rounded. It’s required that length be
a numeric value. When the length is a positive number, the
numeric expression is rounded to the number of decimal
places specified by the length. When the length is a
negative number, the numeric expression is round to the left
side of the decimal point.

Returns: Returns a numeric value.
Remarks: DbRound always returns a numaric value. If the length is

negative and larger than the number of digits to the left of
the decimal point, the DbRound function returns 0.
Reference Guide 608

Examples:.

DbSize Table Size
Returns the size of a database table.

Syntax: DbSize(number,tablespec)
Parameters: number: A number that represents the table’s sequence

number in the Table repository.
tablespec: This parameter is used as an alternative to
number. If not needed, enter ‘’. If needed, enter an alpha
string that represents the table specification. The string may
contain a path. If the path is not indicated, eDeveloper
assumes the current directory.

Returns: Number (0 if no table exists).
Examples: DbSize(1,’’) or

DbExist(‘1’FILE,’’)
return the number of bytes of data contained in the first
table of the Table repository. The actual size of the table on
disc may be larger.
DbSize (1,’FSTFIL.DAT’) returns the number of bytes
contained in the FSTFIL.DAT table in the current directory.

Note: Using the literal FILE will insure that the correct table will be
used even if the table’s position in the Table repository has
changed. The table sequence number and path behave
exactly as defined in the Table repository. Refer to Chapter
4, Tables.

See also: DbDel, DbExist, DbRecs

Example Result

DbRound(657.4545,2) 657.45

DbRound(657.4552,2) 657.46

DbRound(657.37,-4) 0

DbRound(657.37,-1) 660

DbRound(657.37,-2) 700

DbRound(657.37,-3) 1000
Reference Guide 609

DDEBegin DDE Begin
Creates a session.

Syntax: DDEBegin (service,topic)
Parameters: service: Provides the main identifier of the DDE service.

Usually this is an application name such as WinWord, for MS
Word for Windows, or Excel, for MS Excel.
topic: String, depending on the service.

Returns: True if the DDE server is already connected or a new
connection has been established, or
False for failure initializing the DDE or connecting to the
DDE.

Example: DDEBegin(‘Excel’,’c:\docs\budget.xls’)
Initiates a DDE session control by the user, independent of
the DDE process. The DDE session remains open until the
user selects the DDEEnd function.

See also: DDEEnd, DDEGet, DDEPoke, DDERR, DDExec

DDEEnd DDE End
Terminates a session.

Syntax: DDEND (service, topic)
Parameters: service: Provides the main identifier of the DDE service.

Usually this is an application name such as WinWord, for MS
Word for Windows, or Excel, for MS Excel.
topic: String, depending on the service.

Returns: True for successful completion, or
False for failure if the service and topic were not started by
the DDEBegin function.

Example: DDEEnd(‘Excel’,’c:\docs\budget.xls’)
See also: DDEBegin, DDEGet, DDEPoke, DDERR, DDExec

DDEGet DDE Get
Get a string of characters from a DDE server

DDEGet returns a string value of size length from the specified DDE server.
Each DDE server application provides access to its services via a
Reference Guide 610

combination of the three identifiers: service, topic, and item. Taken
together, the three identifiers provide a unique identification of the
service.

Syntax: DDEGet (service,topic,item,len)
Parameters: service: The main identifier of the DDE service. Usually this

is an application name such as WinWord for MS Word for
Windows, or Excel for MS Excel.
topic: The area within the server application with which you
want to exchange information. A topic may be a document
name in MS Word for Windows or a spreadsheet in MS Excel.
Server applications usually provide a system topic as
standard practice. The system topic provides information
about the application and topics that may be accessed by
DDE. The system topic services can be requested through
the item parameter. For example, the MS Excel system topic
has a system item that returns the items that are available
in the system topic. The format of the information returned
by the system topic depends on the server application.
item: Further defines the exact data item for the exchange.
Together with service and topic it points to a unique item.
For example, a paragraph in a Word for Windows document
may be read by DDE if the topic specifies the document
name, and the item points to a bookmark in that document
that marks the required paragraph.
len: The maximum length of the information that will be
returned by the function. If the information returned is less
than the maximum length, its trailer will be padded with
blanks.

Returns: A character string of size len. If the DDEGet fails, the string
will be empty. The string returned is provided by the DDE
server application according to the service, topic, and item
parameters of the function.

Examples: DDEGet(‘WinWord’, ‘c:\docs\ddetest.doc’, ‘toMagic’,2000)
reads a paragraph from an MS Word for Windows document
that is marked with a bookmark in Word
where ‘c:\docs\ddetest.doc’ is the document name;
‘toMagic’ is the bookmark name, and
2000 is the maximum size in bytes of the paragraph that
Reference Guide 611

will be returned by the function.
Note that the single quotes are required on the first three
columns, all string columns.
DDEGet(‘Excel’,’c:\docs\budget.xls’,’R19C1:R22C7’, 2000)
reads a range of cells from an MS Excel spreadsheet where:
‘c:\docs\budget.doc’ is the spreadsheet name,
‘R19C1:R22C7’ is the cell range, and
2000 is the maximum size in bytes that will be returned by
the function.
eDeveloper requires the single quotes shown in these
examples to identify parameters as strings.

See also: DDEBegin, DDEEnd, DDEPoke, DDERR, DDExec

DDEPoke DDE Poke
DDEPoke transfers a string from eDeveloper to the DDE server specified
by the function’s parameters. Each DDE server application provides access
to its services via a combination of three identifiers: service, topic, and
item. Taken together, the three identifiers provide a unique identification
of the service. The string transferred by eDeveloper will be inserted to the
server application at the location identified by service, topic, and item.

Syntax: DDEPoke (service,topic,item,data)
Parameters: service: Provides the main identifier of the DDE service.

Usually this is an application name such as WinWord for MS
Word for Windows, or Excel for MS Excel.
topic: Provides a definition of the area within the server
application with which you wish to exchange information. A
topic may be a document name in MS Word for Windows or
a spreadsheet in MS Excel.
item: Further defines the exact data item for the exchange.
Together with service and topic it points to a unique item.
For example, a paragraph in a Word for Windows document
may be inserted by DDE if the topic specifies the document
name, and the item points to an empty bookmark in that
document that marks the required paragraph.
data: The data string that will be passed by the function to
the server application.
Reference Guide 612

Returns: True for successful completion, or
False for failure to poke the data to the server application.

Note: The information transferred to the server application may
have to follow some formatting rules dictated by the server
application. Refer to the server application documentation
for details.

Examples: DDEPoke (‘WinWord’, ‘c:\docs\ddetest.doc’, ‘fromMagic’,
‘This paragraph was planted by eDeveloper using DDE’)
Will write a paragraph to an MS Word for Windows
document, where the paragraph has been marked with a
bookmark in Word, and where
‘c:\docs\ddetest.doc’ is the document name,
‘fromMagic’ is the bookmark name, and
‘This paragraph was planted by eDeveloper using DDE’ is
the data that will be transferred by the function to the
server application.
DDEPoke (‘Excel’, ‘c:\docs\budget.xls’, ‘R1C1’, ‘100’)
Will write the number 100 into an MS Excel spreadsheet cell,
where: ‘c:\docs\budget.doc’ is the spreadsheet name, and
‘R1C1’ is the first cell of the spreadsheet that will receive the
information passed by the function.
eDeveloper requires the single quotes shown in this
example, to identify columns as strings.

See also: DDEBegin, DDEEnd, DDEGet, DDERR, DDExec

DDERR DDE Error

DDERR retrieves the last error that occurred during an eDeveloper DDE
conversation. A subsequent call to DDERR clears the previously reported
error code and resets the return value. This function retrieves useful
information for debugging purposes.

Syntax: DDERR ().
Parameters: None
Reference Guide 613

Returns: A numeric value ranging between 0 and 15, with the
following meanings:

See also: DDEBegin, DDEEnd, DDEGet, DDExec, DDEPoke

DDExec DDE Execute

DDExec transfers a command string from eDeveloper to the DDE server
specified by the function’s parameters. Each DDE server application
provides access to its services via a combination of three identifiers:
service, topic, and item. Taken together, the three identifiers provide a
unique identification of the service. The command string transferred by
eDeveloper will be transferred to the server application, which in turn will

0 No error in the last DDE operation, or a
reset return value if this is the second
consecutive call to the function

1 Failure to initialize the DDEML system

2 Failure to connect to the server (could be
a wrong or missing service parameter in
the preceding DDE call)

3 Server was busy during the DDE call and
could not service the call

4 Server did not process the DDE service
required (could be a wrong parameter,
an invalid combination of parameters, or
an invalid required service combination)

5 The last DDEGet failed (server could not
provide the required item)

6 No item was specified on a GET or POKE
request

7 No command was specified on an EXEC
request

14 Unknown type of error

15 Attempt to execute a DDE function on an
operating system other than Windows
Reference Guide 614

try to execute it. The command string must follow strict DDE format rules.
The command contents must be a valid server application’s command. If
the command contents are not a valid server application command, the
server application will fail.

Syntax: DDExec (service,topic,item,command)
Parameters: service: Provides the main identifier of the DDE service.

Usually this is an application name such as WinWord, for MS
Word for Windows, or Excel, for MS Excel.
topic: when used with DDExec, the topic will usually be
‘System’, as the server application, represented by the
System topic, rather than a data object within the server
application, is responsible for the exchange.
item: Further defines the exact data item for the exchange.
When used with DDExec, it will usually remain empty.
command: The command string that will be passed by the
function to the server application that will then execute it.
DDE commands must be contained within square brackets
[].
Several commands may be included within one command
string, each in its own brackets, separated by blanks.
For example:
[command1]
[command2(parameter1)]
[command3(parameter1, parameter2, parameter3)]
[command1] [command3(parameter1, parameter2,
parameter3)]
The command string must contain a valid server application
command. Refer to the server application documentation for
details about command syntax.

Returns: True for successful completion, or
False for failure to execute the command at the server
application.

Examples: DDExec (‘WinWord’, ‘System’, ‘’,
‘[FileOpen “c:\docs\ddetest.doc”]’)
Opens an MS Word for Windows document where:
‘[FileOpen “c:\docs\ddetest.doc”]’
Reference Guide 615

is the command transferred by the function to the server
application for execution.
DDExec (‘Excel’, ‘System’, ‘’,
[run(“MACROS.XLM!FormatCells”)])
Executes the MS Excel macro (FormatCells).
DDExec (‘Excel’,’System’,’’,
[Open(“c:\docs\test.xls”)]
Executes the MS Excel system.
eDeveloper requires the single quotes shown in these
examples, to identify columns as strings.
MS Excel requires the double quotes shown in these
examples.

See also: DDEBegin, DDEEnd, DDEGet, DDEPoke, DDERR

DeCipher Converts an encrypted buffer to a buffer containing an Alpha string or a
BLOB.

Syntax: DeCipher(Cipher ID, Buffer, Key [, Mode, IV])
Parameters: ID - A number representing the selected cryptographic

algorithm.
Buffer - A BLOB with the encrypted buffer.
Key - A BLOB string containing the encryption key.
Mode - An Alpha string containing the selected mode for the
encryption method selected by the Cipher ID. If a mode is
not selected for a method that requires a mode, CBC is used
as the default mode. See the Mode table below.
IV - A BLOB string containing an initialization vector. This
parameter is optional.

Returns: A BLOB containing the decrypted buffer.
If the Cipher ID is not valid, or the key length does not
match the Cipher ID, the function returns a Null value.

Note: See the information about the Cipher function for the
supported encryption methods.

See also: Cipher, EncryptionError
Reference Guide 616

Del Delete Characters
Deletes characters from an alpha string.

Syntax: Del(string,start,length)
Parameters: string: An alpha string or an alpha string expression.

start: The position of the first character to be deleted.
length: The number of characters to be deleted, beginning
with position start and proceeding rightward.

Returns: The source string with the specified segment deleted.

Examples: Del(‘ABCD’,2,1)
deletes the second letter of the string, and returns ‘ACD’.
If X contains a character string of a length greater than or
equal to 2, the following expression removes either the first
or second character, or leaves the string intact, according to
the value that appears in field Y (negative, positive or zero).
IF (Y<0,Del(X,1,1),IF(Y>0,Del(X,2,1),X))

See also: Ins, Fill, Rep

Delay Freeze all activity for n tenths of a second
The Delay function stops the execution of the current process for a
specified period of time. The delay is terminated when the time specified
for it has passed, or with the first user keystroke.

Syntax: Delay(10th of seconds)
Parameter: number: Number of tenths of a second to delay the current

process.
Returns: True
Example: Delay(10)

will cause a 1.0 second delay, and then the calling process
will resume. If a key is pressed while the delay function is
active, the delay will be immediately terminated.

DiscSrvr Disconnect Server

Disconnects a server no longer required by eDeveloper.
This function releases unnecessary server connections.

Syntax: DiscSrvr(string)
Reference Guide 617

Parameter: string: A string defining a server in the Server repository
Returns: Boolean (True, False)

True means that the disconnect operation from the specified
server has succeeded.
False means that the disconnect operation has failed, for
one of the following reasons:
The server name does not exist in the Server repository
No connection existed to the server
eDeveloper still requires the server connection
The disconnect operation failed.

DOW Day of Week
Returns the number of the day of the week from a date, where Sunday is
1, Monday is 2, etc.

Syntax: DOW(date)
Parameter: date: A date
Returns: Number
Examples: DOW(‘01/28/96’Date) (representing a Wednesday)

returns 4.
The following expression displays a message if the system
date is a Sunday:
IF(DOW(Date())=1,’Never on Sunday’,’’)

See also: CDOW, Day, NDOW

DragSetCrsr The DragSetCrsr function determines whether the cursor file is defined as
Copy mode or as None mode.

Syntax: DragSetCrsr(mode, cur file)
Parameters: mode - A number that represents the cursor mode:

1 - The cursor is set for Copy mode. The Copy mode image
appears when a dragged data value can be dropped on a
form, control, or external application.
2 - The cursor is set for None mode. The None mode image
appears when a dragged data value cannot be dropped on a
form, control, or external application.
Reference Guide 618

cur file - The cursor file name and path (*.cur).
Returns: True when the cursor file is located and loaded successfully.
Note: If the cursor mode number is not supported, the mode will

be considered copy mode.

DragSetData The DragSetData function determines the data content and format of a
control that is not defined for automatic data handling. This function also
lets you assign the data content to a different data format.

Syntax: DragSetData(data content, data format, user defined
format)

Parameters: data content - A string value that represents the actual
data as part of the drag operation data.
data format - A numeric value that represents the format of
the data stored by the operating system. The data formats
are:
0 - User-defined format
1 -Text
2 -OEM text
3 -Richtext
4 -HTML
5 - Hyperlink
6 - File name and path
user defined format - An optional string parameter that
names a user-defined format. This parameter is required
when the data format parameter is set to 0 but is not
relevant for other data formats.

Returns: True only when evaluated within the scope of an active drag
begin event.

Example: DragSetData('ABC', 1) results in displaying the 'ABC'
string as the text format Drag operation data.
DragSetData('DEF', 0, 'My format') results in setting the
'DEF' string as the user-based format drag operation data.

Note: The DragSetData function can be performed several times
to define data for different types of formats. Each data
format can only be set once with data in a single drag
Reference Guide 619

operation. If the function is evaluated twice for the same
data format within the same drag operation, only the last
evaluation will be applied.

DropFormat The DropFormat function is used to check whether a defined data format is
supported by a drop operation.

Syntax: DropFormat(data format, user defined format)
Parameters: data format - The numeric value for the data format stored

in the operating system. The data formats are:
0 - User-defined format
1 - Text
2 - OEM text
3 - Rich text
4 - HTML
5 - Hyperlink
6 - File name and path
user defined format - This parameter is required when the
data format parameter is set to 0 but is not relevant for
other data formats.

Returns: True if the data format is supported.
Example: DropFormat(0, 'My format') returns True if the user-defined

format is supported by the drag operation data.
DropFormat(6) returns True if the File format is supported
by the drag operation data.

Note: To handle drop data of user-defined formats, you must first
set the names of the expected user-defined formats in the
Drop Data supported user formats environment setting on
the External tab of the Environment Settings dialog.

DropGetData The DropGetData function retrieves the data from the drag and drop
operation using the defined format.

Syntax: DropGetData(data format, user defined format)
Parameters: data format - A numeric value for the data format stored in

the operating system. The data formats are:
Reference Guide 620

0 - User-defined
1 - Text
2 - OEM text
3 - Rich text
4 - HTML
5 - Hyperlink
6 - File name and path
user defined format - An optional string parameter that
specifies a user-defined format by its name. This parameter
is required when the data format parameter is set to 0 but is
not relevant for other data formats.

Returns: A string value of the retrieved data. If the format is not
supported, the function returns a Null.

Example: DropGetData(0, 'My format') returns the string value of the
user-defined format data.
DropGetData(1) returns the string value of the text format
data.
DropGetData(4) returns the string value of the HTML format
data.
DropGetData(6) returns the full path name of the dragged
file. If multiple files are marked, dragged, and dropped, the
function returns the full path name of each file, delimited by
a comma.

Note: To handle the drop data of user-defined formats, you must
first set the names of the expected user-defined formats in
the Drop Data supported user formats environment setting
on the External tab of the Environment Settings dialog.

DropMouseX The DropMouseX function retrieves the Mouse Cursor X coordinate of the
current form when the dragged data value is dropped.

Syntax: DropMouseX()
Parameters: No parameters required.
Returns: The numeric value of the Mouse Cursor X coordinate
Reference Guide 621

Note: When a drop occurs outside the form's client area, such as
the form title, the X coordinate will be returned as a
negative value.

DropMouseY The DropMouseY function retrieves the Mouse Cursor Y
coordinate of the current form when the data value is
dropped.

Syntax: DropMouseY()
Returns: The numeric value of the Mouse Cursor Y coordinate.
Note: When a drop occurs outside the form's client area, such as

the form title, the Y coordinate will be returned as a
negative value.

 DStr Date to Picture String Conversion
Converts a date or a date expression to a character string, according to a
format.

Syntax: DStr(date, picture)
Parameters: date: A date

picture: The format of the resulting character string. For a
full description of the pictures, refer the Pictures section in
Chapter 3, Data Items.

Returns: Alpha string
Examples: When the Date Mode is set to American,

DStr (‘01/28/96’Date,’WWWWWWWW, MMMMMMMM DD,
YYYY’)returns ‘Tuesday, January 28, 1996’
When the Date Mode is set to European, DStr(‘28/01/
96’Date,’DD/MM/YY’) returns 28/01/96

Note: You must use the Date Mode environment setting to set the
date format, such as:

• American -- MM/DD/YY

• European -- DD/MM/YY

• Scandivanian -- YY/MM/DD

• Buddhist -- DD/MM/YY (YY is the current non-Buddhist
date + 36)
Reference Guide 622

The date format that you selected must be reflected in the
Date Literal string.

For example, If you have selected American for the Date
Mode, you must enter the Date Literal string for this
function as '01/28/96'Date.

If the Date Literal string is inconsistent with the Date Mode
value, a Bad Date error appears on the status bar when the
Syntax Checker is evoked.

The word, Date, following '01/28/92' identifies the string as
a Date Literal string, and should not be confused with the
Date() function.

See also: DVal

DVal Date String to Numeric Value
Converts a date entered or stored as a character string to a numeric value.
The numeric value represents the number of days elapsed since the day
before the first day of the 1st century (01/01/0001) until the date that is
being converted.

Syntax: DVal(datestring,picture)
Parameter: datestring: A character string or an alpha expression that

can be interpreted as a date (e.g., ‘01/01/97’, ‘Jan 1,
1997’).
picture: The format for datestring. This parameter is
required for eDeveloper to read and interpret the character
string or expression.

Returns: Number
Examples: DVal(‘01/01/97’,’MM/DD/YY’) and

DVal(‘Jan 1, 1997’,’MMM D, YYYY’)
each returns 729025
where variable A contains ‘January 1, 1997’
DVal(A,’MMMMMMMMM DD, YYYY’) where variable A
contains ‘January 1,1997 also returns 729025
DVal('01/01/01','MM/DD/YY') and DVal('Jan 1, 2001','MMM
D, YYYY') each returns ‘01/01/2001’Date.
Reference Guide 623

where variable A contains 'January 12, 2002'
 DVal(A,'MMMMMMMMM DD, YYYY') also returns ‘12/01/
2002’Date.

See also: DStr
Note: If picture does not correspond to the format of datestring,

the function returns 0.

EditGet Control value
Returns the control value in edit mode.

Syntax: EditGet()
Returns: The edited value of the field from which the last handler was

invoked.
Note: The EditGet function returns the edited value of the last

control from which the logic (handler) was invoked.
The EditGet function returns the value of the edited control
according to the variable’s attribute.
In controls other than Edit control, which cannot be edited,
the value will be the current value of the control or variable.
If the EditGet functions is evaluated in the flow when the
Magic engine is not parked on any control the function
returns NULL.
If the handler invoked on a control is set on a Force Record
Exit event the EditGet will return NULL.

EditSet Sets the edited value of the control that invoked the last handler.

Syntax: EditSet (value)

Parameter: value - the value entered in the control.

Returns: A boolean value that indicates the success (True) or failure
(False) of the function.

Note: The value provided in this function must match the attribute
of the variable associated with the control. If the attributes
are not identical, the function will return a False value.

For controls other than the Edit control, which cannot be
edited, the set value is the variable associated with the
Reference Guide 624

control.

If the EditSet function is evaluated in the flow when the
Magic engine is not parked on any control, the function will
return a False value.

If the handler invoked on a control is set to a Force Control
Exit event, the EditSet function will set the value of the
variable associated with the control.

If the handler invoked on a control is set on a Force Record
Exit event, the EditSet function will return a False value.

EJBCreate Obtains a new instance of an Enterprise Java Bean.

Syntax: EJBCreate(‘<JNDI name>’[,’jndi properties string’])

Parameters: <JNDI name> - Must be alpha-numeric

jndi properties - Must be alpha-numeric

Returns: A pseudo-reference to a new instance. The return value
must be a BLOB variable.

Example: EJBCreate(‘JNDI_ejb1’)

EJBExplore Provides a description of an Enterprise Java Bean.

Syntax: EJBExplore(‘<JNDI name>’ [,’jndi properties string’])

Parameters: <JNDI name> - Must be alpha-numeric

jndi properties - Must be alpha-numeric

Returns: An XML description of the EJB. The return value must be an
alpha-numeric variable.

EncryptionError Returns the last error message for the Cipher and DeCipher
functions. The function scope is per context.

Syntax: EncryptionError()

Parameters: None

Returns: The last error message for the Cipher and DeCipher
functions.
Reference Guide 625

EOF End of File
Reports whether the specified I/O file is at the end of information.
Whenever an I/O file reaches the end of information, an EOF flag is raised.
This flag is queried by the EOF function.

Syntax: EOF(generation,file)
Parameters: generation: A number that represents the hierarchic

position of the task. 0 represents the current task, 1 its
immediate ancestor, etc.
file: A number that represents the sequence number of the
I/O file in the current task.

Returns: Logical
Example: EOF(0,1)

returns True after processing the last record of the first I/O
file in the current task.

Note: EOF is used for input I/O files. It should be used as an end
condition in tasks that read information from operating
system text (I/O) files. The following expression when used
as an end condition in a task reading from a single I/O file
will cause task termination as soon as the last piece of
information is read from the file: EOF (0,1).

See also: EOP, Line, Page

EOM End of month
Returns the date of the end of the month specified in the parameter.

Syntax: EOM(date)
Parameter: date: A date or a date expression.
Returns: Value of type Date.
Example: EOM (‘05/05/97’Date)

returns ‘05/31/97’.
See also: BOY, BOM, EOY, AddDate, CDOW, and all Date functions.

EOP End of Page
Reports whether the line counter of the current page in the specified I/O
file is greater than the Lines parameter specified for it. If the lines
parameter contains 0, eDeveloper uses the Lines parameter specified for
Reference Guide 626

the printer associated with the I/O file. EOP is raised if Form lines is
specified and eDeveloper line count is greater than Form lines.

Syntax: EOP(generation,file)
Parameter: generation: A number that represents the hierarchic

position of the task. 0 represents the current task, 1 its
immediate ancestor, etc.
file: A number that represents the sequence number of the
output file in the current task.

Returns: Logical True if the specified I/O file is at the EOP, False if not.
Example: EOP(0,1)

returns True at the end of a page, while processing the first
output file in the current task.

See also: EOF, Line, Page

EOY End of Year
Returns the date of the end of the year specified in the parameter.

Syntax: EOY(date)
Parameter: date: A date or a date expression.
Returns: Value of type Date.
Example: EOY (‘11/17/97’Date)

returns ‘12/31/97’
See also: BOM, BOY, EOM, AddDate, CDOW, and all Date functions.

ErrDatabaseName
 Error in Database - Name is not specified.

Returns the name of the database where the error occurred.

Syntax: ErrDatabaseName ()
Parameter: None.
Returns: Name of the database where the error occurred.

ErrDbmsCode Error in Database - Code is not specified.

Returns the DBMS original error code.
Reference Guide 627

Syntax: ErrDbmsCode ()
Parameter: None
Returns: The DBMS original error code.
Note: ErrDbmsCode can be used for fatal and unexpected errors,

assuming that the developer is familiar with DBMS internal
error codes.

ErrDbmsMessage

Error in Database - Message is not specified.

Returns the original DBMS error message.

Syntax: ErrDbmsMessage ()
Parameter: None.
Returns: Original DBMS error message.
Note: Can be used for fatal and unexpected errors. eDeveloper

gets the internal message from DBMS and displays it.

ErrMagicName Database Error - eDeveloper Literal is not specified.

Contains the eDeveloper literal for the error that occurred.

Syntax: ErrMagicName ()
Parameter: None
Returns: An alpha string that contains the eDeveloper literal for the

error that occurred.
Note: This function is needed when using a handler of type ‘any’.

ErrPosition Database Error - Position is not specified.

Refers to the position of the record where the error occurred.

Syntax: ErrPosition ()
Parameter: None
Returns: BLOB expression with the internal position of the record

where the error occurred.
Reference Guide 628

Note: If outside the scope of an error, the function returns a blank.
The function can be used as an expression to display the
record where an error occurred.

ErrTableName Database Error - Physical Table Name is not specified.

Returns the physical name of the table on which the error has occurred.

Syntax: ErrTableName ()
Parameter: None
Returns: Physical name of the table on which the error has occurred.
Note: If the error handler is defined for a specific table, calling this

function is unnecessary. If not, it can be used to determine
if the error occurred on the Main table or one of the linked
tables. When the function will be irrelevant, the return value
will be blank.

EuroCnv European Currency Conversion
Returns the converted value from currency to currency based on the
conversion values of the euro in the Currency table.

Syntax: EuroCnv(From,To,Value)
Parameters: From: The currency that the user converts from(Alpha).

To: The currency that the user converts to (Alpha).
Value: The value of the currency to be converted (Numeric).

Returns: The converted value in the To currency.
Example: EuroCnv(‘ITL’,’DEM’,A)

Converts the value A from Italian lira to German DM.
EuroCnv(‘ITL’, EURO. 50*B)
Converts 50 times the value B from Italian lira to euro.
EuroCnv(A,B,C)
Converts the value C from Currency A to Currency B.

EuroDel European Currency Code Delete

Allows the developer to remove the Currency code from the European
Currency Conversion Table.
Reference Guide 629

Syntax: EuroDel (Selected Currency)
Parameter: Selected Currency - A string value that represents a

currency code listed in the European Currency Conversion
Table (ECCT).

Returns: A True value is returned if the currency entry is deleted.
Example: . EuroDel(‘FRF’) removes the French Franc currency from the

ECCT.
Note: The EuroDel function can be used with the Evaluate

operation only in runtime. EuroDel (A) is not sufficient,
specify EuroDel (A).

EuroGet European Currency Table Access
Lets the user to access the currency list in deployment mode.

Syntax: EuroGet ()
Parameter: None
Returns: The Base Currency string is returned.
Example: EuroGet () returns EURO for a default setting of the Base

Currency property.

EuroSet European Currency Table - Base Currency Set

Modifies the Base Currency in deployment (runtime) mode.

Syntax: EuroSet (Selected Currency)
Parameter: Selected Currency - A string value that represents a

currency code.
Returns: A True value is returned if the Base Currency is modified.
Example: EuroSet (‘FRF’=0) sets the Base Currency parameter to

French Francs.
Note: 1. Changing the Base Currency property of an application

affects the database rows that are based on the currency
value.
2. EuroSet can be used with the Evaluate operation.

EuroUpd Updates an entry to the Currency table.
Reference Guide 630

Syntax: EuroUpd (Code Name, Name, Precision, Euro Rate)
Parameters: Code Name: Currency Code name (maximum 4 characters)

Name: Currency description name. (maximum 20
characters)
Precision: The precision of results of calculations based on
this entry. Valid values are 0,1,2.
Euro Rate: The exchange rate of the currency to 1 euro.

Returns: A True value is returned if the entry is updated.
Note: 1. An update to a non-existent currency will append the

currency to the Currency table.
2. The Conversion table does not allow duplicate code
names.

EvalStr Evaluate String
This function lets you evaluate dynamic expressions that may be
constructed at runtime.

Syntax: EvalStr(string, default value)

Parameters: string: A string that evaluates to a valid eDeveloper
expression.
default value: The function returns the default value of the
first parameter that is found to be an invalid expression. The
default value of the function must match the expected
attribute of the function according to the context of where
the function is placed in the expression.
For example, in the expression 1 + EvalStr(string, default
value), the expected attribute of the default function is
Numeric.

Returns: The evaluated value of the expression given by the first
parameter. If this expression is invalid, the default value is
returned.

Example: EvalStr(A,0), where A=’3 + 2’, returns the value of 5.
EvalStr(A,0), where A=’3 +’, returns the value of 0.

Note: If the expression represents a single quote character (for a
string or a literal), you should provide two single quotes for
each single quote.

For example:
Reference Guide 631

EvalStr('DbDel(''1''FILE,''MYFILE.DAT'')').orEvalStr('''A'' &
"B''',)" = 'AB'If strings are not wrapped by quotes, they are
regarded as variable references:EvalStr('A & B') = variable
A & variable B.Although using the variable letter codes is
legal, it is best to avoid referring to variables by their codes
because their location may vary.If you wish to refer to
variables, it is better to refer to them by their names using
the VarCurrN and VarIndex functions. For
example:EvalStr('VarCurrN(''NAME'')
andVarCurrN(''LAST_NAME'')'0)

EvalStrInfo Checks a string representing an eDeveloper expression that can be
evaluated using the EvalStr function and can retrieve information about
the expression.

Syntax: EvalStrInfo(expression string,option)

Parameters: expression string – A string representing an expression that
can be evaluated using the EvalStr function.

option – A numeric value that sets the type of information
that can be retrieved.

The options are:

1 – Attribute

2 - Expression Parser Error

3 - Result Expression

Returns: A string with the information according to the selected
option.

Options: Attribute (option=1)

If the string represents a valid expression. the function
returns the resolved attribute of the expression:

A – The expression returns an Alpha value.

N – The expression returns a Numeric value.

L – The expression returns a Logical value.

B – The expression returns a BLOB-based value. This
includes BLOB, Vector, OLE, and Active-X data values.
Reference Guide 632

M – The expression returns a Memo attribute.

D – The expression returns a Date attribute.

T – The expression returns a Time attribute.
* – The expression returns an undetermined attribute.
Error – The expression in invalid.

Note: Date and Time attributes are returned only if the expression
is a single function that is date or time-related, such as
Time(), or a simple variable letter combination of a Date or
Time variable, such as ‘A’. For more complex expressions
with Date or Time values, the expression will be identified as
a Numeric attribute.

Also M is returned only if the expression is a simple variable
letter combination of a Memo variable. For more complex
expressions with Memo values, the expression will be
identified as an Alpha attribute.

For example: EvalStrInfo('123',1) returns N

If the string represents an invalid expression, the function
returns an error string.

For example: EvalStrInfo(`123+`,1) returns Error

EXP Exponential
Calculates the exponential value of x.

Syntax: EXP(x)
Parameter: x: a numeric value
Returns: Number, the exponential function ex of the function’s

argument.
Example: EXP(5)

returns e5

See also: LOG

ExpCalc Executes a function during the evaluation of an expression.

Syntax: ExpCalc (Expression Specification)
Reference Guide 633

Parameter: Expression Specification - the expression number to execute
represented by the EXP literal, such as ‘2’exp as a pointer to
the second function in the expression list of the current
task.

Returns: The evaluation value of the specified expression.
Examples: ExpCalc(‘2’EXP)

Executes expression #2.
ExpCalc(BA)
Executes expression position #2.

Note: The expression specification may be one of the following:
EXP literal (For example, '2' exp as a pointer to the second
function in the expression list in the current task).
Constant numeric

File2Blb File2Blb moves a file into a BLOB variable. This allows the developer to
send files in memo requests.

Syntax: File2Blb (File Name)
Parameters: File Name (Alpha) - File Name.
Returns: BLOB - the file packed as a BLOB.
Example: File2Blb(‘C:\att1.rtf’)

Combines an BLOB variable with an att1.rtf file.

File2OLE Enables programmers to convert a file into an object BLOB in eDeveloper,
either by linking or embedding.

Syntax: File2OLE (file name, linked)
Parameters: file name: The name of the file to be converted.

linked: True indicates that the result will be a link to the file;
False indicates that the file will be embedded.

Returns: The function will return a BLOB. If the BLOB is Null, the
function was not able to perform the conversion.

Example: File2OLE(‘C:\att1.doc’,’TRUE’Logical)
Combines an OLE2 BLOB variable with a word file name
att1.doc.
Reference Guide 634

File2Req File to requester

File2Req sends the contents of a BLOB to the requester.

Syntax: File2Req (file name)
Parameters: file name (Alpha) - The file name and path
Returns: True if the file is found and the engine is executed as an

enterprise server. If not, this function returns False.
Note: Before you send data to the requester, you can define HTTP

Header information by using the RqHTTPHeader function.
See also: Blob2Req

FileDLG Accesses a Windows Open File dialog

Syntax: FileDLG(string1, string2)
Parameters: string 1: A file type

String 2: Groups of files
Returns: An Alpha string containing the file name and path.

FileListGet Returns a list of the file names in a directory based on a set of file-name
filters.

Syntax: FileListGet(directory name, filter list, sub dir search)
Parameters: directory name – A string representing a directory. The

string can contain logical names.

filter list – A string representing a list of file filters, including
wild card characters separated by the ‘|’ character. For
example: ‘*.xml|*.xsd’. If the value of this argument is an
empty string, all files in the directory will be listed.

sub dir search – A boolean parameter. True means that the
directory and all subdirectories are searched. False means
that only the specified directory is searched.

Returns: A vector that contains alpha strings. Each cell has a string
that is the file’s name and relative path, for example:
‘dir1\po.xml’. If no files are found, a Null is returned.

Example: FileListGet(‘c:\temp’,’*.xml|*.xsd’,’True’Log) returns a
vector containing alpha strings. Each entry in the vector
Reference Guide 635

contains a file name that is found in the ‘C:\temp\directory’
and its subdirectories, for example: ‘dir1\po.xml’.

Fill Fill a string
Repeats an alpha string or expression n times.

Syntax: Fill(string,times)
Parameters: string: An alpha string or expression.

times: The number of times the string will be repeated.
Returns: Alpha String
Example: Fill(‘*’,5) creates a string of five asterisks ‘*****’
Note: This function accepts a maximum of 32k.
See also: Ins, Del, Rep

Fix Extract-Truncate Number
Extracts a specified part of a number, real or integer.

Syntax: Fix(number,whole,decimal)
Parameters: number: The number subjected to the operation.

whole: The number of digits to be extracted from the
integer part of number. eDeveloper counts the digits from
the decimal separator leftward.
decimal: The number of digits to be extracted from the
decimal part of number. eDeveloper counts the digits from
the decimal separator right wards.

Returns: Number
Examples: Fix(12345.6789,3,3)

returns 345.678
The statement
IF(Fix(M,2,0)=99,N+1,N)
checks the number M; if the last two digits of its whole part
are 99, it increments N.

See also: Round
Reference Guide 636

Flip Flip String to Mirror Image
Reverses an alpha string or the result of an alpha expression to its mirror
image.

Syntax: Flip(string)
Parameter: string: An alpha string or alpha string expression.
Returns: Alpha string
Example: Flip(‘Good’) returns ‘dooG’

Flow Check Flow Mode
Checks the flow mode of an operation.

Syntax: Flow(string)
Parameter: string: An alpha string that represents the flow mode:

N - next, step mode
F - fast mode forward
P - previous, step mode
R - reverse, fast mode
S - Select exit with select operation
C - cancel, exit without selection

Returns: Boolean (True) if the mode specified as input is the current
operation mode.

Example: Flow('N') returns True if the operation is performed in Step
mode.

See also: ViewMod, VarMod

FlwMtr Appends a message string to the Activity Message list, and stops
execution before the next operation in the eDeveloper engine flow.

Syntax: FlwMtr(message string, break expression)
Parameters: . message string: String that is to be appended to the

Activity Message list.
Break expression: A boolean (True) expression that stops
execution before the next operation in the eDeveloper
engine flow.

Returns: Boolean - True or False values determine whether the next
operation in the eDeveloper engine flow will be executed.
Reference Guide 637

FlwMtrVars Instructs the flow monitor to append the Variables dataview to the current
line of the Flow Monitor.

Syntax: FlwMtrVars()
Parameters: None
Returns: True when the engine reports to a flow monitor. False when

the engine does not report to a flow monitor.
Note: Vector variables are appended in an expanded mode,

displaying the content of their cells.

GetLang Get Starting Language
Displays the current selected language string. This is taken from the
Starting Language setting in the Environment dialog.

Syntax: GetLang()
Parameters: None
Returns: String or empty
Example: GetLang()
See also: SetLang

GetParam Get Parameters
Retrieves values passed as parameters to programs using a hyperlink or
Call Remote command and retrieves values set to global parameters using
the SetParam function.

Syntax: GetParam (parameter name)
Parameter: parameter name: A string representing the name of a global

parameter. If the parameter was set by the SetParam
function, the name should be the same as that used in the
SetParam function.
If the parameter was received by passed arguments from a
Call Remote command, the name should be MGARG##,
where ## represents the sequential number of the required
parameter. The name MGARG0 returns the number of
passed arguments.
If the parameter was received by passed arguments using a
hyperlink, the name can either be MGARG##, as in the Call
Reference Guide 638

Remote command, or the given name of the passed
argument, as specified in the hyperlink or Submit Form
operation.

Returns: Data according to the data type that was defined in the
parameter.

Example: GetParam(‘MyArgument’)
Returns the value of the global parameter ‘MyArgument’ set
by the SetParam function or passed by a hyperlink.
GetParam(‘MGARG0’)
Returns the number of passed arguments in a Call Remote
command or hyperlink.
GetParam(’MGARG1’)
Returns the value of the first argument.
GetParam (’MGARG2’)
Returns the value of the second argument.
GetParam(‘MGARG#’)
Returns the value of the argument number (#).

 Note: Unexpected results may occur if the parameter and variable
data types are incompatible.
The function returns a NULL where the parameter name is
not defined.
In an eDeveloper program call by a hyperlink, the following
occurs:
The program may receive HTTP environment variables as
global parameters that can be accessed by the GetParam
function.
Sequential retrieving of arguments using the ‘MGARG##’
convention can be only used if the Arguments value is
specified in the HTML form or hyperlink, and contains the
comma delimited argument names.

See also: SetParam

GroupAdd Adds a user to a group. Assigns a user to a user group in the Security File
from within an application.

Syntax: GroupAdd(user,group)
Reference Guide 639

Parameters: user: the userid of the user to be assigned to the user group
given by the second parameter.
group: the group to which the user will be assigned.

Returns: Logical True or False according to the success or failure of
the operation.

Example: GroupAdd(‘Accountant’, ‘Accounting’) will assign the user
Accountant to the user group called Accounting. The user
Accountant will inherit all of the rights of the group
Accounting.

Note: Only users with SUPERVISOR rights can use the function.
Attempts by other users to use this function will be ignored.

HandledCtrl This function returns the name of the control from which the current
handler has been invoked.

Syntax: HandledCtrl()

Returns: String - The name of the control from which the current
handler has been invoked.

Note: In a handler that was not invoked from a specific control,
such as a Task, Record level handlers, or handlers in a batch
task, the function returns a blank string. This function
returns the name of controls that invoked the event, even if
they are not parked; for example, in cases of mouseover
and mouseout events.

HitZOrdr Z-Order Level
This function returns the Z-Order number of a control, and has no
parameters. This function is Window-specific.

Syntax: HitZOrdr()
Parameters: None
Returns: An integer between 1 and n that represents the Z-Order of a

control in a form that has been encountered by the Control
Hit event.

Example: HitZOrdr()
Reference Guide 640

Hour Hour of Time
Returns a number that represents the hours part of a time value or a time
expression.

Syntax: Hour(time)
Parameter: time: A time value or a time expression.
Returns: Number (01-99)
Examples: Hour(‘12:00:00’Time)

returns 12
Where the variable A contains the time value 14:00:00,
the expression Hour(A)+2
returns 16

See also: Minute, Second

HStr Decimal to Hexadecimal Conversion
Returns the hexadecimal (base 16) value of a decimal (base 10) number.

Syntax: HStr(numeric)
Parameter: numeric: A decimal number (a base 10 number) or a

numeric expression that represents a decimal (base 10)
number.

Returns: Alpha string (representing a hexadecimal number)

Examples: HStr(15) returns ‘F’
HStr(16) returns ‘10’

See also: HVal
Note: Results left justified.

HTTPGet Retrieves the returned HTML result of an HTTP request as a BLOB object.

Syntax: HTTPGet(URL, header line 1, header line 2, …)

Parameters: URL – A string that represents an HTTP address and lets you
retrieve information. When an eDeveloper client is accessing
a web server that requires a user name and password, the
parameter should be
HTTP://User:Password@[URL]
You can also use secret names, for example:
Reference Guide 641

HTTP://%user_secretname%:%pass_secretname%@[URL]

Header lines – A string that provides additional request
header information. You may specify as many header
information strings as you need.

Returns: BLOB data – The actual file retrieved by using the URL. If
the function fails to make the connection, a NULL value is
returned.

Note: 1. The HTTPGet function can connect through a proxy
server. The proxy server can be defined in the Magic.ini file
or in the HTTP Proxy environment setting.
2. The retrieval phase of the function can be defined to stop
after a defined-elapsed time. This HTTP timeout can be
defined in the Magic.ini file.
3. When an HTML file or any textual data is retrieved, you
can query the returned text stream using all the available
string manipulation functions.
4. Use the File2Blb function to store the retrieved file on
your disk.

Example: HTTPGet(‘http://www.magicsoftware.com/index.html’,
’if-Modified-Since: Tue 7 Aug 12:00:00 2001’,
’User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows
NT 4.0)’)

This example requests the file specified by the first
parameter. The following parameters are samples of
additional request header information. The first parameter
requests the page only if it was modified after the provided
date.The second parameter provides the server with the
user agent type that this request simulates.

HTTPLastHeader

Retrieves the value of an HTTP header entry from the entry name. The
function queries the HTTP header information received from the last HTTP
retrieval from the HTTPGet or HTTPPost functions.

Syntax: HTTPLastHeader(header title)

Parameter: header title - A string value that represents a header title
Reference Guide 642

type. For example, Content-Type, Expires, or Content-
Length.

Returns: A string value that represents the defined header entry.
If the header title is a blank string, the return value is the
entire header.

Example: After performing an HTTPGet operation that returns an
HTML page, the HTTPLastHeader(‘Content-Type’) returns
‘text/html’.

When passing a blank string as the header title, the
HTTPLastHeader(‘’) returns:

‘HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Date: Thu, 13 July 2000 05:46:53 GMT
Content-Length:2291
Content-Type: text/html
Cache-control: private’

Note: If the HTTPPost or HTTPGet functions were not used, the
HTTPLastHeader function returns a blank string. If the Magic
broker cannot locate the header title, the function also
returns a blank string.

HTTPPost Posts information via an HTTP request and returns an HTML or XML result
of the HTTP request as a BLOB object.

Syntax: HTTPPost(URL, body, header line 1, header line 2, …)

Parameters: URL - A string that represents an HTTP address and lets you
activate and post information. When an eDeveloper client is
accessing a web server that requires a user name and
password, the parameter should be
HTTP://User:Password@[URL]
You can also use secret names, for example:
HTTP://%user_secretname%:%pass_secretname%@[URL]
Body – A BLOB field containing textual information that is
posted to the URL, such as var1=100&VAR2=200.
Header lines – A string providing additional request header
information. You can specify as many header information
strings as required.
Reference Guide 643

Returns: A BLOB data object with the information result from the
posted HTTP message retrieved by the URL. If the function
fails to make a connection, a NULL value is returned.

Note: The HTTPPost function can connect through a proxy server.
You can define your proxy server in the Magic.ini file or in
the HTTP Proxy environment setting on the External tab of
the Environment dialog. The retrieval phase of the function
can be set to stop by defining the HTTP timeout in the
Magic.ini file.
When an HTML file or any textual data is retrieved, you can
query the returned text stream by using the available string
manipulation functions.
Use the File2Blb function to store the retrieved file to your
disk.

Example: HTTPPOST('http://localhost/Service',A,'User-Agent "Mozilla/
4.0 (compatible; MSIE 5.5; Windows NT 5.0)" ')
where 'http://localhost/Service' is an example of a url. A is
an example of a BLOB value that contains a collection of
variables, and 'User-Agent "Mozilla/4.0 (compatible; MSIE
5.5; Windows NT 5.0)" ' is an example of a header string.

HVal Hexadecimal to Decimal Conversion
Returns the decimal (base 10) value of a hexadecimal (base 16) number.

Syntax: HVal(string)
Parameter: string: An alpha string that represents a hexadecimal (base

16) number.
Returns: Number
Examples: HVal(‘FF’) returns 255

HVal(‘10’) returns 16
See also: HStr

Idle Check System Inactivity Time
Returns the time elapsed from the last keystroke received by eDeveloper,
in tenths of a second. The Idle time depends on the keyboard idle seconds
parameter in the Environment. The Idle function will only return a value if
the number of seconds specified by the Environment keyboard idle
Reference Guide 644

seconds parameter have elapsed. The result of the Idle function is
cumulative in keyboard idle tenth-second units.

Syntax: Idle()
Parameter: None
Returns: 0, if less than keyboard Idle tenth-seconds have elapsed

since last keystroke. A cumulative number in keyboard Idle
tenth-second units if more than keyboard Idle tenth-
seconds have elapsed since the last keystroke.

Example: With the Environment keyboard Idle seconds set to 5, then
Idle() returns
0 after .1 second;
0 after .2 seconds;
0 after .4 seconds;
5 after .5 seconds;
5 after .8 seconds;
10 after 1.0 seconds.

IF If-Then-Else
Evaluates a logical expression and returns one value if True (Then) and
another if False (Else).

Syntax: IF(boolean,valuetrue,valuefalse)
Parameters: boolean: A Boolean expression.

valuetrue: The value returned if the condition evaluates to
True.
valuefalse: The value returned if the condition evaluates to
False.

Returns: Value.
Example: IF(A=1,’Blue’,’Green’)

returns Blue if A=1 (True) and
returns Green if A not=1 (FALSE)

IN Determines whether a selected value matches any value in a given
collection of values. This function is available from iSeries OS/400 V5R2.

Syntax: IN(match value, value1, value2...)
Reference Guide 645

Parameters: match value - The value that is matched with the following
values.
values - Each parameter represents a value to be matched
with the match value parameter.

Returns: True when the match value is matched with one of the
following values. False is returned when the match value
cannot be matched.

Example: IN('cat','bird','cat','dog') returns True.
IN('Java','UNIX','Microsoft','Web Service') returns False.
IN(5,1,2,3,5) returns True.
If A is 01/01/2003,
IN(A, '01/01/2003'd,'03/04/03'd) returns True.

Note: This function is not available for the iSeries SQL gateway.

INIGet Query the Magic.ini file
Returns an environment value from the Magic.ini file.

Syntax: INIGet(inientry)
Parameter: inientry: An alpha string indicating the MAGIC.INI file

section and parameter to read '[section] parameter'
Returns: An alpha string indicating the Magic.INI file section and

parameter.
Example: INIGet(‘owner’)

returns the current owner value
INIGet(‘[MYAPPL]LAST_CUST’)
returns an application dependent value

Note: If no MAGIC.INI section is specified, the ‘[MAGIC_ENV]’
section is used by default.
The inientry parameter is case-insensitive.
This function could be used to access eDeveloper-specific
columns, or to retrieve application-dependent global data. If
used to retrieve updatable application data, you should
ensure that each user has their own MAGIC.INI file. If you
need to share global data and counters among multiple
users, you should use standard DB tables.
Reference Guide 646

For performance reasons, you may prefer to set the
Resident MAGIC.INI setting in the Environment dialog to
Yes. Refer to the discussions of the MAGIC.INI file and the
command line in Chapter 2, Settings.

See also: INIPut

INIGetLn Allows the user to select a specific value from a line in a section in the
MAGIC.INI file.

Retrieves a value from a line section in the MAGIC.INI file.

Syntax: INIGetLn (Section Name, Line Number)
Parameters: Section Name (Alpha) - The name of the requested section.

Line Number (Numeric) - The requested line section.
Returns: Alpha - the MAGIC.INI requested section line string.
Remarks: Returns empty string when line<1.

Returns empty string when it comes to the first empty line.
Calling arguments will be returned as the first lines of the
Magic section.

Example: INIGetLn (‘[MAGIC_ENV]’,3)
Returns the value of line #3 from the MAGIC_ENV section of
the MAGIC.INI file.

Note: It is impossible to define a space as a delimiter.

INIPut INIPut Update Environment Value
Updates an environment value in the MAGIC.INI file.

Syntax: INIPut(inientry, force write)
Parameter: inientry: An alpha string containing multiple entries, each

indicating a MAGIC.INI section and parameter, and a value
to update - ‘[section]parameter=value’.
force write: Boolean value. In a multi-threaded eDeveloper
enterprise server, each runtime context of every thread
keeps a separate copy of the MAGIC.INI. When this
parameter is False, the new INI modification will only be
written into the local MAGIC.INI copy. In a multi-threaded
server, the change will only be reflected for the running
thread.
Reference Guide 647

When this parameter is set to True, then the new INI
modification will be written into the physical INI. Any new
loaded thread will have the new modifications in MAGIC.INI
copy.

Returns: True if successful.
Example: INIPut(‘Owner=John, Century=1920’,’FALSE’LOG)

sets the current Owner and century value.
See also: INIGet
Note: If no MAGIC.INI section is specified, the ‘[MAGIC_ENV]’ is

used by default.
The inientry parameter is case-insensitive. If an entry is not
found, a new one is inserted.
This function could be used to set eDeveloper-specific
columns, or to update application-dependent global data. If
used to update application data, you should ensure that
each user has their own MAGIC.INI file. If you need to share
global data and counters among multiple users, you should
use standard DB tables.
For performance reasons, you may prefer to set the
‘Resident MAGIC.INI’ flag in the Environment table to ‘Yes’,
in which case MAGIC.INI is updated only when exiting
eDeveloper. (Refer to the discussions of the MAGIC.INI File
section in the Chapter 2, Settings).
Updating a filter keyword is sent to the broker in the current
session only in the case when the local engine has not yet
been registered to the broker, such as when Iniput is called
from the Record Prefix of a Main program of an application
opened during startup. Otherwise, Iniput for a filter
keyword will be effective in the next session.

 Ins Insert String
Inserts one string into another.

Syntax: Ins(target,source,position,length)
Parameters: target: An alpha string that represents the target string.

source: An alpha string that represents the source string.
Reference Guide 648

position: A number that represents the starting position in
the alpha string target.
length: A number that represents the number of characters
from source that will be inserted into the alpha string target.

Returns: Alpha string.
Example: Ins(‘abcde’,’xxx’,3,1)

returns ‘abxcde’
See also: Del, Rep, Fill

InStr In-String Search
Returns a number that represents the first position of a sub-string within
an alpha string or an alpha expression.

Syntax: InStr(string,substring)
Parameters: string: An alpha string or alpha expression.

substring: An alpha string that will be the search argument
in string

Returns: Number. 0 if not found.
Examples: InStr(‘abcd’,’b’)

returns 2
InStr(‘ABCDEF’,’DE’)
returns 4

InTrans Open Transaction Test
Evaluates if a transaction is currently open.

Syntax: InTrans ()
Parameters: None.
Returns: Boolean

IOCopy File Copy (On Disk)
Copies a file.

Syntax: IOCopy(origin,target)
Parameters: origin: An alpha string that represents the file specification

of the existing file to be copied.
Reference Guide 649

target: An alpha string that represents the name of the new
file.

Returns: True if successful.
Example: IOCopy(‘MAGIC.FIL,’MAGIC.SAV’)

Copies MAGIC.FIL to a new file called MAGIC.SAV.
See also: IODel, IOExist, IORen, IOSize
Note: In each parameter the string may include a path. If the path

is omitted, eDeveloper assumes the current directory.

IOCurr Current IO
Returns a number representing the position of an IO file in the IO File
repository. This is the IO file that is currently being printed to.

Syntax: IOCurr()
Parameters: None.
Returns: Returns a number representing an entry in the IO File

repository.
Example: IOCurr()
Note: This function may only be used when an IO is actually in

process. This means that this function can be used for Event
expressions or within the Event tasks that are spawned by
the Page Header and Page Footer actions. This function
returns the IO number only when you have assigned page
header or page footer forms to the graphic printer.
Otherwise the function will return 0.

IODel File Erase (On Disk)
Deletes a file from the disk, and returns a Boolean (True, False) indicating
success or failure.

Syntax: IODel(tablespec)
Parameter: tablespec: An alpha string that represents the file

specification. The string may contain a path. If the path is
not indicated, eDeveloper assumes the current directory.

Returns: Success returns True; failure returns False.
Example: IODel(‘c:\MAGIC\MAGIC.FIL’)

Deletes MAGIC.FIL from the MAGIC on Drive C.
Reference Guide 650

See also: IOCopy, IOExist, IORen, IOSize
Note: It is advisable to use this function instead of performing a

user exit to the operating system.

IOExist Verify Existence of File on Disk
Checks whether a specified file exists on a drive, and returns a Boolean
(True, False).

Syntax: IOExist(tablespec)
Parameter: tablespec: An alpha string that represents the file

specification. The string may contain a path. If the path is
not indicated, eDeveloper assumes the current directory.

Returns: Boolean (True, False)
Example: IOExist(‘c:\magic\magic.ini’)

returns True if the MAGIC.INI file exists in the C:\MAGIC
directory.

See also: IOCopy, IODel, IORen, IOSize

IORen Rename a File (On Disk)
Renames a file.

Syntax: IORen(origin,target)
Parameters: origin: An alpha string that represents the file specification

of the file to be renamed.
target: An alpha string that represents the new name.

Returns: Success returns True; failure returns False
Example: IORen(‘MAGIC.FIL’,’MAGIC.SAV’)

result: MAGIC.FIL is renamed MAGIC.SAV
See also: IOCopy, IOExist, IODel, IOSize
Note: In each parameter the string may include a path. If the path is
omitted, eDeveloper assumes the current directory.

If the rename cannot be performed (e.g., the target file is on a different
drive), the file will be copied to the target drive under the new name.

IOSize Query File Size (on disk)
Returns the size of a file
Reference Guide 651

Syntax: IOSize(tablespec)
Parameter: tablespec: An alpha string that represents the file

specification. The string may contain a path. If the path is
not indicated, eDeveloper assumes the current directory.

Returns: A numeric value indication the byte size of the I/O file.
Example: IOSize(‘c:\magic\magic.ini’) returns the number of bytes

contained in the C:\MAGIC\MAGIC.INI file.
See also: IOCopy, IODel, IOExist, IORen

IsComponent Checks if the executed program or handler is from a component or a host
application.

Syntax: IsComponent()
Parameters: None
Returns: True when the executed program or handler is from a

component. Returns False when the executed program or
handler is from a host application.

IsDefault Tests if a variable’s value is equal to its default value.

Syntax: IsDefault (variable)
Parameter: variable: value representing a variable index in the variable

list
Returns: Boolean value indicating if the variable’s value is (True) or is

not (False) equal to the default value.
Example: IsDefault (’C’VAR)

Compares the C variable’s value to the default value set in
the Column Properties dialog.

IsFirstRecordCycle
This function lets you identify the first record cycle in the task. This
information is useful for running logic that on the one hand is based on the
already-fetched data, after the Task Prefix, and on the other hand for logic
that is run only once, on entering the task.

Syntax: IsFirstRecordCycle (task generation)

Parameters: task generation – A number representing the task’s
hierarchy in the task tree. 0 represents the current task, 1 is
Reference Guide 652

the immediate ancestor, and so on.

Returns: True when the current record cycle is the first one or when
the task is executed in the Task Prefix level. This function
returns False when the task is executed in the Task Suffix or
Group level handlers.

Note: The various Refresh events like View Refresh, Screen
Refresh, Display Refresh, or when eDeveloper refreshes the
dataview after User Range or User Sort, do not affect this
function. When this function returns False, it can return True
only by returning to the task.

ISNULL NULL Value Identification
Tests for the presence of a null value in a variable.

Syntax: ISNULL(variable)
Parameter: variable: A variable as defined in the view record. This

function expects an actual variable and not a variable literal.
Returns: True if the variable contains a NULL value or False if the

variable does not contain a NULL value.
Example: ISNULL(BE)

returns True if the variable designated by BE contains a
NULL value.

See also: NULL

JCall Calls an instance method.

Syntax: JCall (pseudo-reference, ‘[class.]method’, ‘signature’,
parameters)

Returns: The value of the method
Example: Select Virtual Ref2 (BLOB)

Update A JCreate(‘pkg.CLS_A’, ‘(I)V’,1000)
Update B JCall(A, ‘increment’, ‘(I)Lpkg.CLS_B;’,200)
The method increment of class ‘pkg.CLS_A’ will be activated
with 200 as the argument (I), and will return a new pseudo-
reference to class pkg.CLS_B (Lpkg.CLS_B;).
You can access a Java object name by using the getName
method, as shown below:
Reference Guide 653

JCall(<Java ref var>,’getName’,’()Ljava/langString;’)

JCallStatic Calls a class method.

Syntax: JJCallStatic('<class+method-name>', '<method-
signature>', parameters)

Returns: The return value of the method.
Example: Select Virtual Ref2(BLOB)

Update B JCallStatic(‘pkg.A.increment_count’,
‘(I)Lpkg.CLS_B;’, 200)
The method ‘increment_count’ of class ‘pkg.CLS_A’ will be
activated with 200 as the argument (I) and will return a new
pseudo-reference to class pkg.CLS_B‘space’(Lpkg.CLS_B;).

JCreate Obtains a new instance of a Java class.

Syntax: JCreate(‘<class name>, ‘<constructor signature>’,
parameters)

Returns: A pseudo-reference to a new instance
Example: Selected Virtual Ref1 (BLOB)Update A JCreate('pkg.CLS_A',

'(I)V', 1000)

JException Returns a pseudo-reference to the last exception of the current context.

Syntax: JException ()
Returns: A pseudo-reference to the last exception thrown during the

last j* or ejb* function. Each call clears the exception when
activated.

Example: Update B JException()

JExceptionOccurred
Informs you that the last J* or EJB* function threw an exception.

Syntax: JExceptionOccurred()
Returns: True only if the last function threw an exception.
Example: Verify JExceptionText() condition: JExceptionOccurred()
Reference Guide 654

JExceptionText
Returns a text image from the last exception and an optional backtrace of
the stack. This function refers to the last exception thrown during the last
j* or ejb* function.

Syntax: JExceptionText(brief / [complete])
Returns: An Alpha string
Example: JExceptionText(‘T’LOG) - getMessage + stack trace

JExceptionText(‘F’LOG) - getMessage only

JExplore Describes a class.

Syntax: JExplore (‘<class name>’)
Returns: An XML description of the class
Example: JExplore(‘pkg.CLS_A’)

JGet Retrieves the value of an instance variable.

Syntax: JGet(pseudo-reference, ‘variable-name’, ‘variable-
signature’)

Returns: The variable’s value
Example: JGet (A, ‘a’, ‘I’)

JGetStatic Queries a class variable.

Syntax: JGetStatic(‘class name.variable name’, ‘variable-signature’)
Returns: The variable’s value
Example: JGetStatic(‘pkg.CLS_A.a2’, ‘I’)

JInstanceOf Simulates the Java's operator instanceof.

Syntax: JInstanceOf(pseufo-reference, class name)
Returns: A ‘TRUE'LOG value if the object is not a NULL and can be

cast to the class without generating an exception.
Example: JINSTANCEOF(A, 'javax.jms.Message').

You can use this function to check the Java reference relates
to a specific class, as shown below:
Reference Guide 655

JInstanceOf(<Java ref
var>,’javax.security.auth.kerberos.KerberosPrincipal’)

Note: The parameter must be a BLOB.
The return-value must be alphanumeric.

JSet Updates an instance variable.

Syntax: JSet(pseudo-reference, ‘variable-name’, ‘variable-signature’,
value)

Returns: True when the update is successful. A False value is
returned when the pseudo-reference is not part of the
current context, the variable name is not found, or the last
parameter could not be converted according to the
signature.

Example: JSet(A, ‘a’, ‘I’, B)

JSetStatic Updates a class variable.

Syntax: JSetStatic('class name.variable name', '<variable-
signature>', value)

Returns: True when the update is successful. A False value is
returned when the variable name was not found, or if the
last parameter could not be converted according to the
signature.

Example: JSetStatic(‘pkg.CLS_A.a2’, ‘I’, B)

KbGet Returns the last pressed key or the last action performed, as defined in
the Keyboard Mapping table, in Alpha format.

Syntax: KbGet(numeric)
Parameter: numeric - 1 returns the Action. 0 returns the function key.
Returns: An Alpha string
Example: KbGet(0)

returns the Alpha string ‘F2’, if the F2 key is pressed.
Reference Guide 656

KbPut Key Entry Simulation
Simulates invoking a system action or other keyboard activity from within
eDeveloper.

Syntax: KbPut(string)
Parameter: string: An alpha string, including a concatenation of alpha,

keyboard (KBD), and action (ACT) literals.
Returns: ‘TRUE’ if successful
Example: KbPut(‘F2’KBD&’Exit’ACT&’abcd’)

simulates F2; performs the Exit action as defined in the
Action column of the Keyboard Mapping repository; and
inputs the ‘abcd’ string.

Note: The KBD and ACT literals are actually shortcut notations for
the strings ‘<keyboard value>’ and ‘[action value]’. Because
of this, multiple action and keyboard values may be
concatenated. In any case, you should always use literals,
as this will guarantee portability of your application to other
languages.
The values specified are actually ‘stuffed’ at the end of an
internal keyboard buffer, and are acted upon only when
eDeveloper actually requires input. Because of this, you
must use this function with care.
As this function actually performs an action, it is best to
execute it using the Evaluate Exp.
KbPut for LCD sets is not supported. This affects NumLock,
CapsLock, and ScrollLock.

See also: Literals, KbGet

LastPark Last Parked Control
Returns the name of the control on which the user last parked in the
specified task.

Syntax: LastPark (generation)
Parameter: generation: a number representing the task’s hierarchic

position in the task tree. 0 represents the current task; 1
represents the task’s immediate ancestor; and so on.

Returns: The name of the control on which the user last parked.
Reference Guide 657

Example: LastPark(1)
returns the control name on which the user last parked in
the parent task.

See also: CTop, CLeft, CTopMDI, CWidth, CHeight,CLeftMDI

LDAPError Returns the last error message from the LDAP server. The function scope
is per context.

Syntax: LDAPError()
Parameters: None
Returns: The last error message returned from the LDAP server.

LDAPGet Retrieves the user information stored in a Lightweight Directory Access
Protocol (LDAP) operating system directory.

Syntax: LDAPGet(search base, search level, search filter, attribute,
delimiter)

Parameters: search base - An Alpha variable that contains the search
path in the LDAP.
search level - Specify the search level by selecting an option
from the following list:
B - Base search
T - Sub-tree search
O - One-level search
search filter - An Alpha variable that contains a valid LDAP
filter.
attribute - An Alpha variable that defines the information
required.
delimiter - An Alpha string used to separate one result from
another.

Returns: An Alpha string containing the information requested.
Examples: LDAPGet(‘somebase’, ‘B’, ‘objectclass=person’, ‘mail’, ‘$$$’)

returns
dn=somename$$$mail1@some.com$$$
mail2@some.com$$$dn=someothername$$$
mail3@some.com
Reference Guide 658

LDAPGet(‘dc=magdomain, dc=com’, ‘T’, ‘cn=Thomas’, ‘mgr’,
‘$$$’) returns the name of Thomas’ manager.

Left Get Characters from Left of string
Returns a specified number of characters from an Alpha string, starting
from the leftmost character.

Syntax: Left(string,length)
Parameters: string: An Alpha string.

length: The number of characters to be returned, starting
from the leftmost character.

Returns: Output Alpha string.
Example: Left(‘abcdefg’,3)

returns ‘abc’
See also: Right, MID

Len Length of String
Returns the defined length of an Alpha string.

Syntax: Len(string)
Parameter: string: Input Alpha string.
Returns: Length.
Example: Len (‘abcdefg’)

returns 7
Note: To retrieve the number of characters in an Alpha column,

use Len(RTrim(field)). If A is a 20-character Alpha field
containing the string ‘John ___’, where ____ implies blanks,
Len (RTrim(A)) returns 4

See also: Trim, RTrim, LTrim

Level Query Task Execution Level
Checks the execution level in a task.

Syntax: Level(generation)
Parameter: generation: A number that represents the hierarchic

position of the task. 0 represents the current task, 1 its
immediate ancestor, etc.
Reference Guide 659

Returns: Alpha string containing:
TP meaning Task Prefix
TS meaning Task Suffix
RP means Record Prefix
RM meaning Record Main (Magic Version 8 events are
imported as handlers in eDeveloper Version 9.)
RS means Record Suffix
CP_<control name> meaning Control Prefix
CS_<control name> meaning Control Suffix
CV_<control name> meaning Control Verification
CC_<control name> meaning Control Change
GP The depth of the Group Prefix (Magic Version 8 events
are imported with a group counted as 2. Every group above
are numbered as 3,4,5, and so on.)
GS The depth of the Group Suffix.
HS_<key combination> meaning a user-defined handler
of a system event
HI_<internal event name> meaning a user-defined
handler of an internal event
HU_<user event name> meaning a user-defined handler
of a user-defined event
HT_<timer setting> meaning a user-defined handler of a
defined timer
HE_<expression> meaning a user-defined handler of a
defined expression
HR_<error name> meaning a user-defined handler of an
error
HX_<event name> meaning an ActiveX handler

Examples: Level(x) where x is 0, 1, etc.
Level(1)=’RP’
is True if the current level in the parent task is Record Prefix.
IF(Level(1)=’’,’Parent not found’,’’)
outputs the ‘Parent not found’ message if the current task
has no parent.

See also: TDepth
Note: ENDTASK: Level (1) <>’RM’ is used in synchronized one-to-

many tasks.
Reference Guide 660

LIKE Determines whether a given character string matches a specified pattern.

Syntax: string LIKE pattern

Parameters: string: The string with which a pattern is matched.
pattern: The pattern to be matched with the given string.

Returns: A True value if the character string matches the specified
pattern. A False value if the character string does not match
the specified pattern.

Examples: ‘abcd’ LIKE ‘a*d’ returns True

‘abcd’ LIKE ‘a?d’ returns False

‘abc’ LIKE ‘a?c’ returns True

Note: A pattern can include regular characters and wildcard
characters. During pattern matching, regular characters
must exactly match the characters specified in the character
string. Wildcard characters, however, can be matched with
arbitrary fragments of the character string. Wildcard
characters are:

‘*’ - any string of zero or more characters.
‘?’ - any individual character

To search for character strings that include a wildcard
character, a back slash (\) must precede the wildcard
character.

When performing string comparisons with LIKE, all
characters in the pattern string are significant.

Line Query Current Line Number
Returns the current line number in an output IO file.

Syntax: Line(generation,file)
Parameters: generation: A number that represents the hierarchic

position of the task. 0 represents the current task, 1 its
immediate ancestor, etc.
file: A number that represents the sequence number of the
output file in the specified task.

Returns: Current line number in the output file. In text-based output,
it returns the text line. In a graphical output, it returns the
Reference Guide 661

current print position using the current units of
measurement specified in the printed form.

Example: Line(1,1)
returns the current line number in the first output file of the
immediate parent.

See also: Page

LMChkIn License Manager Check In
Allows the developer to check-in a user instance of a specified license.

Syntax: LMChkIn (feature name)
Parameters: feature name: A string that specifies the name of a feature.
Returns: The function returns a numeric value indicating success or

failure of the function execution as follows:
0 - Success.
8 - Failed to check-in a user instance of a selected license.

LMChkOut License Manager Check Out
Allows the user to check out a user instance of a specified feature license.

Syntax: LMChkOut (license file name, feature name, version)
Parameters: license file name: A string value that indicates the license

data file or the location of the license server.
feature name: A string that specifies the name of the
feature.
version: A string that specifies the version of the requested
feature.

Returns: The function returns a numeric value indicating success or
failure of the function execution as follows:
0 - Success.
1 - Failure to initialize connection to the license server.
2 - The license file is damaged or does not exist.
3 - The value of the feature name in the function is blank.
4 - The specified feature does not exist in the license file.
5 - The expiration date of the feature has expired.
6 - The feature requested does not exist in the license file of
the server.
7 - Failed to check out a user instance of a license.
Reference Guide 662

LMUVStr Returns the vendor string of the user license that was checked out by
using the LMChkOut function.
The vendor string is part of the license entry in the license file that
provides additional information, such as license limitations. The vendor
string can be defined when using the Makekey utility.

Syntax: LMUVStr ()
Parameter: None
Returns: The vendor string of the currently checked out user license

that was checked out by using the LMChkOut function.
Example: LMUVStr() returns PRODUCTS=30, TRANS=50
See also: LMVStr, LMChkIn, LMChkOut, Makekey utility

LMVStr Returns the vendor string of the license that is checked out by the
eDeveloper engine.
The vendor string is part of the license entry in the license file that
provides additional information about the license, such as license
limitations.

Syntax: LMVStr ()
Parameter: None
Returns: The vendor string of the current license that is checked out

by the eDeveloper engine.
Example: LMVStr () executed on an eDeveloper engine that is

assigned to a MGDEMO license returns the following string:
PT=MGDEMO,C=3FFFFFF,P=N,MR=500,MP=100,
MD=20,MC=8

See also: LMUVStr

Lock Returns an evaluated expression that locks a table row or task for DM
statements implemented in a deferred transaction.

Syntax: Lock (resource, timeout)
Parameters: resource -Any expression that returns an alpha string. Its

maximum length is 128.
timeout - The maximum wait time in seconds. A negative
value is equal to an infinite wait.
Reference Guide 663

Returns: Number that indicates if lock was successful:
0 - Lock was successful.
1 - Resource is already locked by the same session.
2 - Resource is locked by another user and the timeout has
expired.

See also: Unlock
Note: A zero length string is a valid name. In case of a recursive

lock, the user must issue an Unlock command for each Lock
command in order to fully unlock the resource.

LOG Natural Logarithm
Returns the natural logarithm of a number.

Syntax: LOG(number)
Parameter: number: Number input value
Returns: Logarithm.
Example: LOG(2.71828)

returns 1
See also: EXP

Logical Converts a string from a visual representation to a logical one.
This function gives the developer the ability to change the way eDeveloper
handles mixed strings. The possible ways of handing mixed strings are
Logical and Visual. Logical is the way the engine treats the strings
internally, but sometimes the strings are provided as Visual. So, if a
developer would like the 'Logical' strings to be presented as Visual, they
can be converted using the Visual function. Likewise, if a developer needs
to handle a set of data that was provided as 'Visual' and wants to make it
coherent with the way the eDeveloper engine is handling the strings, then
they can be converted using the Logical function.

Syntax: Logical (string, reverse)
Parameters: string: Input alpha string.

reverse: A Boolean True or False, specifying whether to
reverse the result. If the result is intended for a left-to-right
environment, no reverse is needed.
Reference Guide 664

Returns: If True, the string will be displayed with best results when
presented from Right to Left. If False, the string will be
displayed with best results when presented from left to
right.

Note: This function supports Hebrew applications.
See also: Logical Operators on page 515.

Logon Lets the user log into the current application.

Syntax: Logon (user name, password)
Parameters: user name: An Alpha string containing the user name.

password: An Alpha string containing the password.
Returns: Boolean indicating success or failure of the operation.
Example: Logon ('CARL',PASS321') performs similarly to the User

Logon. Unlike the User logon, Logon processes the user
name and password in a batch mode.

Note: When binding to an LDAP server (System Logon = LDAP),
instead of using the Logon function, you can choose to
define two secret names, LDAP_USER and LDAP_PASS, for
the user name and password. The $USER$ alias in the
connection string will be substituted with the value of the
LDAP_USER secret name. For more information, see the
LDAP Address, LDAP Connection String environment
settings in Chapter 2, Settings.

LoopCounter Returns the current count of the block loop cycle.

Syntax: LoopCounter()
Parameter: None
Returns: The cycle count of the current Block Loop operation.
Example: LoopCounter() returns 7 for the seventh execution cycle of

the Block Loop.
Note: The LoopCounter function is evaluated each time the Block

Loop completes the Block cycle. The function returns 0 if it
is evaluated outside of the Block Loop.

Lower Converts uppercase letters to lowercase letters.
Reference Guide 665

Syntax: Lower(string)
Parameter: string: Inputs an Alpha string or an Alpha expression
Returns: An Alpha string
Example: Lower(‘JOHN’)

returns ‘john’
See also: Upper

LTrim Removes leading blanks from an Alpha string or an Alpha expression.

Syntax: LTrim(string)
Parameter: string: An input alpha string
Returns: Trimmed alpha string
Example: LTrim(‘John’)

returns ‘John’
See also: RTrim, Trim

MailBoxSet Lets you switch to another mailbox of a currently connected
IMAP mail server.

Syntax: MailBoxSet (mailbox name)
Parameter: mailbox name - A string representing the mailbox.
Returns: Numeric - The function returns the number of documents

that exist in the specified mailbox. If the function fails to
access the mailbox, it returns a negative number that
represents the error code.

Example: MailBoxSet(‘Deleted’) sets the Deleted mailbox as the active
mailbox. Any other mail-related function that handles the
content of the mail account relates to the Deleted mailbox.

Note: This function is a server-side function.

MailConnect Opens a connection to a mail server.

The SMTP server is used to send mail. Some SMTP servers require a user
name and password.
Reference Guide 666

When this function is used to connect to a POP3 or an IMAP server,
eDeveloper will connect to the user’s mailbox on the server. For POP3 and
IMAP servers, a user name and password are required.

When connected, the MailConnect function retrieves the new mails in the
user’s mailbox. New mail that the user receives after the connection has
been made will not be available during that connection session but only
after a new connection is made. Only one connection can be set to a send
mail server and one connection to a receive mail server. If connected
twice, the second connection overrides the first.

Syntax: MailConnect(type, server, user, pass)

Parameters: Type: number, 1 = SMTP server, 2 = POP3 server, 3 = IMAP
server
Server: string, address of mail server
User, pass: string, user id and password of the mailbox

Returns: When you try to connect to an SMTP mail server:
a 0 return value means a successful connection,
a negative value means a failed connection,
and each negative value represents a specific error.
A successful connection to a POP3/IMAP email server is
indicated by 0 or a positive value, where each positive value
represents the actual number of mails in the mailbox, and
each negative value represents a specific error.

Note: When you connect to a POP3 mail server, only the new
messages are received. When you connect to an IMAP mail
server, all existing messages, including both new and seen
messages, are received.

MailDisconnectCloses a connection to an email server.

Syntax: MailDisconnect(type, delete-all)

Parameters: Type: number, 1 – mail send server, 2 – mail receive server
Delete-all: Boolean, delete all emails from mail box

Returns: 0- Success
<0 – Error code

Note: When disconnecting from a POP3 mail server and setting the
Delete All parameter to Yes, only the messages that were
Reference Guide 667

received by the connection to the POP 3 mail server are
deleted. When disconnecting from an IMAP mail server and
setting the Delete All parameter to Yes, all the existing
messages, including both new and seen messages, are
deleted.

MailError The MailError function translates a given mail error code that has been
returned from one of the functions described above to a readable error
message.

Syntax: MailError(error-code)

Parameters: error-code: number, error code returned from a function

Returns: String - the error message

MailFileSave Saves a message attachment to a file on a disk.

Syntax: MailFileSave(mail-index, file-index, save-path, overwrite)

Parameters: mail-index: number, index of mail in the mail box
file-index: number, index of attachment in the message
save-path: string, filename and path or only the path
overwrite: Boolean, overwrite file if already exists

Returns: 0 Success
<0 – Error code

Note: 1. When providing only a path name in the save-path
parameter, the function saves the attachment under its
defined name.
2. Setting file-index as zero instructs the function to extract
all the message attachments to the given file or path name

MailLastRC Lets you retrieve the most recent error that occurred when using any of
the mail functions.

Syntax: MailLastRC()

Parameter: No parameters are required.

Returns: Numeric - the function returns the number that represents
the most recent mail-related error code.
Reference Guide 668

Note: You can use the MailError function to translate the error
code for a readable error message.

MailMsgBCC Retrieves the BCC string of the selected mail message.

Syntax: MailMsgBCC (index)
Parameter: index: The mail message index
Returns: The BCC string of the mail message
Example: MailMsgBCC (12) returns John

Smith<johnsmith@mymail.com>,Jane
Doe<janedoe@mymail.com>

MailMsgCC Returns a comma-delimited string of all the CC addresses.

Syntax: MailMsgCC (index)

Parameters: index: the sequential number of the message within the
sequence of messages received upon connection.

Returns: A string – a comma-delimited string of all the CC addresses.

MailMsgDate Retrieves the date and time information of the selected mail message
identified by its index.

Syntax: MailMsgDate(index)
Parameter: index: The index of the mail message.
Returns: The date and time combination of the mail message.
Example: MailMsgDate(12) returns the date and time that the mail

was sent as it appeared in the mail message header - for
example, 12/03/2001 12:32:05.

MailMsgDel Deletes a message from the server mailbox.

Syntax: MailMsgDel(index)

Parameters: index: number, index of the message in the mailbox

Returns: 0 Success
<0 – Error code

Note: The deletion of a specific message from an IMAP mail server
Reference Guide 669

is committed immediately. The deletion of a specific
message from a POP3 mail server is committed only upon
disconnecting from the mail server.

MailMsgFile Returns the file name of the specific attachment of the message.

Syntax: MailMsgFile (index, file-index)

Parameters: index: the sequential number of the message within the
sequence of messages received upon connection.
file-index: the sequential number of the attachment within
the sequence of the message’s attachments.

Returns: A string – the file name of the specific attachment of the
message.

MailMsgFiles Returns the number of attachments of the message.

Syntax: MailMsgFiles (index)

Parameters: index: the sequential number of the message within the
sequence of messages received upon connection.

Returns: A number – the number of attachments of the message.

MailMsgFrom Returns the address from which the message was sent.

Syntax: MailMsgFrom (index)

Parameters: index: the sequential number of the message within the
sequence of messages received upon connection.

Returns: A string – The address from which the message was sent.

MailMsgHeaderRetrieves the header information of the selected mail message.

Syntax: MailMsgHeader (index, header-key)
Parameter: index: The mail message index.

header-key: A text string that corresponds to the header
information segment.

Returns: If the header-key is blank, the returned text string displays
the entire header information.
Reference Guide 670

If the header key is not blank, the text string displays the
value of the header segment defined by the header-key.

MailMsgId Returns the unique id of an email message.

Syntax: MailMsgId(index)

Parameters: index: the sequential number of the message out of the
messages received upon connection.

Returns: A string – The unique ID of the message.

MailMsgReplyTo

Retrieves the reply to string of the selected mail message.

Syntax: MailMsgReplyTo (index)
Parameter: index: The mail message index.
Returns: The reply to information of the mail message.
Example: MailMsgReplyTo (12) returns John

Doe<johndoe@mymail.com>

MailMsgSubj Returns the subject string of the message.

Syntax: MailMsgSubj (index)

Parameters: index: the sequential number of the message within the
sequence of messages received upon connection.

Returns: A string – the subject string of the message.

MailMsgText Returns the body text string of the message.

Syntax: MailMsgText (index)

Parameters: index: the sequential number of the message within the
sequence of messages received upon connection.

Returns: A string – the body text string of the message.

MailMsgTo Returns a comma-delimited string of all the main addresses to which the
message is sent.
Reference Guide 671

Syntax: MailMsgTo (index)

Parameters: index: the sequential number of the message within the
sequence of messages received upon connection.

Returns: A string – a comma-delimited string of all the main
addresses to which the message is sent.

MailSend Used to send an email. It requires all the information needed to send an
email.

Syntax: MailSend(from, to, cc, bcc, subject, message, file, …)

Parameters: from: string, email address of sender
to: string, a comma delimited list of main addresses
cc: string, a comma delimited list of CC addresses
bcc: string, a comma delimited list of BCC addresses
subject: string, the title of the message
message: string, the content of the message
file, …: string, file name and path to be used as attachments
to the mail

Returns: 0 Success
<0 – Error code

MainLevel The MainLevel function returns the main level of the task. Unlike the Level
function, this function returns RM instead of the actual handler level when
querying the level of an online or browser task that executes a handler of
an asynchronous event. The RM string is also returned when the specified
task executes a handler of an event that is raised synchronously from a
control level handler or from a handler of an asynchronously raised event.

When querying the level of a batch task that executes a handler of an
asynchronous event, this function returns RS instead of the actual handler
level. The RS string is also returned when the specified task executes a
handler of an event that was raised synchronously from a handler of an
asynchronously raised event.

Syntax: MainLevel(task generation)

Parameters: task generation – A number representing the task’s
hierarchy position in the task tree. 0 represents the current
Reference Guide 672

task, 1 is the immediate ancestor, and so on.

Returns: True for an alpha string containing:

• RP – Record Prefix

• RM – Record Main

• RS – Record Suffix

• GP_<Group depth> – Group Prefix

• GS_<Group depth> – Group Suffix

• TP – Task Prefix

• TS – Task Suffix

MAX Select the Greatest of the Input Values
Returns the greatest of values with the same attributes.

Syntax: MAX(value1,value2,...valuen)
Parameters: value1: A number, string or logical

value2: same attribute as value 1
valuen: same attribute as value 1

Returns: Largest value.
Example: MAX(8,9.2,5,4) returns 9

MAX(‘ABC’, ‘ACD’)
returns ‘ACD’

Note: The number of parameters is limited to 30.
The display of the expanded expression in the Expression
Rules repository will include ellipsis ('...') as the last
parameter, to indicate a variable number of parameters.

See also: MIN, IF

MAXMagic Maximize eDeveloper window

Syntax: MAXMagic()
Parameter: None
Returns: Boolean True or False indicating success or failure.
Example: MAXMagic()
Reference Guide 673

MDate Query Magic’s Date
Returns the Magic date (the date entered in the Logon window).

Syntax: MDate()
Parameter: None
Returns: Date
Examples: MDate()

MDate()+5
returns a date that is five days later than the Magic date.
The numbers added or subtracted are interpreted as
numbers of days.

See also: Date

Menu Identify Menu Path
Returns the menu path that leads to the current program. The resulting
alpha string contains the menu names, as well as the final menu line.
Names are separated by the ‘;’ character.

Syntax: Menu()
Parameter: None
Returns: Alpha string
Example: Menu()

returns names separated by the ‘;’ character
Note: Returns ‘(null)’ if program was called from TOOLKIT.
See also: Prog

MID Substring of String
Extracts a specified number of characters (a substring) from an alpha
string.

Syntax: MID(string,start,length)
Parameters: string: Input alpha string.

start: Number representing the starting position of the
substring within the string.
length: Number of characters to be extracted; i.e., length of
sub-string.

Example: MID(‘John’,3,2) returns ‘hn’
Reference Guide 674

See also: Left, Right

MIN Selects the smallest of the Input values.
Returns the smallest of a group of values with the same attribute.

Syntax: MIN(value1,value2,...,valuen)

Parameters: value1: A number, string or logical
value2: Same attribute as value1
...valuen: Same attribute as value1

Returns: Smallest value.
Examples: MIN(8,9,2,5,4) returns 2

MIN(‘ABC’, ‘ACD’) returns ‘ABC’
Note: The number of parameters is limited to 30.

The display of the expanded expression in the Expression
Rules repository will include ellipsis ('...') as the last
parameter, to indicate a variable number of parameters.

See also: MAX, IF

MINMagic Minimize eDeveloper window

Syntax: MINMagic()
Parameter: None
Returns: Boolean True or False indicating success or failure.
Example: MINMagic()

Minute Minutes Value of Time Value
Returns a number that represents the minutes part of a time value.

Syntax: Minute(time)
Parameter: time: A time value.
Returns: Number, 0-59.
Examples: Minute('12:15:00'Time) returns 15
Reference Guide 675

If A contains the time value '12:15:00', Minute(A)+2
returns 17.

Note: The use of the Time literal following ‘12:15:00’ should not
be confused with the Time() function.

See also: Literals, Second, Hour, Time

MlsTrans Translate String
Returns translation of a string in multi-lingual environments, based on the
active entry in the Languages table.

Syntax: MlsTrans (‘string‘)
Parameter: string: A string to be translated, up to 32000 characters

long.
Returns: Alpha string, the result of the translation.
Example: MlsTrans (‘Cancel’)

MMClear Clears marked records.

Syntax: MMClear
Parameters: None
Returns: Boolean - A True value is returned if records were marked. A

False value is returned if no records were marked.
Note: If the function is evaluated during the handling of marked

records, the marked records are cleared when the last
marked record is completed.

MMCount Returns the number of marked table rows in the task that is specified by
the generation parameter.

Syntax: MMCount(generation)
Parameter: generation: A number that represents the hierarchic

position of the task. 0 represents the current task, 1 its
immediate ancestor, and so on.

Returns: The number of marked table rows in the task that is
specified by the generation parameter.
Reference Guide 676

MMCurr Returns the current row in process counting from the total marked rows.

Syntax: MMCurr(generation)

Parameters: generation: A number that represents the hierarchic
position of the task. 0 represents the current task, 1 its
immediate ancestor, and so on.

Returns: The current row in process counting from the total marked
table rows.

MMStop Multi-mark Stop
Stops the multi-mark handler.

Syntax: MMStop()
Parameters: None
Returns: When this function is evaluated, the execution of the

handler for the current running record is stopped, the
marked records processing is cancelled, and the engine
parks on the record for which the MMStop function is
evaluated.

Note: Any operation after the evaluation of the MMStop, within the
MM event, will not be executed.

MnuCheck Check-mark Menu
Sets a check sign next to an invoked menu entry on or off.

Syntax: MnuCheck(Menu Name,True/False)
Parameters: Menu Name is a name entry from a menu table.

True/False is a Boolean True or False. Indicate True to set
the check sign on. Indicate False to set the check sign off.

Returns: True
Example: MnuCheck(‘ENTRY’,‘True’)
Note: The menu functions search all OS Command and Menu type

menu entries in all pulldown menu structures and perform
the function for all entries found.
This function is not applicable to the top level pulldown
menu bar.
Reference Guide 677

MnuEnabl Enables or disables a menu entry.

Syntax: MnuEnabl(Menu Name,True/False)

Parameters: Menu Name is a name entry from a menu table.
True/False is a Boolean True or False. Indicate True to
enable a menu entry. Indicate False to disable a menu entry.

Returns: True
Example: MnuEnabl(‘Prog1’,‘True’LOG)
Note: The menu functions search all OS Command and Menu type

menu entries in all pulldown menu structures and perform
the function for all entries found.
This function is not available for internal eDeveloper actions
but only for User Actions

MnuName This function sets the menu entry text of a selected menu.

Syntax: MnuName (entry name, entry text)
Parameters: entry name: The entry name of a specific menu entry as

defined in the Menu repository.
entry text: The new text that replaces the menu entry’s
existing text.

Returns: Boolean – A True value is returned if a menu entry with the
given entry name is found. If not, a False value is returned.

Example: MnuName ('entity_list', '&Customer list')
-Customer list is the text assigned to the menu entry
-The first letter is an accelerator as indicated by the
ampersand (&) that precedes it.
-Entity_list is the type of menu entry.

MnuShow Hides or shows a menu entry.

Syntax: MnuShow (‘Menu Name’,True/False)
Parameters: Menu Name is a name entry from a menu table.
Reference Guide 678

True/False is a Boolean True or False value. Indicate True to
show a menu entry. Indicate False to hide a menu entry.

Returns: True
Example. MnuShow(‘Menu’,’True’Logical)
Note: The menu functions searches all OS Command and Menu

type menu entries in all pulldown menu structures and
perform the function for all entries found.

Month Month Value of a Date Value
Returns the month portion of a date.

Syntax: Month(date)
Parameter: date: A date value.
Returns: Number, 1-12.
Example: Month(‘01/28/1992’Date)

returns 1
Note: The use of the Date literal following ‘01/28/1992’ in the

above example should not be confused with the Date()
function.

See also: Literals, Day, Year

MStr Number to Alpha String Conversion

Converts a number to an eDeveloper Number with specified length in
bytes.

Syntax: MStr(number,length)
Parameters: number - The number that will be converted.

length - The length of the Alpha string in bytes.
Returns: The Alpha string containing the number.
Example: MStr(123456,4) converts 123456 into a 4-byte alpha string.
Note: This function is especially designed to store data in arrays.

The maximum precision is identified with the field storage
type ‘eDeveloper number’.

See also: MVal
Reference Guide 679

MTblGet Retrieves the content of a memory table as a BLOB variable.

Syntax: MTblGet(table entry, DB table name)

Parameters: table entry - A literal or an entry number value that
corresponds to a memory table in the Table repository.
DB table name - This parameter lets you refer to a different
instance of the table by its name.

Returns: The content of a memory table as a BLOB variable.
Note: If performed on a table of a database other than the

Memory database, the function fails and returns a Null
value.
The BLOB data item content is the memory table content
that exists before the last committed transaction in the
table.
The DB table name parameter, which enables you to refer to
another table by its name, is effective only if the same table
entry is not opened by any active task at the time the
function is evaluated.

MTblSet Creates a record in a memory table where a BLOB variable is used as the
table's content.

Syntax: MTblSet(BLOB, table entry, DB table name, mode)
Parameters: BLOB - A BLOB value that keeps the content of the memory

table.
table entry - A literal or numeric value that corresponds to a
memory table in the Table repository.
DB table name - This parameter lets you refer to a different
instance of the table by its name.
mode - This parameter sets the mode for updating the
memory table. The mode values are:
0 - Append and abort on duplicate records. A new record
from the BLOB will be appended to the existing table. When
encountering a duplicate record, the entire operation is
aborted and no record is set.
1 - Append and skip on duplicate records. New records from
the BLOB are appended to the existing table. When
Reference Guide 680

encountering a duplicate record, the record is skipped, and
the next record in the BLOB is inserted.
2 - Append and overwrite duplicate records. New records
from the BLOB are appended to the existing table. When
encountering a duplicate record, the new record replaces
the existing duplicate record.
3 - Reset existing table. The existing table is deleted and the
records from the BLOB are recreated in a new table.
The mode value is set to 0 when a valid value (0,1,2,3) is
not entered.

Returns: 0 when all the records are created successfully in the
memory table.
The values returned when the function fails are:
-1 meaning that the Mode parameter is set to 0, but the
memory table has duplicate indexes.
-2 meaning that the memory table structure does not match
the table structure provided by the BLOB parameter.
-3 meaning that the table is not a memory table.
-4 meaning that the memory table has not been updated.
-5 meaning that the Mode parameter is set to 3, but the
existing memory table cannot be deleted.

Note: Every DB error found during the execution of the function is
skipped until the end of the table content.
The function updates the memory table as a nested
transaction, regardless of the transaction setting of the
current task. This means that all new records are committed
in the table only when the function is completed.
The memory table structure and the BLOB parameter
structure must be the same and are checked by matching
their column order, column number, and column attribute.
Indexes and foreign keys are not checked.
The DB Table Name parameter, which enables you to refer
to another table by its name, is effective only if the same
table entry is not opened by any active task at the time the
function is executed.
Reference Guide 681

mTime Retrieves the time value in milliseconds from midnight to the current time.

Syntax: mTime()

Parameters: None
Returns: A numeric value displaying the time in milliseconds that has

elapsed from midnight to the current time.
Example: mTime() evaluated at 02:30:21.5 AM returns the value

9021500, the number of milliseconds from midnight to
02:30:21.5 AM.

Note: The Time data attribute does not support milliseconds.

mTStr Converts a time value in milliseconds to a specified Alpha string picture
format.

Syntax: mTStr(time value,picture)
Parameters: time value - A numeric value representing the time value in

milliseconds.
picture - The picture format for the Alpha string.

Returns: An Alpha string of the time value in milliseconds.
Example: mTStr(52221123,'HH:MM:SS.mmm') returns the Alpha

string 14:30:21.123
mTStr(52221123,'HH:MM:SS') returns the Alpha string,
14:30:21

mTVal Converts a time value in milliseconds from an Alpha string to a numeric
value.

Syntax: mTVal(string,picture)
Parameters: string - An Alpha string containing a time value, for

example, 14:30:00.123
picture - The picture format for the Alpha string.

Returns: A numeric value displaying the elapsed time in milliseconds.
Example: TVal('14:30:21.123','HH:MM:SS') returns the numeric value

52220999, the number of milliseconds from midnight to
14:30:21.123 (2:30:21.123 PM).

Note: The Time data attribute does not support milliseconds.
Reference Guide 682

MVal Converts an eDeveloper number to a number.

Syntax: MVal(string)

Parameter: string: An alpha string containing a number.
Returns: The numeric value.
Example: MVal(MStr(1234,4))

returns 1234
See also: MStr

NDOW Day of Week Number to Day Conversion
Converts the number of the day of the week (e.g. 1, 2) to the
corresponding name (e.g., Sunday, Monday).

Syntax: NDOW(day of week)
Parameter: day of week: A number that represents the day of the week
Returns: Alpha string (containing day-of-week description)
Examples: NDOW(1) returns ‘Sunday’ NDOW(DOW(‘01/28/1992’Date))

returns ‘Tuesday’
Note: If the day of week is greater than 7, it is reduced by 7; e.g.,

0,7,14,21... = Saturday.
See also: DOW, CDOW

NMonth Month Number to Name Conversion
Converts the number of the month, 1-12, to the corresponding name,
January-December.

Syntax: NMonth(month)
Parameter: month: A number that represents the month of the year,

1 to 12.
Returns: Alpha string.
Examples: NMonth(1) returns ‘January’

NMonth(Month(‘01/28/1992’Date)) returns ‘January’
See also: Month, CMonth, NDOW

NULL Nullify a variable. Sets any variable to a NULL value.

Syntax: NULL()
Reference Guide 683

Note: This function has no parameters and is simply used to set
any variable to a NULL value. NULL support is limited to
those eDeveloper Database Gateways supporting NULL
values.
The developer can specify the behavior of the application
when performing arithmetic that involves NULL values. This
may be either to use the NULL value for calculations
specified at the field or column level or the Application level,
or to set the result of the calculation to NULL.
A field or column will not be set to NULL if NULL values are
not allowed for it. Refer to the section on Type and Column
Properties “Allow Null” settings in Chapter 4, Tables.

OEM2ANSI Converts an OEM character set to ANSI.

Syntax: OEM2ANSI (string)
Parameter: string
Returns: Parameter string returns a translation to ANSI.

OSEnvGet This function returns an alpha string containing the value of the operating
system variable.

Syntax: OSEnvGet(variable)

Parameters: variable – A string value representing an operating system
environment variable.

Returns: An alpha containing the value of the variable. If the variable
is not set, an empty string is returned.

Example: OSEnvGet(‘PATH’) reads the value of the operating system
PATH environment variable.

OSEnvSet This function sets the value of an operating system environment variable.
The duration of this setting is until the eDeveloper process terminates.

Syntax: OSEnvSet(variable, value)
Parameters: variable – A string value representing an operating system

environment variable.
Reference Guide 684

value – A string value representing the value that the
variable is set to.

Returns: True
Example: OSEnvSet(‘PATH’,’C:\Program Files\Dev;C:\winnt\system32’

sets the value of the operating system PATH environment
variable to ‘C:\Program Files\Dev;C:\winnt\system32’

Owner Owner’s Name
The Owner function returns the present value of the Owner parameter
defined in the Environment screen as a 30 character string. This value can
also be retrieved by the INIGet and Env functions. The Owner function
retrieves the value from memory without any disk access, as opposed to
the INIGet function. Use the Owner function for better performance.

Syntax: Owner()
Parameter: None
Returns: Alpha string (30).
Example: Owner()

returns a string with the owner’s name.
See also: INIGet

Page Current Page Number of an Output IO File
Returns the current page number in an IO output file.

Syntax: Page(generation,IOfile)
Parameters: generation: A number that represents the hierarchic

position of the task. 0 represents the current task, 1 its
immediate ancestor, etc.
IOfile: A number that represents the sequence number of
the output IOfile in the specified task.

Returns: Number
Example: Page(1,1) returns the page number in the first output file of

the immediate parent task.
See also: Line
Reference Guide 685

ParamsPack Packs a collection of global values that have been set by the SetParam
function into a BLOB variable. The BLOB variable can be transmitted to
another engine context or process to recreate the global values by using
the ParamsUnPack function.

Syntax: ParamsPack()
Parameters: None
Returns: A BLOB variable that stores the collection of global values.

ParamsUnPackUnpacks the global values from a BLOB variable created by using the
ParamsPack function and sets them for the current engine context.

Syntax: ParamsUnPack (package)
Parameters: package - A BLOB variable created by the ParamsPack

function.
Returns: True
Example: ParamsUnPack(A) unpacks the global values created in

BLOB Variable A.
Note: If a global value with the same name already exists for the

current context, eDeveloper replaces the global value with
the most recently unpacked global value.

PPD Protection Device Read
Reads the protection device code programmed in the application, if a
protection device is to be used.

Syntax: PPD()
Parameter: None
Example: PPD()

returns a 10 character string containing PPD code.

Pref Query Application Prefix
Returns the application prefix from the Application repository, including
the path, if any.

Syntax: Pref()
Parameter: None
Reference Guide 686

Returns: Alpha string containing application prefix.
Example: If the application Prefix is AP and the application resides in

C:\APPL in a Windows environment,
Pref returns ‘C:\APPL\AP’

See also: Sys

Prog Query Task Path
Returns the task path that leads to the current task. The resulting alpha
string contains the task names, as well as the current name of the task.
Names are separated by the ‘;’ character.

Syntax: Prog()
Parameter: None
Returns: Alpha string containing execution path.
Example: Prog()

returns, for example, ‘Sales Orders (by customer);
Customer (Header); Order Lines’

See also: Menu

ProgIdx Program Index
Returns the current index number of the program selected in the Program
repository to be used in the Call Expression operation.

Syntax: ProgIdx(alpha,logical)
Parameter: alpha: A program name in the Program repository.

logical: False refers to the program’s name. True refers to
the program’s public name.

Returns: The current index of the specified program in the Program
repository.

Example: ProgIdx(’Calculate’, ‘FALSE’log)
or
ProgIdx(A, ‘TRUE’log) where A is an alpha variable.

RAND Random Number Generator
Generates random numbers.
Reference Guide 687

Syntax: RAND(startnumber)
Parameter: startnumber: A seed number used to define the sequence.
Returns: Random number.
Examples: If startnumber=-1, the seed is initialized randomly.

If startnumber=n (where n is not 0 or -1), the seed is
initialized to n.
If startnumber=0, the next random number is generated
based on the existing seed.
After initializing the seed, continue with RAND(0) to
generate each random number.

Range Range Check
Checks whether a number falls within a range, and returns a Boolean True
or False.

Syntax: Range(value,lower,upper)
Parameters: value: The value to be checked.

lower: A value that represents the lower limit of the range.
upper: A value that represents the upper limit of the range.

Returns: ‘TRUE’ if Lower <= ValUE <= Upper
Example: Range(10,5,15)

evaluates to True.
See also: MIN, MAX
Note: Like MIN or MAX, any attributes are allowed as long as they

are shared by all parameters.

Rep Replace Substring Within a String
Replaces an alpha substring within a string with another substring.

Syntax: Rep(target,origin,pos_target,len_origin)
Parameters:
target: The target alpha string or expression where the
replacement will take place.
origin: The alpha string or expression that provides the
substring to be copied to target.
Reference Guide 688

pos_target: The first position in the target string that will
receive the substring from origin.
len_origin: The number of characters that will be moved
from origin to target, starting from the leftmost character of
origin.

Returns: Alpha string containing modified target string
Example: Rep(‘12345’,’abcde’,3,2)

returns ‘12ab5’

RepStr This function replaces any occurrences of an alpha substring with a string
that has another substring.

Syntax: RepStr(source string, original substring, new substring)
Parameters: source string - The string in which the substring will be

replaced.
original substring – The substring to be replaced.
new substring – Subtsring that will replace any occurrence
of the substring being replaced.

Returns: The string that contains the modified substring.
Example: RepStr (‘BB//CC//DD//EE’, ‘//’,‘==’) returns

BB==CC==DD==EE
Note: The original substring and the new substring may differ in

length. If the original substring is longer than the new
substring, then the remaining spaces are truncated and the
result string will be shorter than the source string.
If the original substing is shorter than the new string, then
the result stirng will be lengthier than the source string.

ResMagic Restore eDeveloper
Restores an eDeveloper window to normal size.

Syntax: ResMagic()
Parameter: None
Returns: Boolean True or False indicating success or failure.
Example: ResMagic()
Reference Guide 689

Right Get characters of string
Returns a specified number of characters from an alpha string, starting
with the rightmost character.

Syntax: Right(string,length)
Parameters: string: An alpha string from which the characters will be

taken.
length: The number of characters to be retrieved, starting
from the right most character.

Returns: Output string
Example: Right(‘abcdefg’,3) returns ‘efg.’
Note: If string is an alpha parameter, the function refers to the full

length of the parameter. If field A is a 20-character alpha
parameter containing ‘abcdefg’, Right(A,3) returns ‘ ‘
(blanks, the last three positions of the parameter).
To retrieve the characters from the actual alpha string
contained in a field, use Right(RTrim(A),3)

See also: Left, MID, RTrim

RightAdd Add Right
Assigns a Right to a user in the Security File from within an application.

Syntax: RightAdd(user,right)
Parameters: user: The id of the user to be assigned to the user Right

given by the second parameter.
right: The right to be granted to user.

Returns: Logical True or False according to the success or failure of
the operation.

Example: RightAdd(‘Accountant’, ‘Issue Invoice’) will assign the Right
‘Issue Invoice’ to the user called Accountant.

Note: Only a user logged on as SUPERVISOR can use this function
successfully.

Rights Query Right Ownership

Queries whether user has given right.
Returns True if the user has the right.
Returns False if the user does not have the right.
Reference Guide 690

Syntax: Rights(‘string‘RIGHT)
Parameter: string: An alpha string, the name of a right, with the Right

literal.
Returns: Boolean (True) if the user has the given right.
Example: Rights(‘right #4’Right) returns True if the user has right #4.
Note: Right is a literal type. Refer to the section on literals on page

page 511.
See also: GROUP, User

Rollback Roll Back
Rolls a transaction back to its beginning.
Should be used if a particular condition occurs at some point within an
application.

Syntax: Rollback(logical,generation)
Parameters: logical: True or False. If True, eDeveloper displays the

Confirm Transaction Rollback Request? message,
requiring user confirmation. If False, no confirmation is
requested.
generation: A number representing the task, as listed
below.

Example: Rollback(‘TRUE’LOG,0)
Returns: Logical True if transaction was rolled back, False if

transaction was not aborted.
Note: While “transaction rollback” is generally thought of in terms

of database failures and/or system crashes, it can also be
usefully employed to handle exceptional situations related
to application logic. Perhaps a batch program is processing
financial transactions that update account balances in
master records, and as a result of reading the current
transaction record, a master record balance with a normal

0 Rollsback to the root task

1 Rollsback to the current task

2 Rollsback to the parent task
Reference Guide 691

range of $5,000 to $100,000 suddenly exceeds
$10,000,000. It may be necessary or desirable to not
include this transaction in either the master account record
or in related totals. This can easily be achieved through the
use of the Rollback function in an Evaluate Expression
operation with a condition checking the balance.

Round Rounding
Extracts a specified part of a number and rounds the result.

Syntax: Round(number,whole,decimal)
Parameters: number: The number subjected to the operation.

whole: The number of digits to be extracted from the
integer part of number. eDeveloper counts the digits left
from the decimal separator.
decimal: The number of digits to be extracted from the
decimal part of number. eDeveloper counts the digits right
from the decimal separator.

Returns: Rounded number
Example: Round(345.995,2,2) returns 46.00
See also: Fix

RqCtxInf This function returns an information string of a given context identified by
the context ID.

Syntax: RqCtxInf(service/server name, context id, query password)

Parameters: service/server name - An alpha variable or constant with a
service or server name.

context id - A value of the context ID.

query password - An alpha variable or constant with the
password specified in the Broker initialization file.

Returns: A string with the following comma-delimited information:
Enterprise server - The host and port of the enterprise
server that handles this context.
Application name - the application within which the context
was opened.
Reference Guide 692

Example: RqCtxInf(‘My Service’,‘1324543108’,’MY PASS’)
This example returns the following information string for the
given context:
 machine1/1607,My Application

Note: The RqCtxInf function is only relevant for a browser task
request, because only a context opened by a browser task is
saved throughout the requests. The context of other types
of requests is terminated when the request is completed.

RqCtxTrm Terminates a given context. The context is identified by its entry number
as retrieved by the RqRtCtxs function.

Syntax: RqCtxTrm(service/server name, context entry number,
supervisor password)

Parameters: service/server name: An alpha variable or constant with a
service or server name.
Context entry number: Numeric value indicating the internal
number of the context within all contexts queried using
RqRtCtxs. The RqRts function must be called first.
supervisor password: An alpha variable or constant with the
password specified in the Broker initialization file.

Returns: Boolean indicating success or failure.

Example: RqCtxTrm(‘My Service’,14,’MY PASS’)
This example terminates the 14th context as retrieved by
the RqRtCtxs function.

RqExe Request Executable
Requests a MRB to load a new entry from a predefined list of executables
on the MRB local computer.

Syntax: RqExe (service/server name, executable entry name,
arguments, supervisor password)

Parameters: service/server name: An alpha variable or constant from
eDeveloper’s servers list.
executable entry name: An alpha variable or constant
identifying an executable from the predefined list of
executable written as an ASCII file pointed to the
Reference Guide 693

MRB_EXECUTABLES_LIST or MRB REMOTE
EXECUTABLES_List entry in MGRB.INI.
arguments: Optional arguments for the loaded executable
(e.g. /StartApplication=5).
supervisor password: An alpha variable defining the
supervisor password of the Broker.

Returns: Boolean value indicating if requested executable is being
loaded by the MRB. The MRB loads the executable in an
asynchronous call, so the returned value indicates only if
the access to the MRB was accepted and the executable
could be loaded.

Example. RqExe (‘Default Broker’, ‘Online’, ‘/StartApplication=5’,
‘Secret’

RqHTTPHeader

Sets the required HTTP Header information for the returned HTTP result of
a batch program.

Syntax: RqHTTPHeader(header string,[header string]…)
Parameters: header string - a string representing a required HTTP

Header data. For example, 'Content-type: application/pdf' to
indicate that the requester output data is in PDF format.
A header sting must follow the [Type]:[Value]

Returns: Logical - The function returns a True value if the header
information is defined in the [Type]:[Value] format.

Example: To post a PDF file by using the File2Req function, you must
define the HTTP Header as RqHTTPHeader('Content-type:
application/pdf') within the execution of the request.

Note: 1. The HTTP Header is set for the request just as the request
is completed and the output is sent back to the requester.
This means that the RqHTTPHeader function can be
evaluated at any point in the request task flow.
2. The HTTP Header information that was last evaluated will
take effect. The next request will not be affected by the
previous RqHTTPHeader evaluation.
Reference Guide 694

RqLoad Requester Load.
Provides statistical information about the load of one or all services of a
single broker.

Syntax: RqLoad (service/server name, supervisor password)
Parameters: service/server name: An alpha variable or constant with a

service or server name.
supervisor password: An alpha variable defining the
supervisor password of the service broker.

Returns: String with the following comma-delimited information:
Average queue time - float numeric value with 2 digits after
the decimal point. This is the average time that a user has
to wait for an Enterprise Server to be assigned to them.
Total number of requests - numeric value.
Number of pending/in-queue requests - numeric value.
Number of requests in progress (received from the
Enterprise Server) - numeric value.
Number of requests that were executed - numeric value.
Number of requests that failed - numeric value.

Note: Invalid service name causes the function to fail and return a
blank string. If the password is not the supervisor password,
then the function also fails.

RqQueDel Requester Queue Delete
Deletes an entry in the Service Queue.

Syntax: RqQueDel (service/server name, req id, supervisor
password)

Parameters: service/server name: An alpha variable or constant with a
service or server name.
req id: An Alpha value defining the entry in the queue.
supervisor password: An alpha variable defining the
supervisor password of the service broker or an empty
string.

Returns: Boolean indicating success or failure.
Example: RqQueDel (‘Default Service’, BA, ‘Secret’)
Reference Guide 695

removes the request identified by the value, stored in the
BA variable, from the queue.

Note: Invalid service name or request id causes the function to fail
and return False. If the password is an empty string, only
entries submitted by the current user can be deleted. If the
password is other than the current user or supervisor the
function will also fail.

RqQueLst Requester Queue List
Provides number of entries pending in the Queue.

Syntax: RqQueLst (service/server name, supervisor password)
Parameter: service/server name: An alpha variable or constant with a

service or server name.
supervisor password: An alpha variable defining the
supervisor password of the Service Broker or an empty
string.

Returns: entries - Number of entries pending in the Queue for this
service.

Example: RqQueLst(‘Default Service’, ‘Secret’)

RqQuePri Requester Queue priority
Resets the priority for a pending request in the Queue.

Syntax: RqQuePri (service/server name, req id, new priority,
supervisor password)

Parameters: service/server name: An alpha variable or constant with a
service or server name.
req id: Alpha value defining the entry in the queue.
new priority: Numeric value defining the
new priority (0-9).
supervisor password: An alpha variable defining the
supervisor password of the Service Broker or an empty
string.

Returns: Boolean value indicating the success of the operation.
Reference Guide 696

Example: RqQuePri(‘Default Service’,BA, ‘Secret’)
The BA virtual variable temporarily stores the required ID
returned by the Call Remote command.

Note: If the service name, req id, or priority is invalid, the function
returns a value of False. If the password is invalid, the
function also returns a value of False.

RqReqInf Requester Request ID Values
Provides information about a request through a list of values that are
generated from the Queue or from the Broker’s history log. Executes only
when RqQueLst or RqReqLst is called before.

Syntax: . RqReqInf (service/server name, entry number)
Parameters: . service/server name - Alpha variable or constant with a

service or server name.
entry number - Numeric value specifying an index in the list
of requests queried by RqQueLst or RqReqLst (one of them
must be called before). This value must be between 1 to the
number of entries returned by either RqQueLst or RqReqLst.

Returns: String with the following comma-delimited information:
Application Name - The name of the application of the
request.
Program Name - The public name of the program in the
application.
User Name - The user name to access the application.
Priority - The priority of the execution.
Submit Host - The host of the client that submitted the
request.
PID - The process ID of the client that submitted the
request.
Submit Time - The time when the request was submitted
(string: HH:MM:SS).
Elapsed Execution Time - Number of seconds that the
request executed.
Request ID - The request id associated with the request.
Reference Guide 697

Status - Request Status (1 - Pending, 2 - Executing, 3 -
Completed, 4 - Failed, 5 - Cleared).
Requester Return Code - Of the Request submission.
DBMS Return Code - Of the task execution.

Example: RqReqInf (‘Default service’, C) where the virtual numeric
variable C temporarily stores an entry number calculated
through the execution of the RqReqLst function.

Note: If the password is an empty string, only information about
requests that were submitted from the current user can be
displayed. If the service name, entry number, or supervisor
password are invalid, an empty string is returned.

RqReqLst Requester Request List
Returns the number of request entries, specified by a range of request
identifications, from the broker’s log.

Syntax: RqReqLst (service/server name, request id min, request id
max, supervisor password)

Parameter: service/server name: An alpha variable or constant with a
service or server name.
request id min: Identification range minimum.
request id max: Identification range maximum.
supervisor password: An alpha variable defining the
supervisor password of the Service Broker or an empty
string.

Returns: Number: The number of the request entries queried.
Example: RqReqLst(‘Web Server’, BA, BB, ‘Secret’)
Note: If the password is an empty string, only information about

requests that where submitted from the current user can be
displayed. If the service name or entry number or
supervisor password are invalid, an empty string is
returned.

RqRtApp Requester Supported Application Information
Returns information about one application supported by one or more
runtime engines registered in the Broker.
Reference Guide 698

Syntax: RqRtApp (service/server name, entry number)
Parameters: service/server name: An alpha variable or constant with a

service or server name.
entry number: Numeric value indicating the internal
number of the application, within all applications queried
using RqRtApps (RqRtApps must be called before).

Returns: A string with the following comma-delimited information:
Application Name: The application name.
Host Name: The host where the Enterprise Server is
activated.
Port Number: The port that the Enterprise Server is listening
to.

Example: RqRtApp(‘Data Server’, BD)
The virtual, numeric variable BD temporarily stores an
application number that has been generated through the
execution of the RqRtApps function.

RqRtApps Requester Runtime applications.
Provides the number of applications supported by one or all enterprise
servers associated with a broker.

Syntax: RqRtApps (service/server name, runtime engine number,
supervisor password)

Parameters: service/server name: An alpha or constant variable with a
service or server name.
runtime engine number: Numeric value indicating the
internal number of the runtime engine (if not 0), within all
runtime engines associated with the service (RqRts must be
called before).
supervisor password: An alpha variable with the password
specified in the Magic Request Broker ini file.

Returns: entries - A numeric variable with the number of applications
(how many) that are supported by the runtime engine,
registered for this service.

Example: RqRtApps(‘Data Server’, BA,’’)
The virtual, numeric variable BD temporarily stores runtime
engine number for the number of applications that are
Reference Guide 699

supported by the runtime engine. This number is returned
from the execution of the RqRts function.

RqRtCtx This function returns the information of a given context entry of a given
service or server name. The RqRtCtx function should be run before using
this function.

Syntax: RqRtCtx(service/server name, context entry number)

Parameters: service/server name: An alpha variable or constant with a
service or server name.
Context entry number: Numeric value indicating the internal
number of the context within all contexts queried using
RqRtCtx. The RqRts function must be called first.

Returns: A string with the following comma-delimited information:
Context ID: The ID of the context.
Request ID: The ID of the request that is active within this
context.
Program name: The name of the program that opened this
context.
User name: the name of the user logged into the system
within this context.
Status: The status of the context
E – Executing - the current entry is currently executing
P – Pending - the current entry is waiting for an event
T – Terminated - the current entry has terminated
Last used: the amount of time that has passed since the last
time the context was active in the HH:MM:SS format.

Example: RqRtCtx(‘My Service’,14)
This example returns the following information about the
14th entry that was queried using the ‘My Service’ service.
1324543108,128,Customer Entry,George,E,00:00:00

Note: The Request ID is only available if the status of the context
is Executing. Otherwise the Request ID is set to zero. For
example:
2314672146,0,Customer Entry,George,P,00:13:47

RqRtCtxs Loads the information of all of the opened contexts of the enterprise
server in which it is evaluated. The function returns the total number of
Reference Guide 700

these contexts. The RqRtCtxs function needs to be evaluated prior to the
RqRtCtxs function that queries a given context.

Syntax: RqRtCtxs(service/server name, runtime engine number)

Parameters: service/server name: An alpha variable or constant with a
service name.
runtime engine number: Numeric value indicating the
internal sequential number of the runtime engine within all
the runtime engines associated with the service. The RqRts
function must be called first.

Example: RqRtCtxs(‘My Service’,3)
This example loads the information of all the contexts that
are opened by Engine number 3 of the ‘My Service’ service,
and returns the total number of opened context by the given
engine.

Note: 1. Every RqRtCtxs activation clears the previous activation
of the function.
2. This function is relevant for multi threaded background
enterprise servers. When it is used in a non-background
enterprise server, it will always return 0.

RqRtInf Requester runtime information.
Gives information about a specific enterprise server associated with a
broker.

Syntax: RqRtInf (service/server name, runtime engine number)
Parameters: service/server name: An alpha variable or constant with a

server or a service name.
runtime engine number: Numeric value indicating the
internal number of the runtime engine, within all runtime
engines associated with the RqRts list (RqRts must be called
before).

Returns: String with the following comma-delimited information:
Dotted Address - In the form of nnn.nnn.nnn.nnn
Host Name - The host where the runtime engine is
activated.
Reference Guide 701

Port Number - The port that the runtime engine is
monitoring.
Process ID - The process ID of the runtime engine in the
host.
Status - A numeric value indicating the following
1 - Available idle
2 - Available running
3 - Busy Request
4 - Busy Toolkit
5 - Not responding
6 - Crashed
7 - Query Only
8 - License Expired
9 - Connection Problem
14 - Shutting Down
Open Application - The name of the opened application.
Running threads - The number of running threads.
Threads peak - The maximum number of open threads that
was reached.
Allowed threads - The maximum number of allowed threads.
If the engine setting is zero, then it should return the
maximum allowed according to the given license.

Example: RqRtInf(‘Data Server’, BA)
The virtual, numeric variable BA temporarily stores the
runtime engine number. This number is returned from the
execution of the RqRts function

Note: In case an invalid service name or runtime engine number,
for the current application, is sent, the function returns an
empty string.

RqRts Requester runtime
Gives the number of enterprise servers associated with a broker.

Syntax: RqRts (service/server name, supervisor password)
Parameters: service/server name: An alpha variable or constant with a

service or server name.
supervisor password: An alpha variable or constant with the
password specified in the broker’s initialization file.
Reference Guide 702

Returns: enterprise servers: a numeric value; the number of
enterprise servers that are registered for this service, if
service name was passed, or the total number of enterprise
servers registered by the Broker.

Example: RqRts (‘Data Server’, ‘Secret’)

RqRtTrm Terminates all enterprise servers associated with a requester.

Syntax: RqRtTrm(service name, entry number, supervisor password)
Parameters: service name: An alpha variable or constant with a service

name.
entry number: Numeric values indicating the internal
number of the runtime engine in the list returned by RqRts.
If the value is 0, all runtime engines will be terminated.
supervisor password: An alpha variable defining the
supervisor password of the Service Broker.

Returns: True when the enterprise server has been terminated.
False is returned when the enterprise server has not been
terminated.

Example: RqRtTrm(‘Data Server’, BA, ‘Secret’)
The virtual, numeric variable BA temporarily stores the
entry number. This number is returned from the execution
of the RqRts function.

Note: An invalid service name or runtime engine number causes
the function to fail. If another password is used, other than
the supervisor password, the function fails.

RqRtTrmEx Terminates all enterprise servers associated with a requester by a graceful
timeout.

Syntax: RqRtTrmEx (service name, entry number, supervisor
password, graceful timeout)

Parameters: service name: An alpha variable or constant with a service
name.
entry number: Numeric values indicating the internal
number of the runtime engine in the list returned by RqRts.
If the value is 0, all runtime engines will be terminated.
Reference Guide 703

supervisor password: An alpha variable defining the
supervisor password of the Service Broker.
graceful timeout: The number of seconds until the server
engine is terminated after the function is executed.

Returns: True when the enterprise server has been terminated.
False is returned when the enterprise server has not been
terminated.

Example: RqRtTrmEx (‘Data Server’, BA, ‘Secret’, 900)
The virtual, numeric variable BA temporarily stores the
entry number. This number is returned from the execution
of the RqRts function.

Note: An invalid service name or runtime engine number causes
the function to fail. If another password is used, other than
the supervisor password, the function fails. When the
Graceful Timeout parameter is not set or is not a valid
value, the default timeout value will be zero.

RqTrmTimeoutRetrieves the remaining number of seconds before the server termination
occurs.

Syntax: RqTrmTimeout()
Parameters: None
Returns: A numeric value representing the number of seconds before

the server termination occurs.The function returns 0 when
there is no server termination.

Example: RqTrmTimeout returns 30, thirty seconds before the server
engine is terminated.

RqStat Request Status
Returns a simple numeric value indicating the status of a single request.

Syntax: RqStat (service/server name, request ID, supervisor
password)

Parameters: service/server name - Alpha variable or constant with a
service or server name.
request ID - The Request ID is returned as a return value
from the remote call.
Reference Guide 704

supervisor password - Alpha variable defining the supervisor
password of the broker.

Returns: 0 - Not found
1 - Pending
2 - Executing
3 - Completed
4 - Failed
5 - Cleared

RTrim Remove Trailing Blanks
Removes trailing blanks from an alpha string.

Syntax: RTrim(string)
Parameter: string: An alpha input string.
Returns: Trimmed alpha string.
Example: RTrim(‘John’) returns ‘John’
See also: LTrim, Trim

RunMode Runmode
Returns a numeric code corresponding to the engine run mode.

Syntax: RunMode()
Parameter: None
Returns: -1 - When the main program of an application is executed

for the first time on an enterprise server.

When the application is closed and another is opened for the
first context.
When an application is opened for the first time under a
multi-threaded background engine.
0 - When an application is run under a full runtime engine,
foreground runtime engine, background runtime engine, or
background generator engine.

If the function is evaluated in called programs and subtasks,
RunMode returns 0.
Reference Guide 705

1 - When an application is run under a toolkit engine and
the application is initially opened in runtime mode.
2 - When an application is run under a toolkit engine and
the application is switched to runtime mode.
3 - When an application is run under a toolkit engine and a
program is executed directly from the toolkit mode.

Second Seconds Value of a Time Value
Returns a number that represents the seconds part of a time value.

Syntax: Second(time)
Parameter: time: A time value or a time expression
Returns: Number, 0-59.
Examples: Second(‘12:15:48’Time) returns 48

If A contains the time value ‘12:15:48’, Second(A)+2
returns 50

See also: Minute, Hour

SetBufCnvParam

Sets parameters that determine the writing and reading conversion values
to and from the buffer.

Syntax: SetBufCnvParam (conversion parameter name, conversion
parameter value)

Parameters: conversion parameter name - An Alpha string representing
the name of the conversion parameter. The parameter
values are displayed under Note.

conversion parameter value - The conversion value.
Conversion values are displayed under Note.

Returns: True if successful. The function fails when the conversion
parameter name or value is not valid.

Note: The conversion values are displayed in the table below.

Parameter
Name

Description Attributes Default
Reference Guide 706

SetCrsr Set Cursor Shape.
Changes the cursor shape. SetCrsr is activated using the Evaluate
operation.

Syntax: SetCrsr(number)
Parameter: number: A number, from 1 - 14. The expected numeric

values and the cursor shape they produce are listed below:
1. Standard arrow
2. Hourglass
3. Hand
4. Standard arrow and small hourglass
5. Crosshair
6. Arrow and question mark
7. I-beam
8. Slashed circle
9. four-pointer arrow pointing north, south, east, and
west.
10. Double-pointed arrow pointing northeast and southwest
11. Double-pointed arrow pointing north and south
12. Double-pointed arrow pointing northwest and southeast

Low-Hi Indicates whether
the numbers should
be written or read in
Windows standard
word order, low-hi,
or in UNIX’s
standard word order,
hi-low.

Logical True

Encoding Encoding types for
the Alpha value:

1. ANSI

2. EBCDIC

3. UNICODE

Numeric 1

Code Page Used for EBCDIC and
UNICODE encoding

Numeric None
Reference Guide 707

13. Double-pointed arrow pointing west and east
14. Vertical Arrow.

Returns: True/False
Note: This function returns False in non-Windows platforms.

When the parameter value is <>1-14, SetCrsr returns False.

SetLang Sets the current language to the language string parameter. The string is
used as an entry point in the Language repository.

Syntax: SetLang(string)
Parameter: String: An alpha string specifying a language.
Returns: True when the language is set.
Example: SetLang(‘French’)

SetParam Sets global parameters for a single context.

Syntax: SetParam (parameter name, value)
Parameters: parameter name: A string representing the name of a global

parameter.
value: A value that can be returned.

Returns: Boolean value indicating success or failure.
Example: SetParam(‘P-Employee name’, BA)

The variable BA contains a string value to be passed as a
parameter.

SharedValGet Retrieves a shared value according to its name. A shared value is a value
stored in the memory of the eDeveloper process. Once created, this value
can be retrieved by all active contexts and new contexts.

Syntax: SharedValGet(name)
Parameters: name - The name of the shared value.
Returns: The function returns the shared value by the defined name.

The attribute of the returned value is determined by the
shared value attribute as set by the SharedValSet function.
Reference Guide 708

If the shared value does not exist, the function returns a
Null value.

Example: SharedValGet(‘RATIO’) retrieves the shared value name
‘RATIO’.

SharedValPack Packs a collection of shared values, set by the SharedValSet
function, into a BLOB variable. The BLOB can be transmitted
to another process to recreate the shared values by using
the SharedValUnpack function.

Syntax: SharedValPack()
Parameters: None
Returns: A BLOB that stores a collection of shared values.
Example: SharedValPack() packs all the shared values of the current

engine.

SharedValSet Creates a shared value, which is a value stored in the memory of the
eDeveloper process. Once created, this value can be retrieved by all active
contexts and new contexts.

Syntax: SharedValSet(name, value)
Parameters: name - The name of the shared value.

value - The value that can be returned.
Returns: This function always returns True.
Example: SharedValSet(‘RATIO’, 0.34) creates a shared numeric value

0.34 with the name of RATIO.
Note: The shared value can be retrieved by using the

SharedValGet function with the name of the shared value.

SharedValUnpack
Creates shared values, retrieved by the SharedValGet function, from a
BLOB value created by using the SharedValPack function.

Syntax: SharedValUnpack(package)
Parameters: package – A BLOB value created by the SharedValPack

function.
Reference Guide 709

Returns: True when the package is not a NULL and the collection of
shared values was packed using either the ParamsPack or
SharedValPack functions.

Example: SharedValUnpack(A) creates shared values as created in
BLOB Variable A.

SIN Trigonometric Sine Function
Returns the sine of an angle, where the angle is expressed in radians.

Syntax: SIN(radians)
Parameter: radians: A number that represents the angle expressed in

radians
Returns: Sine value
Example: SIN(0.7854)

returns 0.70711
See also: ASIN, ACOS, ATAN, COS, TAN

SNMPNotify Sends an application trap message to a Network Management Station.

Syntax: SNMPNotify(message, severity)
Parameters: message - An Alpha string.

severity - A value from 1 (highest) to 3.
Returns: A logical value

Example: SNMPNotify(‘The transaction failed’,1) returns False.
Note: This function should be used for application error messages.

SoundX Compare Homonyms
Returns an alpha string that enables comparison between two alpha
strings that sound alike, but are spelled differently.

Syntax: SoundX(string)
Parameter: string: An alpha string.
Returns: Alpha string containing 4 characters.
Example: SoundX(‘John Doe’)=SoundX(‘Jhn De’)

returns True
Reference Guide 710

Note: The function returns a four-character alpha value. ‘John
Doe’, ‘Jhn De’, ‘JOhN Deo’ each return ‘J530’. ‘Steve’ returns
‘S310’ while ‘Svte’ returns ‘S130’. SoundX values of strings
can be determined and then used in comparisons and in
condition statements. These values can also be stored in a
file and indexed to allow direct access.

SplitterOffset Retrieves the current split offset percentage or unit of measurement

Syntax: SplitterOffset(mode)
Parameters: mode - The mode values are:

• 0 - Returns the split offset as a percentage

• 1 - Returns the split offset as a unit of measurement

Returns: The split offset measurement by the selected mode value.
Note: If there is no split form in the task, the function returns 0.

Stat Check Status
Tests a task’s mode (e.g.,Query,Modify, etc.).

Syntax: Stat(generation,modes)
Parameters: generation: A number representing the task’s hierarchic

position in the task tree. 0 represents the current task, 1 its
immediate ancestor, etc.
modes: An alpha string that represents the tested mode or
modes. For a full list of task modes see the P.

Returns: Boolean (True, False)
Example: If the current task is in Create or Modify mode,

Stat(0,’CM’MODE)
returns True

Note: The D (Delete) status can be checked only in Record Suffix.
The use of MODE following ‘CM’ above indicates the MODE
literal.

See also: Literals

Str Translate Number to String
Converts a number to an alpha string, according to a picture.
Reference Guide 711

Syntax: Str(number,picture)
Parameters: number: The number to be converted into an alpha string.

picture: The format of the resulting string.
Returns: Alpha string containing converted number.
Example: Str(45.12,’##.#’) returns ‘45.1’
Note: Because a picture is used, the function may cause rounding.

Str(39.999,’##.##’) returns ‘40.00’. For a full description of
pictures, refer to the Picture discussion in the Data Items.

See also: Val

StrToken Returns a token from a delimited string.

Syntax: StrToken(source string, token index, delimiters string)
Parameters: source string: Delimited alpha string with tokens.

Token Index: Requested token index (numeric).
Delimiters String: Alpha string continuing the delimiter
string.

Returns: Alpha - contains the requested token or empty string when
not found.

Note: The Delimiters String can have more than one character for
delimiter.
When the index is 1 and the delimiter is empty, or not
found, the full source string will return.
An empty string is returned when a delimiter was not found
(empty delimiter, out of range index, or not exist delimiter),
and the index is more than 1.
Every delimiter will be counted for the index calculation (no
repetition).
A space cannot be a delimiter.

Example: StrToken(BA,2,’,’)
BA - abcd,cdef,ghik,lmnp
returns cdef

StrTokenCnt Returns the number of existing delimited tokens in a given string.

Syntax: StrTokenCnt(source string, delimiter string)
Reference Guide 712

Parameters: source string: A group of tokens delimited by an alpha
string.
delimiter string: An alpha string containing the delimiter
string.

Returns: When the delimiter is empty or was not found in the source
string, the returned value is one.

Example: The expression StrTokenCnt(‘abcd\cdef\ghik\lmnp’,’\’)
returns 4.

Note: The delimiter string can have more than one character for
delimiter.

StrTokenIdx Returns the token index in a delimited Alpha string.

Syntax: StrTokenIdx(source string, token, delimiter)

Parameters: source string - A delimited Alpha string containing at least
one token.

token - The token value.

delimiter - Characters separating the tokens in an Alpha
string.

Returns: A Numeric value - The position of the token in the delimited
Alpha string as determined by the delimiters.

Example: StrTokenIdx('AA,BB,CC,DD','CC',',') returns 3.

Note: A space cannot be a delimiter.

Sys System Name
Returns the name of the application as it appears in the Name column of
the Application repository.

Syntax: Sys()
Parameter: None
Returns: Alpha string
Example: Sys()

returns application name
See also: Pref
Reference Guide 713

TAN Trigonometric Tangent Function
Returns the tangent of an angle, where the angle is expressed in radians.

Syntax: TAN(radians)
Parameter: radians: A number that represents the angle, as expressed

in radians.
Returns: Number - The tangent value.
Example: TAN(0.7853981634)

returns 1
See also: ASIN, ACOS, ATAN, SIN, COS

TDepth Task Depth

Syntax: TDepth()
Parameter: None
Returns: A number representing the current task’s depth in the task

execution hierarchy.
Example: TDepth()

returns 1 if called from the root task
See also: Level

Term Query Environment Dialog for Terminal Number
Returns the terminal number as specified in the Environment table.

Syntax: Term()
Parameter: None
Returns: Number of terminal
Example: Term()

returns terminal number
Note: Term may be used for providing a unique value in a multi-

user system. It is your responsibility to ensure each user is
allocated their own MAGIC.INI “terminal” value. This can be
done by using different MAGIC.INI files, or by using the
command line override feature.

See also: INIGet, INIPut, User
Reference Guide 714

Text Tests for background Server mode in Client/Server installations of
eDeveloper.

Returns True to indicate that the application is running in background
Server mode, with no user interface; otherwise it returns False.

Syntax: Text()
Parameter: None
Returns: True for UNIX/iSeries and False for Windows.
Example: Text()

THIS Directs a variable-related function or a task generation related function to
the variable or task from which an event was triggered.A raised event may
be handled by a handler of a higher level task. In such a case the dataview
and the runtime tree below the handler’s task level are not available.

In variable-related functions (VarAttr, VarCurr, VarMod, VarName, VarPrev,
VarSet), the THIS() function is used to represent the index of the variable
from which the event was raised. In generation-related functions
(CHeight, CLeft, CLeftMDI, Counter, CTop, CTopMDI, CWidth, DbCache,
EOF, EOP, LastPark, Level, Line, Page, Stat, ViewMod, WINBox,
WINHWND) you use the function to represent the generation of the task
from which the event was raised.

Syntax: THIS()
Parameters: None
Returns: The index of a variable from which an event was raised or

the generation of the task from which the event was raised.
Example: VarCurr(THIS()) returns the current value of the variable

from which the handled event was raised.
Stat(THIS(),‘C’MODE) returns True if the task from which
the handled event was raised is in create mode.

Note: The THIS function cannot be applied to any function that is
not listed above, and cannot be evaluated independently.
The THIS function also cannot be followed by other
arithmetic or conversion functions.
Reference Guide 715

Time System Time
Returns the system time.

Syntax: Time()
Parameter: None
Returns: Current Time value
Example: Time()

returns 17:08:42
Time()+5
adds 5 seconds to the system time, returning 17:08:47

See also: Date, MDate

Translate Translates all logical names and nested logical names to their actual
values. Secret names are not translated.

Syntax: Translate(string)
Parameter: string - An alpha value with logical names.
Returns: The actual values represented by logical names and nested

logical names.
Example: From a string with the logical name

Temp=’%Driver%\temp\not found!’ returns ‘C:\temp\not
found!’

Note: If a logical name is not found, the part of the string remains
as is.

TransMode Provides information about the current active-transaction, whether it is
deferred or physical.

Syntax: TransMode()
Returns: One of the following values:

D - If the transaction is deferred.
P - If the active transaction is physical.
‘ ’ (blank) - If there is no active transaction.

TreeLevel Retrieves the current level of the selected node in the data tree.
Reference Guide 716

Syntax: TreeLevel()
Parameters: None
Returns: The level of the selected node.

TreeNodeGotoParks on a tree node that is identified by the tree node identifier.

Syntax: TreeNodeGoto(node id)
Parameters: node id - The Node ID value of the destination tree node.
Returns: True if successful.
Example: TreeNodeGoto('A001') locates the tree node with an

identification value of 'A001'.
Note: eDeveloper can park on a tree node only if it is already

loaded in the tree.

TreeValue Retrieves the node identification determined by the current level of the
selected node.

Syntax: TreeValue(tree level)
Parameters: tree level - A number representing the node’s hierarchic

position in the data tree. 0 represents the current node, 1
its immediate ancestor, and so on.

Returns: The node identifier.

Trim Remove Blanks
Remove leading and trailing blanks from a string.

Syntax: Trim(string)
Parameters: string: An input Alpha string.
Returns: The edited input string, with the leading and trailing blanks

removed.
Example: Trim(‘abc‘)

returns the string ‘abc’ free of spaces.
See also: LTrim, RTrim

TStr Translate Time to Character
Converts a time to an alpha string, according to a picture specification.
Reference Guide 717

Syntax: TStr(time,picture)
Parameters: time: A time value to be converted.

picture: The format of the resulting character string. For a
full description of pictures, refer to the Pictures section in
Chapter 3, Data Items.

Returns: Alpha string containing converted time
Example: TStr (‘14:30’Time,’HH:MM PM’)

returns ‘2:30 PM’
Note: A blank picture converts using “HH:MM:SS”.
See also: TVal, DStr, DVal

TVal Alpha to Time Conversion
Converts a time value stored as an alpha string to a numeric value,
according to a picture.

Syntax: TVal(string,picture)
Parameters: string: An alpha string that can be interpreted as a time

value (e.g., ‘02:30:00 PM’).
picture: The format for string in which the time is stored.
This parameter helps eDeveloper read and interpret the
character alpha string. For a full description of pictures refer
to the Pictures section in Chapter 3, Data Items.

Returns: Time value
Example: TVal(‘02:30:00 PM’,’HH:MM:SS PM’)

returns 14:30:00
Note: A blank picture interprets the string as ‘HH:MM:SS’.
See also: TStr, DVal, DStr

UDF User Defined Function
User functions written in the third generation programming languages, like
C or Pascal, can be called as functions within eDeveloper expressions
(cdecel).

Syntax: UDF(‘module_name.function_name‘[,parameters])
Parameters: module_name: The external module or program containing

the user defined function.
Reference Guide 718

function_name: The named function.
parameters: Up to 30 parameters, as required by the user
defined function, separated by commas.

Returns: The result of the external third generation function.
Note: UDF uses a mechanism similar to that of User Procedures.

See the Installation and Platform Information literature for
your platform.

It is possible to activate a User Procedure (UP) or a User
Defined Function (UDF) on a host machine when using the
eDeveloper Client/Server architecture. To activate the
remote UP or UDF, the server name should be part of the
module name, as in (myserver)myproc.add.

UDFF User Defined Function called by the fastcall convention.
User functions written in third generation programming languages, like C
or Pascal, can be called as functions by the fastcall convention.

Syntax: UDFF(‘module_name.function_name’[,parameters])
Parameters: module_name: The external module or program containing

the user defined function.
function_name: The named function.
parameters: Up to 30 parameters, as required by the user
defined function, separated by commas.

Returns: The result of the external third generation function.
Note: UDFF uses a mechanism similar to that of User Procedures.

See the Installation and Platform Information literature for
your platform.

It is possible to activate a User Procedure (UP) or a User
Defined Function (UDF) on a host machine when using the
eDeveloper Client/Server architecture. To activate the
remote UP or UDFF, the server name should be part of the
module name, as in (myserver)myproc.add.

UDFS User-defined function by the stdcall convention
Reference Guide 719

User functions written in third generation programming languages (like C
or Pascal) can be called as functions by the stdcall convention.

Syntax: UDFS(module_name.function_name[,parameters])
Parameters: module_name: The external module or program containing

the user defined function.
function_name: The named function.
parameters: Up to 30 parameters, as required by the user
defined function, separated by commas.

Returns: The result of the external 3GL function.
Note: UDFS uses a mechanism similar to that of User Procedures.

See the Installation and Platform Information literature for
your platform.

It is possible to activate a User Procedure (UP) or a User
Defined Function (UDF) on a host machine when using the
eDeveloper Client/Server architecture. To activate the
remote UP or UDFS, the server name should be part of the
module name, as in (myserver)myproc.add.

Unlock Unlock Row
Returns an evaluated expression that unlocks a table row or task that is
locked.

Syntax: Unlock(resource)
Parameter: resource: Any expression that returns an alpha string. Its

maximum length is 128.
Returns: Number that indicates if lock was successful:

0 - Resource is not locked by the same session or has not
been locked at all.
1 - Unlock was successful.

See also: Lock
Note: Longer expressions will be truncated. Zero length is a valid

name. A resource may only be unlocked by the same
document that locked it.
Reference Guide 720

Upper Switch Lower Case to Upper Case
Converts lowercase letters to uppercase letters.

Syntax: Upper(string)
Parameter: string: An alpha string to convert.
Returns: Alpha string converted to upper case.
Example: Upper(‘john’)

returns (‘JOHN’)
See also: Lower

User Query User Data
Returns user data as specified in the User IDs repository.

Syntax: User(number)
Parameter: number: 0, 1, or 2.

User(0) returns the User ID.
User(1) returns the User Name.
User(2) returns the User Information variable.

Returns: Alpha string.
Example: User(1)

returns the User Name of the current user.
Note: The User function in previous releases had no parameters

and returned the User ID. In accordance with changes to
the authorization system from Magic Version 5.5, the
function has been revised. The import facility now converts
the User function in existing applications to User(0).

See also: INIGet, INIPut

UserAdd User Added to Security File
Add a user record into the Security file from within an application.

Syntax: UserAdd(user,name,password,info)
Parameters: user: The user identification number to insert into the

security file.
name: The name of the new user.
password: The user password.
Reference Guide 721

info: The user information parameter.
Returns: Logical True or False in the User Information variable.
Example: UserAdd(‘John’,’John Doe’,’xyz’,’no info’) will insert a user

called John to the Security file, with the full name John Doe,
the password xyz and the string ‘no info’ in the User
Information variable.

Note: Only a supervisor user can use the function successfully.

UserDel Lets the supervisor delete a user identification in a security file from within
an eDeveloper application.

Syntax: UserDel(user identification name)
Parameter: user identification name - The user identification number in

the security file to be deleted.
Returns: True or False, depending on whether the user entry was

deleted or not.
Example: UserDelete(‘John’) deletes a user identification called John

from the security file.
Note: Only a supervisor or a user assigned to a supervisor group

can use the UserDel function.

UTF8FromAnsiConverts data encoded in ANSI to UTF8

Syntax: UTF8FromAnsi(string value)
Parameters: string value - The task variable that will be converted. The

variable attribute can be Alpha, Memo, or BLOB RTF.
Returns: A BLOB RTF encoded in UTF8.
Example: UTF8FromAnsi(A), where A is a variable in the current task,

returns a BLOB containing the value encoded in UTF8.
UTF8FromAnsi(‘Hello World’) returns a BLOB containing
‘Hello World’ encoded in UTF8.

UTF8ToAnsi Converts data encoded in UTF8 to an ANSI string. This function uses code
pages defined in the CodePage function. If you are not using the CodePage
function, the default OS code page is used in a similar way as with Java
functions.
Reference Guide 722

Syntax: UTF8ToAnsi(string value)
Parameters: string value - The task variable that will be converted. The

variable attribute can be an Alpha, Memo, or BLOB
attribute.

Returns: A BLOB RTF encoded in ANSI. A Null is returned when using
an invalid code page.

Example: Where A is a BLOB variable in the current task, UTF8ToAnsi
(A) returns a BLOB containing the value of A encoded in
ANSI.

Val Alpha to Numeric Conversion
Converts an alpha string to a numeric value, according to a picture.

Syntax: Val(string,picture)
Parameters: string: The alpha string to be converted to a numeric value.

picture: The format in which the number is stored in the
string. For a full description of pictures, refer to Pictures
section in the Chapter 3, Data Items.

Returns: Number values
Example: Val(‘45.12’,’##.#’)

returns 45.1
Note: A blank picture may be specified for converting standard

numbers.
See also: Str

VarAttr Variable Attribute Retrieval
Provides a variable’s attribute.

Syntax: VarAttr(variable)
Parameter: variable: Value representing a variable index within the

Variable list.
Returns: A string containing the variable’s attribute.
Examples: VarAttr('BE'VAR)
Note: VarAttr is helpful when implementing a generic cut and

paste mechanism using Application events.
See also: . VarCurr, VarInp, VarMod, VarName, VarPrev
Reference Guide 723

VarCurr Current Retrieval
VarCurr retrieves the current value of a variable, based on a dynamic
value representing a variable index within the Variable list

Syntax: VarCurr(variable)
Parameter: variable: Value representing a variable index within the

Variable list.
Returns: Current value of requested variable, in the variable’s

attribute
Examples: VarCurr(‘BE’VAR)

returns the current value of the variable BE
VarCurr(‘CR’VAR + 7)
returns the current value of the variable CY

Note: The variable parameter should use the VAR literal so that
eDeveloper can automatically reorder this parameter.
This function may be used for implementing arrays, by
adding to or subtracting from the base variable.

See also: Literals, VarPrev, VarMod

VarCurrN Returns the current value of a variable according to the variable’s name.

Syntax: VarCurrN(variable name)

Parameter: Variable name: A string representing a variable’s name.

Returns: Current value of requested variable. The attribute of the
returned value is the referred variable's attribute.

Examples: VarCurrN('Customer ID’) returns the current value of the
variable named ‘Customer ID’.

Note: If the variable name is not found, the function returns NULL.
When the given variable name exists more than once, the
function relates to the lowest variable in the task tree.

VarDbName Queries a given dataview to retrieve the physical definition of each
variable.

Syntax: VarDbName(variable index)

Parameter: variable index – The value that represents a variable index
Reference Guide 724

in the Variable list.

Returns: String – If the variable is a real field of an SQL table, the
function returns the table owner, the table’s physical name,
and the column’s physical name of the defined variable,
delimited by a period. If the variable is not a real field of an
SQL table, the function returns an empty string.

Examples: VarDbName(‘C’VAR) returns the CUSTOMER_ID, which is
the name of the variable as defined in the database.

Note: VarDbName is relevant only for real fields of SQL tables. The
function returns a blank string when evaluating real
variables from a Btrieve or Memory table, or a local variable
that is not part of a Direct SQL statement.

VariantAttr Retrieves the eDeveloper attribute corresponding to the variant data type.

Syntax: VariantAttr(variant value)

Parameters: variant value - A BLOB value storing the variant data type.

Returns: A single character for the variant data type, as shown
below:

A - Alpha

N - Numeric

L - Logical

D - Date

B - BLOB

V - Vector

0 - No value

Example: VariantAttr(B) returns A when the value of the variant is a
VT_BSTR data type.

VariantAttr(C) returns N when the value of the variant is a
VT_I4, or VT_R8 data type.

VariantAttr(D) returns 0 when the value of the variant is a
non-supported data type.
Reference Guide 725

VariantCreate Creates a variant according to the provided data.

Syntax: VariantCreate(VT type, value, optional time value)

Parameters: VT type - A numeric value representing the variant type.

0 VT_EMPTY

1 VT_NULL

2 VT_I2

3 VT_I4

4 VT_R4

5 VT_R8

6 VT_CY

7 VT_DATE

8 VT_BSTR

9 VT_DISPATCH

10 VT_ERROR

11 VT_BOOL

12 VT_VARIANT

13 VT_UNKNOWN

14 VT_DECIMAL

16 VT_I1

17 VT_UI1

18 VT_UI2

19 VT_UI4

20 VT_I8

21 VT_UI8
Reference Guide 726

22 VT_INT

23 VT_UINT

24 VT_VOID

25 VT_HRESULT

26 VT_PTR

27 VT_SAFEARRAY

28 VT_CARRAY

29 VT_USERDEFINED

30 VT_LPSTR

31 VT_LPWSTR

36 VT_RECORD

64 VT_FILETIME

65 VT_BLOB

66 VT_STREAM

67 VT_STORAGE

68 VT_STREAMED_OBJECT

69 VT_STORED_OBJECT

70 VT_BLOB_OBJECT

71 VT_CF

72 VT_CLSID

4095 VT_BSTR_BLOB

4096 VT_VECTOR

8192 VT_ARRAY

16834 VT_BYREF
Reference Guide 727

value - The value selected for the variant.

optional time value - Relevant when the eDeveloper
attribute parameter is set to D. The Date data type of a
variant stores both date and time values. Set the date in the
value parameter and the time in the optional time value
parameter.

Returns: A BLOB value representing the created variant. You can use
the returned value to update a BLOB field, keep the variant
value, or pass the BLOB value directly to an external object.

Example: VariantCreate (8,'Hello') returns a variant set by the string
value as a VT_BSTR data type.

VariantCreate (7,Date(),Time()) returns a variant set with
the Date and Time values as VT_DATE data type.

VariantGet Retrieves the value of a specified variant data type.

Syntax: VariantGet (variant value, attribute)

Parameters: variant value - A BLOB value storing the variant data type.

attribute - Enter a character below to indicate the
eDeveloper data attribute:

A - Alpha

N - Numeric

L - Logical

D - Date

B - BLOB

Returns: The value as specified by the variant data type and the
eDeveloper data attribute.

Example: VariantGet (B,'A') returns an Alpha value.

VariantGet (C,'D') returns a Date value.

VariantType Retrieves the variant data type’s storage type identifier.

32768 VT_RESERVED
Reference Guide 728

Syntax: VariantType(variant value)

Parameters: variant value - A BLOB value storing the variant data type.

Returns: The variant storage type identifier. If the BLOB value is not a
valid variant, the function returns Null.

Example: VariantType(B) returns 20 when the data type is VT_I8.

Note: The Variant Storage Type table is shown below.

Table 1 - Basic Types

The following table shows the VARTYPE values that indicate valid Variant
types.

VARTYPE
Value

Variant
Storage Type

Description Range

0 VT_EMPTY No value was specified

1 VT_NULL SQL-style Null

2 VT_I2 Signed 2-byte integer -32,768 to 32,767

3 VT_I4 Signed 4-byte integer -2,147,483,648 to
2,147,483,647

4 VT_R4 Signed 4-byte real 1.1E -38 to 3.4E +38
 (7 digits)

5 VT_R8 Signed 8-byte real 2.2E -308 to 1.7 E +308
(15 digits)

6 VT_CY Currency

7 VT_DATE Date

8 VT_BSTR Automation string

9 VT_DISPATCH A pointer to an object
that implements
IDispatch

10 VT_ERROR SCODE
Reference Guide 729

When the variant type is a reference or an array, the following values should
be added to the value that represents the actual storage.

11 VT_BOOL Boolean

12 VT_VARIANT

13 VT_UNKNOWN A pointer to an object
that implements
IUnknown

14 VT_DECIMAL Decimal

16 VT_I1 1-byte character -128 to 127

17 VT_UI1 Unsigned 1-byte
character

0 to 255

18 VT_UI2 Unsigned 2-byte
integer

0 to 65,535

19 VT_UI4 Unsigned 4-byte
integer

0 to 4,294,967,295

22 VT_INT Signed machine
integer

23 VT_UINT Unsigned machine
integer

Example: A 4-byte integer value, which is indicated by VT_I4, is represented by the
value of 3.

VARTYPE
Value

Variant
Storage Type

Description Range
Reference Guide 730

Table 2 - Arrays and References

The following values are used for Bit-Wise Logical OR operations. These values
should be used in addition to the values in Table 1. They are not valid alone.

VARTYPE value Enumeration
Symbol

Description

4096 VT_BYREF A reference to data type

8192 VT_ARRAY An array of data type

Note:

The symbol | is used in the documentation to indicate a Bit-Wise Logical OR operation
and is common when indicating variants, such as VT_I2|VT_BYREF. When you use
the values from Table 2, you should use the arithmetical ADD operation, instead of
the symbol |.

Example of by reference storage
16387 represents a reference that is a signed 4-byte integer, indicated by
VT_I4|VT_BYREF (16387 is a result of 3 + 16384).

Example of an array
8195 represents an array that is a signed 4-byte integer, indicated by
VT_I4|VT_ARRAY (8195 is a result of 3 + 8192).

Exceptions

The exceptions are:

1. VT_VARIANT cannot be used alone and must be used with a
value from Table 2

2. The following combinations are not valid:

• VT_NULL|VT_BYREF

• VT_EMPTY|VT_BYREF

• VT_NULL|VT_ARRAY

• VT_EMPTY|VT_ARRAY
Reference Guide 731

VarIndex Returns the index of a variable according to the variable’s name. The
VarIndex function can be used in other VAR functions such as VarMod,
VarAttr, VarPrev, VarSet, VarPic as the variable index.

Syntax: VarIndex(variable name)

Parameter: variable name: A string representing a variable’s name.

Returns: The index of a requested variable.

Examples: VarAttr(VarIndex('Customer ID’)) returns the attribute of
the variable named ‘Customer ID’.

Note: 1. If the variable name is not found, this function returns
Zero.
2. When the given variable name exists more than once, the
function relates to the lowest variable in the task tree.

VarInp Last variable where the insertion point is parked.

Identifies the last variable where the insertion point has parked, allowing
input.

Syntax: VarInp(generation)
Parameter: generation: A number representing the task’s hierarchic

position in the task tree. 0 represents the current task, 1 its
immediate ancestor, etc.

Returns: The number of the variable in the specified task where the
insertion point has parked. Variable numbers start with A for
the first variable of the root task, and are incremented
sequentially for every new variable selected. Subtask
variables continue the sequence of their ancestor task.

Example: Task 1 contains two select field operations. Its subtask
contains two more select fields. The variable list for this
program appears as follows:
A VAR 1
B VAR 2
————
C VAR 3
D VAR 4
Reference Guide 732

The insertion point is parked on variable B. The function
VarInp(1) evaluated at the subtask level will return B.

Note: The numbering of variables in sibling tasks starts from the
last variable of their common parent. Therefore the variable
identifications of both subtask’s variables are the same for
the first group of variables (group size is the minimum
number of variables between the two tasks).

See also: VarAttr, VarCurr, VarMod, VarName, VarPrev

VarMod Variable Modification Check
Checks whether the contents of a variable were changed since the
dataview record was fetched.

Syntax: VarMod(variable)
Parameter: variable: Value representing a variable index.
Returns: True if modified
Example: VarMod(‘A’ VAR) evaluates to True if the contents of variable

A were changed since the dataview record was fetched.

VarName Variable Origin and Description
Provides a variable’s origin and description.

Syntax: VarName(variable)
Parameter: variable: Value representing a variable’s index.
Returns: A string containing the table name where the variable

originates, concatenated with ‘.’ and the field description of
the variable in that table. If the variable is a virtual one,
then the table name would indicate ‘Virtual’.

Examples: If variable A is ‘Customer Number’
from the Customer table
the function
VarName(‘A’VAR) returns
‘Customer.Customer Number’

Note: The variable parameter should use the VAR literal in order
that eDeveloper may automatically reorder this parameter.

See also: VarAttr, VarCurr, VarInp, VarMod, VarPrev
Reference Guide 733

VarPic String value for a picture field
Returns a string value that represents a picture field.

Syntax: VarPic (variable, mode)

Parameter: variable - ‘#’ variable or a numeric value

mode - the function mode

Returns: Mode=0 returns the picture field as defined in the field
definition.

Mode=1 returns the picture field as defined by the control
assigned to the field. Note that only control assigned to
Class 0 forms can be referred to by function mode.

Note: If the control does not have a picture property, the string
returns the field definition of the picture, as if Mode=0. If
the variable is not placed on the form, the string returns the
field definition of the picture, as if Mode=0.

 Mode values other than 0 or 1 are considered as Mode=0.

VarPrev Variable Retrieval - Previous Value
Retrieves the original value of a variable, based on a dynamic value
representing a variable index within the Variable list.

Syntax: VarPrev(variable)
Parameter: variable: Value representing a variable index within the

Variable list.
Returns: Original value of requested variable, in the variable’s

attribute
Examples: VarPrev(‘BE’VAR)

returns the original value of variable BE
VarPrev(‘CR’VAR + 7)
returns the original value of variable CY
VarPrev(‘W’VAR) <> W
checks if the variable has been changed - similar to
VarMod(‘W’VAR)

Note: The variable parameter should use the VAR literal to enable
eDeveloper to automatically reorder this parameter.
Reference Guide 734

This function should be used to retrieve the value of a
variable as it was when the Dataview record was fetched.
VarPrev should not be used during the initializing stage of a
record since eDeveloper does not have the necessary
information ready for the function. Therefore you should
refrain from using this function in INIT expressions. In any
case, during this stage of the engine operation, the previous
value of a variable is equal to the current value.

See also: Literals, VarCurr, VarMod

VarSet Sets a named variable to a specific value.

Syntax: VarSet(variable,value)
Parameters: variable: A value representing a variable index. It should be

used with the VAR literal.
value: The value to which the variable is to be set.

Returns: True or False. If a Null value or a non-existent variable is
entered, the fuction returns a False value.

Note: The VarSet function is Boolean and always returns the value
‘TRUE’LOG. The update operation is always Normal (it
cannot be specified as Incremental).
Recomputation is performed after the VarSet function
terminates.
With the availability of both VarCurr and VarSet, you can
implement certain categories of database applications
whose natural database organization would normally be
arrays. As an example, consider an integer numeric array of
size 1,000 rows by 100 columns, stored as 1,000 records of
100 variables each. In the application it is required that
value_a be added to the current value in a given cell of the
array identified by row and column. Define a batch subtask
whose Min/Max Range limits its dataview to the record
identified by row and, in the Record Suffix, “update” the
field identified by column. Without VarCurr and VarSet it
would require over 200 Update and other operations. These
can be replaced with one Evaluate Expression operation
using the following expression:
Reference Guide 735

VarSet(‘A’VAR + column-1, VarCurr(‘A’VAR + column-
1)+value_a)
where it is assumed that ‘A’VAR is the eDeveloper token
identifier of the first variable in the record, and the values of
column begin from the value ‘1’.

VecCellAttr Returns the vector's cell attribute.

Syntax: VecCellAttr (vector)
Parameters: vector - The Vector field
Returns: An Alpha string containing the cell's attribute. A blank is

returned when the Vector field has not been updated.

VecGet Returns the value of a specified cell.

Syntax: VecGet(Vector, Cell Index)
Parameters: Vector - The vector value.

Cell Index - The index of the cell that is retrieved.
Returns: The value as specified by the cell model attribute. A Null

value is returned if the field is not a vector or if the cell
index is negative. When the cell has not been updated, the
function returns the default value of the cell model.

VecSet Updates the value of a selected cell with a given vector.

Syntax: VecSet(Vector Field Reference, Cell Index, Value)
Parameters: Vector Field Reference - A numeric value representing a

vector variable index within the Variable list.
Cell Index - The index of the retrieved cell.
Value - Depends on the data attribute stored in the cell
vector.

Returns: True when successful. False when the field reference is not a
vector field, the value parameter is not the same data
attribute value as stored in the cell vector, or a negative
index value is provided.

VecSize Returns the number of cells for the given vector.
Reference Guide 736

Syntax: VecSize (Vector)
Parameters: Vector - A vector variable.
Returns: A numeric value. -1 when an attribute is not a vector, or

when the vector is a Null or a BLOB that is a Null (not
updated).

ViewMod Dataview Record Modification Check
Checks whether the current dataview record was changed since fetched.

Syntax: ViewMod(generation)
Parameter: generation: A number representing the task’s hierarchic

position in the task tree. 0 represents the current task, 1 its
immediate ancestor, etc.

Returns: True if modified.
Example: Introduced as a condition to a Verify Exp operation, the

expression:
ViewMod(0)
displays the Verify Exp message if the current dataview
record in the current task was changed since fetched.

See also: VarMod

Visual This function supports Hebrew applications. This function gives the
developer the ability to change the way eDeveloper handles mixed strings.
The possible ways of handing mixed strings are Logical and Visual. Logical
is the way the engine treats the strings internally, but sometimes the
strings are provided as Visual. So, if a developer wants the 'Logical' strings
to be presented as Visual, they can be converted using the Visual function.
Likewise, if a developer needs to handle a set of data that was provided as
'Visual' and wants to make it coherent with the way the eDeveloper engine
is handling the strings, then they can be converted using the Logical
function.

Syntax: Visual (string, True/False)
Parameters: string - The string of which to perform the conversion.

True/False is a Boolean True or False.
Returns: If True, the string will be displayed with best results when

presented from Right to Left. If False, the string will be
Reference Guide 737

displayed with best results when presented from Left to
Right.

WebRef Converts a text string to an input field on an HTML web page for use in
Web Online applications.

Syntax: WebRef (string)
Parameter: string: The name of an input field in string format.
Returns: The string with % characters before and after.
Examples: 1. The expression WebRef(‘CustomerName’) returns

‘%CustomerName%’
2. The expression WebRef(‘VarLine’&Str(Counter(0),‘1’)),
where Counter(0)=2, returns ‘%VarLine2%’
3. The expression ‘Thank you’&WebRef(BC)& ‘for purchasing
our product’, where the BC variable contains the string
‘CustomerName’, returns ‘Thank you %CustomerName% for
purchasing our product’

WINBox Window Box.
Returns a Window dimension, X position, Y position, Width or Height

Syntax: WINBox(numeric, alpha)
Parameters: numeric: A number representing a generation.

0 = the current generation, 1 = the parent generation.
alpha: A representation of the dimension to be returned.
Use X to return the X position, Y to return the Y position, W
to return the width, and H to return the height.

Returns: Numeric value of the dimension requested.
Example: WINBox (0, ‘W’)

WinHelp This function opens a specified Help file and performs a selected
command.

Syntax: WinHelp(help file, command, help key)
Parameters: help file - A string specifying the Help file name and path.

command - A number specifying the Help command that is
performed when the Help file is opened.
Reference Guide 738

The numbers below represent the supported commands:
1 - Context
2 - Contents
3 - SetContents
4 - ContextPopup
5 - Key
6 - Command
7 - ForceFile
8 - HelpOnHelp
9 - Quit
For more information about the supported commands, See
“Windows WinHelp Connections” on page 978.
help key - A string value providing additional information
required for some of the commands.
For more information about the Help key, see page page
978.
You should specify a blank string for commands that do not
require Help key information.

Returns: True when the Help file successfully opens. False is returned
when the function fails.

Example: WinHelp(`Support\MGHELPW.CHM`,2,``) opens the
contents page of the eDeveloper Help file.
WinHelp(`Support\MGHELPW.CHM`,1,`1001`) opens an
eDeveloper Help file and displays the Help topic assigned to
context number 1001.

Note: SetContents, ContextPopup, Key, Command, ForceFile, and
HelpOnHelp commands are not supported for CHM Help
files.

WINHWND eDeveloper window’s window handle
Returns a Window’s window handle (HWND) for an eDeveloper window.
This can be used in a user-defined function that requires an HWND.

Syntax: WINHWND (numeric)
Reference Guide 739

Parameter: numeric: Value representing an eDeveloper generation,
where 0 = the current task, 1 = the parent task, and so on.

Returns: Value that represents the window handle, HWND.
Example: WINHWND(1)

WSAttachmentAdd
Web Service (WS) DIME addresses the difficulties involved
in embedding binary data, such as video, graphics, and
sound into XML documents. eDeveloper supports DIME
attachments when executed in RPC or DOC/Literal Web
service provider.

A provider Web service program can retrieve attachments
from the SOAP request or to add attachments to the SOAP
response using the WSAttachmentGet and
WSAttachmentAdd functions.

This function attaches a BLOB variable to a Web service
message.

Syntax: WSAttachmentAdd (Attachment)

Parameters: Attachment - The BLOB variable to be attached to the
message.

Returns: An alphanumeric Universal Unique Identifier value (UUID)
automatically generated by the outgoing attachment, which
can be used as a reference in the returned XML document.

The function returns a Null value when the attached BLOB
variable is empty or the WSAttachmentAdd function is not
activated during a provider program execution.

Example: WSAttachmentAdd (A),

where A is a BLOB variable, retrieves a UUID that can be
sent in the XML message.

Note: Outgoing attachments are cleared from memory after the
Task Suffix operations have been executed in the Web
service provider program.

WSAttachmentGet
Retrieves a Web Service (WS) DIME attachment received by
a Web service request.

Syntax: WSAttachmentGet (Identifier)
Reference Guide 740

Parameters: Identifier - Select an identifier type from the options below:
1. Universal Unique Identifier (UUID) - An alphanumeric
value that uniquely identifies the WS DIME attachment. In
some cases the sender can add the UDDI into the XML
message, but this is not mandatory.
2. Index - Numeric value. When eDeveloper receives several
attachments, the function retrieves each WS DIME
attachment by its index number in the message, starting
from 1.

Returns: A BLOB containing the incoming Web Service (WS) DIME
attachment.
A Null value is returned when the WS DIME attachment is
not found by the UUID or Index, or the function had not
been activated during a provider program execution.

Example: 1. WSAttachmentGet (1), returns the first WS DIME
attachment from the message.

2. WSAttachmentGet ('F2DA3C9C-74D3-4A46-B925-
B150D62D9483'), returns the identified WS DIME
attachment.

Note: In runtime, incoming attachments are available during the
web service provider program by using the following syntax:
WSAttachmentGet (uuid) or WSAttachmentGet (index). For
indexes, the incoming attachments are added in their order
of appearance in the DIME message.
Incoming attachments are cleared from memory after the
Task Suffix operations have been executed in the Web
service provider program.

 XMLBlobGet Returns the value of an XML element or an XML attribute according to its
element path.

Syntax: XMLBlobGet(generation, file, element path, attribute name)
Parameter: generation: A number that represents the hierarchic

position of the task. 0 represents the current task, 1
represents its immediate ancestor, and so on.
file: A number that represents the sequence number of the
I/O file in the current task.
Reference Guide 741

element path: A string that represents the path of an XML
element. The syntax is:
element name[[index]] [.element name[[index]]...]
where:

element name is the name of an XML element. You can
assign an alias to the element name. The alias is separated
from the element name by a colon symbol (:),
for example, al1:My_Element.

index is the index of a specified occurrence of an element
that has multiple occurrences. The index value must be
greater than 0. Negative values are invalid.

attribute name: The name of the XML attribute.
Returns: BLOB. If the XML parsing process is completed successfully,

the requested element will exist and will return a value. If
the XML parsing process was not successful, an empty
string is returned.

Example: <?xml version="1.0"?>
<order id="123">
 <issued_by>
 <name>John Smith</name>
 <address>
 <street>Somewhere</street>
 <city>Nowhere</city>
 </address>
 </issued_by>
 <item cat_num="2145451544">
 <price>99.99</price>
 <amount>2</amount>
 </item>
 <item cat_num="1384325456">
 <price>19.99</price>
 <amount>10</amount>
 </item>
 </order>
Reference Guide 742

Given that the XML above is saved into the file
C:\myxml.xml, and that the current task first I/O file points
to an XML file, the following expressions apply:
XMLBlobGet (0, 1, ‘order.issued_by’, ‘name’) returns John
Smith.
XMLBlobGet (0, 1, ‘order.send_to’, ‘name’) returns an empty
string because there is no send_to element in the order.
XMLBlobGet (0, 1, ‘order.item[2]’, ‘price’) returns 19.99.
XMLBlobGet (0, 1, ‘order.item[5]’, ‘price’) returns an empty
string because there are only 2 items in the order.
XMLBlobGet (0, 1, ‘order’, ‘id’) returns 123.
XMLBlobGet (0, 1, ‘order.issued_by’, ‘date’) returns an
empty string because there is no date attribute in the
issued_by element.
XMLBlobGet (0, 1, ‘order.issued_by’, ‘name’) returns an
empty string because name is a child element of the
issued_by element but not an attribute of it.

Note: When an XML file is encoded in a different code page than
the code page of the operating system, you can change the
code page by using the CodePage function. The code page is
assigned per context.

XMLCnt Returns the number of occurrences of an XML element or an XML attribute
according to its path.

Syntax: XMLCnt (generation, file, element path, attribute name)
Parameter: generation: A number that represents the hierarchic

position of the task. 0 represents the current task, 1 its
immediate ancestor, and so on.
file: A number that represents the sequence number of the
I/O file in the current task.
element path: A string that represents the path of an XML
element. The syntax is:
element name[[index]] [.element name[[index]]...]
where:

element name is the name of an XML element. You can
Reference Guide 743

assign an alias to the element name. The alias is separated
from the element name by a colon symbol (:),
for example, al1:My_Element.

index is the index of a specified occurrence of an element
that has multiple occurrences. The index value must be
greater than 0. Negative values are invalid.

attribute name: The name of an XML attribute that is the
attribute of the multi-occurrence element name. Its value is
compared to the Value parameter.

Returns: The number of occurrences of that element in the specified
path. Returns 0 if the XML parsing path was not completed,
or if the requested element does not exist.

Example: <?xml version="1.0"?>
<order id="123">
 <issued_by>
 <name>John Smith</name>
 <address>
 <street>Somewhere</street>
 <city>Nowhere</city>
 </address>
 </issued_by>
 <item cat_num="2145451544">
 <price>99.99</price>
 <amount>2</amount>
 </item>
 <item cat_num="1384325456">
 <price>19.99</price>
 <amount>10</amount>
 </item>
</order>
Given that the XML above is saved into the file
C:\myxml.xml, and that the current task’s first I/O file
points to an XML file, the following expressions apply:
Reference Guide 744

XMLCnt (0, 1, ‘order.issued_by.name’)
Returns 1.
XMLCnt (0, 1, ‘order.send_to,.name’)
Returns 0 because there is no send_to element in the order.
XMLCnt (0, 1, ‘order.item’)
Returns 2.
XMLCnt (0, 1, ‘order.item[2]’, ‘cat_num’)
Returns 1.

Note: When an XML file is encoded in a different code page than
the code page of the operating system, you can change the
code page by using the CodePage function. The code page is
assigned per context.

XMLDelete Lets you delete an XML element or attribute.

Syntax: XMLDelete (generation, I/O file entry, element path,
attribute name)

Parameters: generation - A number that represents the hierarchic
position of the task. 0 represents the current task, 1
represents its immediate ancestor, and so on.
I/O file entry - A number that represents the sequence
number of the I/O file entry in the current task.
element path - A string representing the XML element path.
The XML element path syntax is: element name[[index]]
[.element name[[index]]…]
where:
element name is the name of an XML element. You can
assign an alias that is separated from the element name by
a colon symbol (:), for example, al1:My_Element.

index is the index of a specified occurrence of an element
that has multiple occurrences. The index value must be
greater than 0. Negative values are invalid.

attribute name - The name of an XML attribute. If you are
inserting an XML attribute, you must specify the attribute
name. If you are inserting an XML element, leave this
parameter blank.
Reference Guide 745

Returns: A numeric value. 0 is returned when the XML element or
attribute path is deleted. When this function fails,
eDeveloper returns one of the following error codes:

Example: <?xml version="1.0"?>

<order id="123">

<issued_by>

<address>

<street>Somewhere</street>

<city>Nowhere</city>

</address>

</issued_by>

<item cat_num="2145451544">

<price>99.99</price>

<amount>2</amount>

</item>

<item cat_num="1384325456">

<price>19.99</price>

<amount>10</amount>

</item>

</order>

• XMLDelete (0, 1, ‘order.item[2].price‘,‘‘)

-1 Invalid I/O file

-2 Inserted element or attribute alias is not defined

-3 The I/O file not opened in Write mode

-4 Element path not found

-11 Invalid path, non-valid index

-20 Invalid XML file (XML parsing failed)
Reference Guide 746

In this example, the <price>19.99</price> element is
removed from the document.

• XMLDelete (0, 1, ‘order‘,‘id‘)
In this example, the id attribute is removed from the order
element.

XMLExist Returns a True value if an XML element or an XML attribute can be located
by the XML’s element path.

Syntax: XMLExist (generation, file, element path [, attribute name])

Parameters: generation: A number that represents the hierarchic
position of the task. 0 represents the current task, 1 its
immediate ancestor, and so on.
file: A number that represents the sequence number of the
I/O file in the current task.
element path: A string that represents the path of an XML
element. The syntax is:
element name[[index]] [.element name[[index]]...]
where:
element name is the name of an XML element. You can
assign an alias to the element name. The alias is separated
from the element name by a colon symbol (:),
for example, al1:My_Element.

index is the index of a specified occurrence of an element
that has multiple occurrences. The index value must be
greater than 0. Negative values are invalid.

attribute name: The name of an XML attribute that is the
attribute of the multi-occurrence element name. Its value is
compared to the Value parameter.

Returns: A True value. Returns a False value if the XML parsing
process was not completed, or if the requested element
does not exist.

Example: <?xml version="1.0"?>
<order id="123">
 <issued_by>
 <name>John Smith</name>
Reference Guide 747

 <address>
 <street>Somewhere</street>
 <city>Nowhere</city>
 </address>
 </issued_by>
 <item cat_num="2145451544">
 <price>99.99</price>
 <amount>2</amount>
 </item>
 <item cat_num="1384325456">
 <price>19.99</price>
 <amount>10</amount>
 </item>
 </order>

Given that the XML above is saved into the file C:\myxml.xml, and that
the current task’s first I/O file points to an XML file, the following
expressions apply:

XMLExist (0, 1, ‘order.issued_by name‘) returns True.

XMLExist (0, 1, ‘order.send_to name‘) returns False because there is no
send_to element in the order.

XMLExist (0, 1, ‘order.item[2] price‘) returns True.

XMLExist (0, 1, ‘order.item[5] price‘) returns False because there are only
2 items in the order.

XMLExist (0, 1, ‘order‘, ‘id‘) returns True.

XMLExist (0, 1, ‘order.issued_by‘, ‘date‘) returns False because there is no
date attribute in the issued_by element.

XMLExist (0, 1, ‘order.issued_by name‘) returns False because name is a
child element of the issued_by element, but not an attribute of it.
Reference Guide 748

XMLFind Returns the index of an XML element that has a value equal to a specified
value, or if one of its attribute values is equal to a specified value.

Syntax: XMLFind (generation, file, element path, element name,
num, child element name/attribute name, value, [begin at])

Parameters: generation: A number that represents the hierarchic
position of the task. 0 represents the current task, 1 its
immediate ancestor, and so on.
file: A number that represents the sequence number of the
I/O file in the current task.
element path: A string that represents the path of an XML
element. The path string syntax is:
element name[[index]] [.element name[[index]]...]
where:

element name is the name of an XML element. You can
assign an alias to the element name. The alias is separated
from the element name by a colon symbol (:),
for example, al1:My_Element.

index is the index of a specified occurrence of an element
that has multiple occurrences. The index value must be
greater than 0. Negative values are invalid.

element name: A name of an XML element that has multiple
occurrences under the specified element path.
num: A numeric value. 0 means that the next parameter is
a child element name and 1 means that the next parameter
is an attribute name, as shown below:
• child element name: If you have entered 0 for the num
parameter, you must specify the name of an XML element
that is the child element of the multi-occurrence element
name. The child element name value is compared to the
value parameter. If the Value parameter string is empty,
the value will be compared to the value of the multi-occur-
rence element name. If you have specified a child element
name, the attribute name parameter must be empty.

• attribute name: If you have entered 1 for the num param-
eter, you must specify the name of an XML attribute that is
the attribute of the multi-occurrence element name. Its
Reference Guide 749

value is compared to the Value parameter. If you have
specified an attribute name, the child element name
parameter must be empty.

value: A string that contains the value to which the child
element name and the attribute name is compared.
begin at: You can determine where the index starts in the
element path for the Find operation. The default value starts
at the first XML element occurrence in the element path.

Returns: The index of the XML element that can have multiple
occurrences. If the XML parsing process was not completed
or the requested element does not exist, a 0 value is
returned.

Example: <?xml version="1.0"?>
<order id="123">
 <issued_by>
 <name>John Smith</name>
 <address>
 <street>Somewhere</street>
 <city>Nowhere</city>
 </address>
 </issued_by>
 <item cat_num="2145451544">
 <price>99.99</price>
 <amount>2</amount>
 </item>
 <item cat_num="1384325456">
 <price>19.99</price>
 <amount>10</amount>
 </item>
 </order>

Given that the XML above is saved into the file C:\myxml.xml, and that
the current task’s first I/O file points to an XML file, the following
expressions apply:

XMLFind (0, 1, ‘order.issued_by‘, ‘name‘, 0, ‘‘, ‘John Smith‘) returns 1.
Reference Guide 750

XMLFind (0, 1, ‘order.issued_by‘, ‘name‘, 0, ‘‘, ‘John‘) returns 0 because
there is no name element with the value John under the order.issued_by
path.

XMLFind (0, 1, ‘order‘, ‘item‘, 1, ‘cat_num‘, ‘1384325456‘) returns 2.

XMLFind (0, 1, ‘order‘, ‘item‘, 1, ‘cat_num‘, ‘12345‘) returns 0 because
there is no item in the order whose catalog number equals 12345.

XMLFind (0, 1, 'order', 'item', 0, 'price', '99.99') returns 1.

XMLFind (0, 1, 'order', 'item', 0, 'amount', '2', 2) returns 2.

XMLGet Returns the value of an XML element or an XML attribute according to its
element path.

Syntax: XMLGet (generation, file, element path, attribute name)
Parameter: generation: A number that represents the hierarchic

position of the task. 0 represents the current task, 1
represents its immediate ancestor, and so on.
file: A number that represents the sequence number of the
I/O file in the current task.
element path: A string that represents the path of an XML
element. The path string syntax is:
element name[[index]] [.element name[[index]]...]
where:
element name is the name of an XML element. You can
assign an alias to the element name. The alias is separated
from the element name by a colon symbol (:),
for example, al1:My_Element.

index is the index of a specified occurrence of an element
that has multiple occurrences. The index value must be
greater than 0. Negative values are invalid.

attribute name: The name of the XML attribute.
Returns: Alpha: If the XML parsing process is completed successfully,

the requested element will exist and will return a value. If
the XML parsing process was not successful, an empty
string is returned.
Reference Guide 751

Example: <?xml version="1.0"?>
<order id="123">
 <issued_by>
 <name>John Smith</name>
 <address>
 <street>Somewhere</street>
 <city>Nowhere</city>
 </address>
 </issued_by>
 <item cat_num="2145451544">
 <price>99.99</price>
 <amount>2</amount>
 </item>
 <item cat_num="1384325456">
 <price>19.99</price>
 <amount>10</amount>
 </item>
 </order>
Given that the XML above is saved into the file
C:\myxml.xml, and that the current task first I/O file points
to an XML file, the following expressions apply:
XMLGet (0, 1, ‘order.issued_by‘, ‘name‘) returns John Smith.
XMLGet (0, 1, ‘order.send_to‘, ‘name‘) returns an empty
string because there is no send_to element in the order.
XMLGet (0, 1, ‘order.item[2]‘, ‘price‘) returns 19.99.
XMLGet (0, 1, ‘order.item[5]‘, ‘price‘) returns an empty
string because there are only 2 items in the order.
XMLGet (0, 1, ‘order‘, ‘id‘) returns 123.
XMLGet (0, 1, ‘order.issued_by‘, ‘date‘) returns an empty
string because there is no date attribute in the issued_by
element.
XMLGet (0, 1, ‘order.issued_by‘, ‘name‘) returns an empty
string because name is a child element of the issued_by
element but not an attribute of it.
Reference Guide 752

XMLGet (0, 1, ‘person.name‘, ‘‘) - No Namespace mode
XMLGet (0, 1, ‘:person.name‘,‘‘) - The default namespace
URI is used.
XMLGet (0, 1, ‘al1:person.name‘,‘‘) - The al1 namespace
URI used for the person element. The default namespace
URI is used for the name element.
XMLGet (0, 1, ‘al1:person.name‘,‘‘) - The al1 namespace
URI used for the ‘‘person‘‘ element. The al2 namespace URI
used for the ‘‘name‘‘ element.

Note: When an XML file is encoded in a different code page than
the code page of the operating system, you can change the
code page by using the CodePage function. The code page is
assigned per context.

XMLGetAlias Retrieves the alias associated with a namespace for the root element.

Syntax: XMLGetAlias (generation, I/O file entry, URI)
Parameters: generation -A number that represents the hierarchic

position of the task. 0 represents the current task, 1
represents its immediate ancestor, and so on.
I/O file entry - A number that represents the sequence
number of the I/O file entry in the current task.
URI - A alphanumeric string representing a namespace URI.
An empty URI is not allowed.

Returns: An alphanumeric string representing the alias associated
with the URI. If the URI is considered the default namespace
for the XML, an empty string is returned. If an error occurs
or there is no matching alias for the URI, a NULL value is
returned.

This function fails when:

• There is no alias-namespace pair defined for the specified
URI.

• The specified URI is not valid.

Example: XMLGetAlias(0, 1, 'http://www.magicsoftware.com/
mgns') retrieves the alias associated with URI - http://
Reference Guide 753

www.magicsoftware.com/mgns

XMLGetEncoding Retrieves the encoding of an XML document.

Syntax: XMLGetEncoding (generation, I/O entry)

Parameters: generation - A number that represents the hierarchy of the
task. 0 represents the current task, 1 represents its
immediate ancestor, and so on.

I/O file entry - A number that represents the sequence
number of the I/O file entry in the current task.

Returns: An alpha string that includes the encoding for the XML file
that was opened under the specific I/O entry determined by
the generation and I/O entry.

See also: XMLSetEncoding

XMLInsert Lets you insert an XML element at a specified location in an XML document
or add an attribute to an existing XML element.

Syntax: XMLInsert (generation, I/O file entry, element path,
attribute, value [,before/after flag, reference element, auto
convert])

Parameters: generation - A number that represents the hierarchic
position of the task. 0 represents the current task, 1
represents its immediate ancestor, and so on.
I/O file entry - A number that represents the sequence
number of the I/O file entry in the current task.
element path - A string representing the XML element path.
If the element path includes a single element name, a root
element is added. The XML element path syntax is:
element name[[index]] [.element name[[index]]…]
where:
element name is the name of an XML element. You can
assign an alias that is separated from the element name by
a colon symbol (:), for example, al1:My_Element.

index is the index of a specified occurrence of an element
that has multiple occurrences. The index value must be
greater than 0. Negative values are invalid. When inserting
Reference Guide 754

an element, the attribute parameter has an empty string,
you cannot specify the index for the rightmost element in
the element path.

attribute - A string representing the attribute name that is
added to the XML element specified by the element path. If
this parameter has an empty string, an XML element is
added, as specified by the element path.
value - An Alpha, BLOB (Rich Edit), or Memo string type
containing the value of the inserted element or attribute.
before/after flag (optional) - Represents one of the following
values:
• A - The element is added after the reference element.

• B - The element is added before the reference element.

If this parameter is empty for an XML element, the XML
element is added as the last element inside its parent
element.
For an attribute, this parameter is ignored.
reference element (optional) - A string representing an XML
element name used as a reference for the insertion of the
new XML element. For an attribute, this parameter is
ignored.
If there is no reference element value, the new element will
be added as the first or last element depending on the
before/after flag value. If this parameter is set to A, the
element is added as the last element inside the parent
element. If this parameter is set to B, the element is added
as the first element inside the parent element.
auto convert (optional) - Enter one of the following logical
values:
• True - Converts the value into a valid XML string, which
has the same effect as the XMLVal function.

• False - Does not convert the value into an XML string.

Returns: A numeric value. If a new element has been entered
successfully, the function returns the index of the newly
inserted element. If a new attribute has been inserted
successfully, the function returns 0.
Reference Guide 755

When the function fails, eDeveloper returns the following
error codes, highlighted below:

Example: <?xml version="1.0"?>

<order id="123">

 <issued_by>

 <address>

 <street>Somewhere</street>

 <city>Nowhere</city>

 </address>

 </issued_by>

 <item cat_num="2145451544">

 <price>99.99</price>

 <amount>2</amount>

-1 Invalid I/O file

-2 Inserted element or attribute alias is not defined

-3 The I/O file not opened in Write mode

-4 Element path not found

-6 Attribute already defined for element

-7 Invalid Before/After flag

-8 Reference element not found

-9 The document contains a root element. Multiple roots
not permitted.

-10 Invalid auto convert flag

-11 Invalid path, non-valid index

-13 Invalid alias, qualified name

-20 Invalid XML file (XML parsing failed)
Reference Guide 756

 </item>

 <item cat_num="1384325456">

 <price>19.99</price>

 <amount>10</amount>

 </item>

</order>

Adding a New XML Element as the Last Element

Given that the first I/O file of the current task points to an
XML file, consider the following expressions:

XMLInsert (0, 1, 'order.issued_by.name','','','John
Smith')

This example adds a new XML element name as the last
element inside the issued_by type. The issued_by section
appears as:

<issued_by>

 <address>

 <street>Somewhere</street>

 <city>Nowhere</city>

 </address>

 <name>John Smith</name>

</issued_by>

The return value is 1.

Adding a New Element

To add a new state element after the city element, use:

XMLInsert (0,1, 'order.issued_by.address.state','',
'Some state', 'A', 'city')

The issued_by section now appears as:

<issued_by>

 <name>John Smith</name>

 <address>
Reference Guide 757

 <street>Somewhere</street>

 <city>Nowhere</city>

 <state>Some state</state>

 </address>

 <name>John Smith</name>

</issued_by>

The return value is 1.

Adding an Attribute to an Existing Element

To add an identification to attribute an existing element
name, use:

XMLInsert (0, 1, 'order.issued_by.name','ID','1')

This example inserts a new XML attribute to the specified
element name. The issued_by

section appears as:

<issued_by>

 <address>

 <street>Somewhere</street>

 <city>Nowhere</city>

 <state>Some state</state>

 </address>

 <name ID="1">John Smith</name>

</issued_by>

The return value is 0.

Adding an Attribute Type

To add an attribute type to the second item, use

XMLInsert (0, 1, 'order.item[2]', 'type', 'standard')

The function returns 0.

Index Specified for the Rightmost Element

XMLInsert (0, 1, order.item[3],'','')
Reference Guide 758

This example fails and returns Error Code -11 - Invalid
path, non-valid index - because an element name is
inserted and an index is specified for the rightmost element
in the element path.

XMLModify Lets you modify the value of an XML element or attribute.

Syntax: XMLModify (generation, I/O file entry, element path,
attribute name, value, [, Auto Convert])

Parameters: generation - A number that represents the hierarchic
position of the task. 0 represents the current task, 1
represents its immediate ancestor, and so on.

I/O file entry - A number that represents the sequence
number of the I/O file entry in the current task.

element path - A string representing the XML element path.
The XML element path syntax is: element name[[index]]
[.element name[[index]]…]

where:

element name is the name of an XML element. You can
assign an alias that is separated from the element name by
a colon symbol (:), for example, al1:My_Element.

index is the index of a specified occurrence of an element
that has multiple occurrences. The index value must be
greater than 0. Negative values are invalid.

attribute - A string representing the attribute name that is
modified. If this parameter has an empty string, the value of
the XML element is modified.

value - An alpha string with the actual value of the XML
element or attribute.

auto convert (optional) - Enter one of the following logical
values:

• True - Converts the value into a valid XML string, which
has the same effect as the XMLVal function.

• False - Does not convert the value into an XML string.

Returns: A numeric value. 0 is returned when the XML element or
Reference Guide 759

attribute path modification has been successful. When the
function fails, eDeveloper returns one of the following error
codes:

Example: <?xml version="1.0"?>

<order id="123">

<issued_by>

<address>

<street>Somewhere</street>

<city>Nowhere</city>

</address>

</issued_by>

<item cat_num="2145451544">

<price>99.99</price>

<amount>2</amount>

</item>

<item cat_num="1384325456">

<price>19.99</price>

<amount>10</amount>

</item>

-1 Invalid I/O file

-2 Inserted element or attribute alias is not defined

-3 The I/O file not opened in Write mode

-4 Element path not found

-5 Attribute not found

-10 Invalid auto convert flag

-11 Invalid path, non-valid index

-20 Invalid XML file (XML parsing failed)
Reference Guide 760

</order>

To Update an Element Value

XMLModify (0,1,'order.item[2].price','','30')

This example updates the value of the price element,
inside the second item element, from 19.99 to 30.00.

The return value is 0.

To Update an Attribute

XMLModify (0,1,'order.item[1]','cat_num','123456')

This example updates the cat_num attribute value of the
first item element from '2145451544' to '123456'.

The return value is 0.

XMLSetEncoding Sets the encoding of an XML document that was opened for
Write access. The encoding affects both the encoding
attribute in the document header, such as encoding=UTF 8,
and the encoding of the actual XML document.

Syntax: XMLSetEncoding (generation, I/O entry, encoding)

Parameters: generation - A number that represents the hierarchic
position of the task. 0 represents the current task, 1
represents its immediate ancestor, and so on.

I/O file entry - A number that represents the sequence
number of the I/O file entry in the current task.

encoding - An alpha string representing the encoding used
for an XML function to add data to the XML document.

Returns: A numeric value. If the encoding has been set properly, the
function returns 0. If the function fails, eDeveloper returns
the following error code:
-3 - The I/O file was not opened in Write mode.

See also: XMLGetEncoding

XMLSetNS Associates an alias with a namespace URI for the root element.

Syntax: XMLSetNS (generation, I/O file entry, alias, URI)
Reference Guide 761

Parameters: generation - A number that represents the hierarchy of the
task. 0 represents the current task, 1 represents its
immediate ancestor, and so on.

I/O file entry - A number that represents the sequence
number of the I/O file entry in the current task.

alias - An alphanumeric string representing the name of the
namespace alias. The string must begin with an alpha
character. If this string is empty, eDeveloper uses the
default namespace.

URI - An alphanumeric string representing a namespace
URI. An empty URI is not allowed.

Returns: 0 when the operation has been successful. If an error
occurred, this function returns one of the following error
codes:

-3 - The I/O file not opened in Write mode

-12 - Alias already used

-13 - Invalid alias, qualified name

Example: XMLSetNS(0, 1, '', 'http://www.magicsoftware.com/
mgns') defines a default XML namespace with
URI - http://www.magicsoftware.com/mgns

XMLSetNS(0, 1, 'al1', 'http://
www.magicsoftware.com/mgns') defines an XML
namespace with URI - http://www.magicsoftware.com/
mgns and alias - al1

XMLStr Converts a valid XML string into an Alpha string.

Syntax: XMLStr(source string)
Parameter: source string - A valid XML string.
Returns: The function returns an Alpha string that has replaced the

XML reserved characters with standard Alpha characters.
Example: XMLStr(‘&It;Hello " World>’) returns ‘<Hello “

World>’

XMLVal Converts a string value into a valid XML string.
Reference Guide 762

Syntax: XMLVal(source string)
Parameter: source string - Any string value.
Returns: The function returns an Alpha string converted into a valid

XML string.
Example: XMLVal(‘<Hello “ World!’) returns ‘&It;Hello "

World>’

Year Year Value of the Date
Returns the year portion of a date in a four digit format.

Syntax: Year(date)
Parameter: date: Input date value or date expression
Returns: Number of years.
Example: If the system date is 01/28/92, Year(date()) returns 1992.
Reference Guide 763

Display Forms 9
isplay forms are used for online graphic displays. Their interface type
can be either Browser, for browser-based display, or GUI Display, for
eDeveloper-Client display. Their Class must be defined as 0.

In this chapter:

• Browser Form Properties

• Browser Controls

• GUI Display Form Properties

• GUI Display Commands

• GUI Display Controls

D

Reference Guide 764

Browser Forms
Browser forms are used when deploying a Web-based application.

You can create a browser form only if the task is defined as a browser task in
the Task Properties dialog.

You can create a Browser form with an external HTML editor. The eDeveloper
toolkit easily integrates your browser task with the HTML file and provides
easy handling of the HTML elements as eDeveloper controls.

When you zoom from the Browser entry of the Form repository, the HTML
Control repository appears, as shown below.

Figure 9-1 HTML Control Repository
Reference Guide 765

Browser Subforms

The subform lets you call a program or task that is executed and displayed as
part of a browser form. Subforms let you create sophisticated screens for the
Internet by implementing a relationship between a called program or task and
a browser form. A browser form can support multiple subforms.

You can zoom from a browser form entry in the Forms repository to the HTML
Control repository and define a subform. The subform has the following
properties:

• Connect To - Lets the developer connect to either a program or task.

• Program/Task Number - Lets the developer select a program or task entry
number. The Call Program operation requires an entry number.

• Arguments - Lets the developer select the arguments that will be passed to
the subform.

• Tab Into - Select Yes to let the end-user tab to the subform. If No is
selected, the end-user must move the cursor to the subform.

• Is Cached - When this property is set to Yes, the client caches the subform
dataview for each selected record of the parent browser task. This means
that the client does not have to perform the redundant and time-
consuming operation of accessing the server for the subform dataview
when the end-user returns to a previously selected record.

The subform dataviews are cleared from the subform cache when:

• A View Refresh action is used.

• Selecting the Create mode. If you create a new line when in Modify
mode, the client will not reset the subform cache.

• A Rollback action is used.

• The browser task is closed.

When No is selected, the client does not cache the subform dataviews, but
accesses the server every time the subform dataview changes.
Reference Guide 766

 Keyboard Access to Subforms

You can access a subform from the parent task by using the Tab key.

The tab order of every subform is determined by its location in the HTML
Control dialog, and the tabbing order of the variables as determined by the
order of Select operations.

The subform location in the tab order is set between the variable that is
defined in the HTML control before the subform control.

Listed below is the different behavior when accessing to the subform:

• When the Next Field event is selected from the parkable control of the
parent task, defined before the subform entry, the cursor appears in the
first parkable control of the subform.

• When the cursor is parked in the last parkable control of the subform, and
the Next Field event is executed, the cursor moves to the control that is
next to the last parkable control of the parent according to the order of the
Select operations.

• If the next control is another subform, the cursor appears in the first
parkable control of the next subform.

• When the subform is not the first control and the cursor is parked in the
first parkable control, the Previous Field event moves the cursor to the
Reference Guide 767

parkable control that is defined in the HTML Control list of the parent task
previous to the subform.

• If the previous control is another subform, the cursor moves to the last
parkable control of the previous subform.

• When the subform is defined as the first HTML control in the parent task,
the task parks directly on the first parkable control of the subform. This is
true also for nested subforms.

• The Cycle on Record Main property setting for the various subforms is
ignored.

Browser Form Properties

The Browser form properties are listed below.

Model

• Model - The browser form model lets you do the following:

• Select another model

• Display the default form properties

• Disinherit all inherited properties

• Inherit all disinherited properties

i Set the Tab Into property to No, to prevent
unintentionally accessing the subform by pushing the
TAB key.
Reference Guide 768

Details

• # of Repeated Lines -Specifies the maximum number of lines in a Table
control.

• HTML File - The HTML file assigned as the interface definition source for the
Browser form.

• Form Name - Defines the title of the Browser form.

Input

• Modal Window - A window that halts the execution of a calling task. This
means that a task that calls a modal window task will stop its execution
until the called task is closed. If the task is set to be Modal=No, then it will
let the end-user to run both tasks (the caller task and the called task)
simultaneously.

Appearance

• Help Screen - You can zoom from this property to the Help List and select
the appropriate Help.

• Wallpaper - The image file used as wallpaper for the form.

Navigation

• Left - Specifies the position of the left edge of the form's frame. You can
specify the value at runtime by zooming to the Expression Rules
repository, and entering an expression that evaluates to the coordinates of
the left edge of the form's frame.

• Top - Specifies the position of the top edge of the form's frame. You can
specify the value at runtime by zooming to the Expression Rules
Reference Guide 769

repository, and entering an expression that evaluates to the coordinates of
the top edge of the form's frame.

• Width - Determines the width of the form.

• Height - Determines the height of the form.

HTML Control Repository
The HTML Control repository displays the HTML input tag assigned to an
eDeveloper variable. An HTML Control entry has the following properties:

• # - An automatically generated entry number.

• HTML Control Name - The control label. If you give the control a name, the
Control Name Expression property is disabled.

• Control Name Expression - You can define an expression that will display
the Control Name. If you define an expression, the Control Name property
is disabled.

• Type - Lets you select the control type that is associated with an
eDeveloper variable.

• Variable - Lets you select the variable, from the Variable list, that you want
to associate with a specific control type. If you select a variable, the
Variable Expression property is disabled.

• Expression - You can define an expression that will be used as the control’s
data content.

• The New HTML Tags button opens a list of unassigned HTML controls. You
may select one or several controls of this list to be added as an HTML
control that can be handled by eDeveloper through the HTML Control list.

i Moving, repeating, or overwriting an entry are enabled in the HTML
Control list of the Browser form.

To repeat an entry, you are required to assign a unique name at the
Control level of where the action is repeated.
Reference Guide 770

Browser Controls
The controls below are unique to browser tasks.

IFRAME - An element that defines an inline or floating frame for displaying
HTML documents and other external objects.

Opaque - An element that can be defined as any HTML element that
eDeveloper does not support.
Reference Guide 771

Browser Control Properties

Browser Edit Control Properties

Model

• Model - The model from which the control can inherit or re-use predefined
properties.

Details

• Format - Specifies the picture of the control by which the data is entered
and displayed.

• Attribute - Lets you select a field attribute (such as alpha, numeric, date,
and so on).

Input

• Password Edit - Determines whether the control content is displayed by
asterisks as a password edit control.

• Must Input - Specifies whether the end-user is required to input a value to
control.

• Modifiable - Specifies whether the end-user can change the value in a
control during runtime.

• Multi-line Edit - Lets the end-user enter multiple lines of text.

• Select Program - You can determine the program that will be opened when
the end-user clicks on this control.

• Select Mode - Determines the mode of the selected program.

• Before - The selected program is opened by a zoom event. The Magi
engine remains on the field when the selected program is closed.

• Prompt - The selected program opens immediately when the end-
user parks on the control.
Reference Guide 772

• After - The selected program is opened by a zoom event. The
eDeveloper engine proceeds to the next field when the selected
program is closed.
Reference Guide 773

Appearance

• Default Class - Specify the class name of the control by an expression.

• MouseOver Class - Specify by an expression the class of the control in a
MouseOver state.

• MouseDown Class - Specify by an expression the class of the control in a
MouseDown state.

• Default Styles - Specifies a list of styles for a control.

• MouseOver Styles - Specifies the list of styles to take effect on a control in
a MouseOver state.

• MouseDown Styles - Specify the list of styles to take effect on a control in
a MouseDown state.

• Color - Specifies the control color.

• Help Screen - Specifies whether a help screen is associated with the
control.

• ToolTip - Specifies whether a tooltip is associated with the control.

• Help Prompt - Specifies whether a Help prompt is associated with the
control.

• Visible - Specifies whether the control is displayed.

• Enabled - Specifies whether a displayed control is enabled.

Navigation

• Left - Determines the left position of the control on the form.

• Top - Determines the top position of the control on the form.

• Width - Determines the width of the control.

• Height - Determines the height of the control.
Reference Guide 774

Browser Radio Button Control Properties

Model

• Model -The model from which the control can inherit or re-use predefined
properties.

Input

• Select Program - You can determine the program that will be opened when
the end-user clicks on this control.

• Select Mode - Determines the mode of the selected program.

• Before - The selected program is opened by a zoom event. The Magi
engine remains on the field when the selected program is closed.

• Prompt - The selected program opens immediately when the end-
user parks on the control.

• After - The selected program is opened by a zoom event. The
eDeveloper engine proceeds to the next field when the selected
program is closed.
Reference Guide 775

Appearance

• Default Class - Specify the class name of the control by an expression.

• MouseOver Class - Specify by an expression the class of the control in a
MouseOver state.

• MouseDown Class - Specify by an expression the class of the control in a
MouseDown state.

• Default Styles - Specifies a list of styles for a control.

• MouseOver Styles - Specifies the list of styles to take effect on a control in
a MouseOver state.

• MouseDown Styles - Specify the list of styles to take effect on a control in
a MouseDown state.

• Color - Specifies the control color.

• Help Screen - Specifies whether a Help screen is associated with the
control.

• ToolTip - Specifies whether a tooltip is associated with the control.

• Help Prompt - Specifies whether a Help prompt is associated with the
control.

• Visible - Specifies whether the control is displayed.

• Enabled - Specifies whether a displayed control is enabled.

Browser Hyper-Text Control Properties

Model

• Model - The model from which the control can inherit or re-use a
predefined property.

Details

• Format - Specifies the picture of the control by which the data is entered
and displayed.
Reference Guide 776

• Attribute - Lets you select a field attribute (such as alpha, numeric, date,
and so on).

Input

• Hyperlink - You can define the hyperlink details from the Hyperlink dialog
box, as listed below to call a program:

• Hyperlink Type - Select either eDeveloper Program or URL.

• Magic System - For an eDeveloper Program. Specify a defined
eDeveloper application.

• Public Name - For an eDeveloper Program. Enter a public name.

• Arguments - For an eDeveloper Program. Specify program
arguments.

• URL - For a URL. Enter the URL address.

• Expression - For a URL. Select an expression that supplies an URL
address when it evaluates to true in runtime.

• Destination Frame - For a URL. Enter the name of the destination
frame.
Reference Guide 777

Appearance

• Default Class - Default Class - Specify the class name of the control by
an expression.

• MouseOver Class - Specify by an expression the class of the control in a
MouseOver state.

• MouseDown Class - Specify by an expression the class of the control in a
MouseDown state.

• Default Styles - Specifies a list of styles for a control.

• MouseOver Styles - Specifies the list of styles to take effect on a control in
a MouseOver state.

• MouseDown Styles - Specify the list of styles to take effect on a control in
a MouseDown state.

• Color - Specifies the control color.

• ToolTip - Specifies whether a tooltip is associated with the control.

• Visible - Specifies whether the control appears to the end-user.

• Enabled - Specifies if the control is enabled.

Navigation

• Left - Determines the left position of the control on the form.

• Top - Determines the top position of the control on the form.

• Width - Determines the width of the control.

• Height - Determines the height of the control.

Browser Push Button Control Properties

Model

• Model -The model from which the control can inherit or re-use predefined
properties.
Reference Guide 778

Details

• Format - Specifies the picture of the control by which the data is entered
and displayed.

• Attribute - Lets you select a field attribute (such as alpha, numeric, date,
and so on).

• Raise Event - Lets the end-user activate an event during the flow of the
eDeveloper engine.

Input

• Select Program - You can determine the program that will be opened when
the end-user clicks on this control.

• Select Mode - Determines the mode of the selected program.

• Before - The selected program is opened by a zoom event. The Magi
engine remains on the field when the selected program is closed.

• Prompt - The selected program opens immediately when the end-
user parks on the control.

• After - The selected program is opened by a zoom event. The
eDeveloper engine proceeds to the next field when the selected
program is closed.
Reference Guide 779

Appearance

• Default Class - Specify the class name of the control by an expression.

• MouseOver Class - Specify by an expression the class of the control in a
MouseOver state.

• MouseDown Class - Specify by an expression the class of the control in a
MouseDown state.

• Default Styles - Specifies a list of styles for a control.

• MouseOver Styles - Specifies the list of styles to take effect on a control in
a MouseOver state.

• MouseDown Styles - Specify the list of styles to take effect on a control in
a MouseDown state.

• Help Screen - Specifies whether a help screen is associated with the
control.

• ToolTip - Specifies whether a tooltip is associated with the control.

• Help Prompt - Specifies whether a Help prompt is associated with the
control.

• Visible - Specifies whether the control is displayed.

• Enabled - Specifies whether a displayed control is enabled.

Navigation

• Left - Determines the left position of the control on the form.

• Top - Determines the top position of the control on the form.

• Width - Determines the width of the control.

• Height - Determines the height of the control.
Reference Guide 780

Browser Check Box Control Properties

Model

• Model - The model from which the control can inherit or re-use predefined
properties.

Details

• Attribute - Lets you select a field attribute (such as alpha, numeric, date,
and so on).

Input

• Modifiable - Specifies whether the end-user can change the value in a
control during runtime.

• Select Program - You can determine the program that will be opened when
the end-user clicks on this control.

• Select Mode - Determines the mode of the selected program.

• Before - The selected program is opened by a zoom event. The Magi
engine remains on the field when the selected program is closed.

• Prompt - The selected program opens immediately when the end-
user parks on the control.

• After - The selected program is opened by a zoom event. The
eDeveloper engine proceeds to the next field when the selected
program is closed.
Reference Guide 781

Appearance

• Default Class - Default Class - Specify the class name of the control by
an expression.

• MouseOver Class - Specify by an expression the class of the control in a
MouseOver state.

• MouseDown Class - Specify by an expression the class of the control in a
MouseDown state.

• Default Styles - Specifies a list of styles for a control.

• MouseOver Styles - Specifies the list of styles to take effect on a control in
a MouseOver state.

• MouseDown Styles - Specify the list of styles to take effect on a control in
a MouseDown state.

• Color - Specifies the control color.

• Help Screen - Specifies whether a Help screen is associated with the
control.

• ToolTip - Specifies whether a tooltip is associated with the control.

• Help Prompt - Specifies whether a Help prompt is associated with the
control.

• Visible - Specifies whether the control is displayed.

• Enable- Specifies whether a displayed control is enabled.

Navigation

• Left - Determines the left position of the control on the form.

• Top - Determines the top position of the control on the form.

• Width - Determines the width of the control.

• Height - Determines the height of the control.
Reference Guide 782

Browser List Box Control Properties

Model

• Model - The model from which the control can inherit or re-use predefined
properties.

Details

• Label - A string that defines the available options to be selected from the
list box. The options are concatenated one after the other in the string,
where each option is delimited by a comma character (,).

• Attribute - Lets you select a field attribute (such as alpha, numeric, date,
and so on).

• Source table - You may specify a table from the table repository to be used
as a source for the options in the list box.

• Display Field - When a source table is defined for a list box, you can define
a field from the source table to be used as the description for each list box
entry.

• Linked Field - When a source table is defined for a list box, you may define
a field from the source table to be used as the returned value of the
selected option.

• Index - When a source table is defined for a list box, you may select an
index to determine the order of list box options.

• Field Ranges - When a source table is defined for a list box, you can define
a range of values for each field to limit the range of displayed options.

Input

• Modifiable - Specifies whether the end-user can change the value in a
control during runtime.

• Select Program - You can determine the program that will be opened when
the end-user clicks on this control.

• Select Mode - Determines the mode of the selected program.
Reference Guide 783

• Before - The selected program is opened by a zoom event. The Magi
engine remains on the field when the selected program is closed.

• Prompt - The selected program opens immediately when the end-
user parks on the control.

• After - The selected program is opened by a zoom event. The
eDeveloper engine proceeds to the next field when the selected
program is closed.

Appearance

• Default Class - Default Class - Specify the class name of the control by
an expression.

• MouseOver Class - Specify by an expression the class of the control in a
MouseOver state.

• MouseDown Class - Specify by an expression the class of the control in a
MouseDown state.

• Default Styles - Specifies a list of styles for a control.

• Color - Specifies the control color.

• MouseOver Styles - Specifies the list of styles to take effect on a control in
a MouseOver state.

• MouseDown Styles - Specify the list of styles to take effect on a control in
a MouseDown state.

• # of Selection Rows - The number of rows that appear in the list box.

• Color - Specifies the control color.

• Help Screen - Specifies whether a help screen is associated with the
control.

• ToolTip - Specifies whether a tooltip is associated with the control.

• Help Prompt -Specifies whether a Help prompt is associated with the
control.

• Visible - Specifies whether the control is displayed.
Reference Guide 784

• Enabled - Specifies whether a displayed control is enabled.

Navigation

• Left - Determines the left position of the control on the form.

• Top - Determines the top position of the control on the form.

• Width - Determines the width of the control.

• Height - Determines the height of the control.

Browser Combo Box Control Properties

Model

• Model - The model from which the control can inherit predefined
properties.

Details

• Label - A string that defines the available options to be selected from the
list box. The options are concatenated one after the other in the string,
where each option is delimited by a comma character (,).

• Attribute - Lets you select a field attribute (such as alpha, numeric, date,
and so on).

• Source table - You may specify a table from the table repository to be used
as a source for the options in the list box.

• Display Field - When a source table is defined for a list box, you can define
a field from the source table to be used as the description for each list box
entry.
Reference Guide 785

• Linked Field - When a source table is defined for a list box, you may define
a field from the source table to be used as the returned value of the
selected option.

• Index - When a source table is defined for a list box, you may select an
index to determine the order of list box options.

• Field Ranges - When a source table is defined for a list box, you can define
a range of values for each field to limit the range of displayed options.

Input

• Modifiable - Specifies whether the end-user can change the value in a
control during runtime.

• Select Program - You can determine the program that will be opened when
the end-user clicks on this control.

• Select Mode - Determines the mode of the selected program.

• Before - The selected program is opened by a zoom event. The Magi
engine remains on the field when the selected program is closed.

• Prompt - The selected program opens immediately when the end-
user parks on the control.

• After - The selected program is opened by a zoom event. The
eDeveloper engine proceeds to the next field when the selected
program is closed.

Appearance

• Default Class - Default Class - Specify the class name of the control by
an expression.

• Default Styles - Specifies a list of styles for a control.

• Color - Specifies the control color.

• Help Screen - Specifies whether a help screen is associated with the
control.
Reference Guide 786

• Help Prompt -Specifies whether a Help prompt is associated with the
control.

• Visible - Specifies whether the control is displayed.

• Enabled - Specifies whether a displayed control is enabled.

Navigation

• Left - Determines the left position of the control on the form.

• Top - Determines the top position of the control on the form.

• Width - Determines the width of the control.

• Height - Determines the height of the control.

Browser Image Control Properties

Model

• Model- The model from which the control can inherit predefined properties.

Details

• Attribute - Lets you select a field attribute (such as alpha, numeric, date,
and so on)
Reference Guide 787

Appearance

• Default Class - Default Class - Specify the class name of the control by
an expression.

• MouseOver Class - Specify by an expression the class of the control in a
MouseOver state.

• MouseDown Class - Specify by an expression the class of the control in a
MouseDown state.

• Default Styles - Specifies a list of styles for a control.

• MouseOver Styles - Specifies the list of styles to take effect on a control in
a MouseOver state.

• MouseDown Styles - Specify the list of styles to take effect on a control in
a MouseDown state.

• ToolTip - Specifies whether a tooltip is associated with the control.

• Visible - A value that specifies whether the control appears to the end-user.

Navigation

• Left - Determines the left position of the control on the form.

• Top - Determines the top position of the control on the form.

• Width - Determines the width of the control.

• Height - Determines the height of the control.

Browser Table Control Properties

Model

• Model -The model from which the control can inherit predefined properties.

Details

• Magic Row Highlighting - When a cursor parks on a table row, the row is
highlighted.
Reference Guide 788

• Details Line # - You can specify the detail line that you want to repeat for
the length of your table. The execution of a browser task in the Details
Line Number property is set to zero. The number of repeated lines
specified by the physical size of the smallest table in the HTML file may be
slower than when it is set to a value larger than zero.

Appearance

• Default Class - Specify the class name of the control by
an expression.

• Default Styles - Specifies a list of styles for a control.

• Color - Specifies the control color.

• ToolTip - Specifies whether a ToolTip is associated with the control.

• Visible - Specifies whether the control appears to the end-user.

Navigation

• Left - Determines the left position of the control on the form.

• Top - Determines the top position of the control on the form.
Reference Guide 789

Browser IFRAME Control Properties

Model

• Model -The model from which the control can inherit predefined properties.

Appearance

• ToolTip - Specifies whether a ToolTip is associated with the control.

• Visible - Specifies whether the control appears to the end-user.

• Default Class - Specifies the class name of the control by
an expression.

• Default Styles - Specifies a list of styles for a control.

Navigation

• Left - Determines the left position of the control on the form.

• Top - Determines the top position of the control on the form.

• Width - Determines the width of the control.

• Height - Determines the height of the control.

Browser Opaque Control Properties

Model

• Model- The model from which the control can inherit predefined properties.

Appearance

• Tooltip - Specifies whether a ToolTip is associated with the control.

• Visible - Specifies whether the control appears to the end-user.

• Enabled - Defines whether or not the control will be active.

• Default Class - Specifies the class name of the control by an expression.
Reference Guide 790

• MouseOver Class - Specifies by an expression the class of the control in a
MouseOver state.

• MouseDown Class - Specifies by an expression the class of the control in a
MouseDown state.

• Default Styles - Specifies a list of styles for a control.

• MouseOver Styles - Specifies the list of styles to take effect on a control in
a MouseOver state.

• MouseDown Styles - Specifies the list of styles to take effect on a control in
a MouseDown state.

Navigation

• Left - Determines the left position of the control on the form.

• Top - Determines the top position of the control on the form.

• Width - Determines the width of the control.

• Height - Determines the height of the control.

GUI Display Forms

GUI Display Form Properties

The Form Properties sheet specifies the appearance and the behavior of a
form. Select Edit/Properties or press CTRL+P while on an entry in the Form
repository to access the Form Properties sheet.

For Class > 0 forms, the forms in the Form repository with the same Class are
displayed together. If you change the following form properties for one form,
eDeveloper will automatically change the properties of all of the other forms of
the same Class to the new property settings: Form Units, Vertical Factors,
Horizontal Factors, Grid X, Grid Y, and Font.

eDeveloper supports character-based forms only of Class > 0. properties that
do not apply to character-based forms are disabled.
Reference Guide 791

The GUI Form properties are listed below.

Model

• Model - The model from which the control can inherit a predefined
property

Details

• Modal Window - You can specify that the form behave as a modal
window, that is, you cannot click another window without first closing this
window.

• Floating Window - You can specify that the form behave as a floating
window, that is, the window can be dragged outside the boundaries of the
eDeveloper main window.

• Form Units - You define the size and position of forms in terms of units of
measurement. Units of measurement also specify the resolution of the
form. You can define a form in dialog units: characters, centimeters, or
inches.

• Vertical Factor - The Vertical Factor specifies the vertical resolution within
each unit of measurement. A higher value gives a finer resolution.

• Horizontal Factor - The Horizontal Factor specifies the horizontal
resolution within each unit of measurement. A higher value gives a finer
resolution.

• Show Grid - Defines whether the Form Editor will display the dot grid. If
you enter a Yes value, the form layout will appear with a grid. If you enter
a No value, the form layout will appear without a grid.

• Grid X, Grid Y - Defines the distance between the grid dots on the form.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the form from other controls in the same application or other
applications that run on the same machine. The data copied on to the form
Reference Guide 792

can be set manually by defining a handler over the Drop event or
automatically by the eDeveloper engine.

Input

• Title Bar - Specifies whether a GUI form has a title bar. Remember that
without a title bar the end-user cannot move the form, and you cannot
display Minimize and Maximize buttons. The Title Bar can also be specified
by defining an expression from the Expression Rules repository.

• System Menu - Specifies if a GUI form will include a System Menu button
on the left side of the title bar. When clicked, a Windows System menu
appears. The default setting is Yes.

• Minimize Button - Specifies if a GUI form will include a Minimize button
on its upper right hand corner. The default setting is Yes.

• Maximize Button - Specifies if a GUI form will include a Maximize button
on its upper right hand corner. The default setting is Yes.

• Child Window - Specifies if eDeveloper will open this form as a child
window as part of its parent, or as a separate window.

• Split Window Child - If you want the task to be displayed in a secondary
window in the split parent task window, set this property to Yes.

• Average Palette - In some forms that include many graphic images, the
images may use different color palettes whose combination produces
unsuitable resolution in the form. In such cases, you can set Use Average
Palette to Yes to enable eDeveloper to use the palette that gives the
average color for a selected graphic image.

• Default Button - A Default button of a form is a mode of the form to
highlight the main button and to activate this button whenever the end
user presses the Enter key even if the user is not parked on the button.

This property lets you specify the Default Button by selecting a push
button control name for an online task from the Control list. You can also
specify an expression that determines the control name at runtime.
Reference Guide 793

Activation

At runtime, when the end user presses the ENTER key, eDeveloper
activates the push button specified in the Default Button property, which in
turn raises the event that is specified in the Raise Event property of the
Push button.

Default Button Indication

At runtime, if a push button is evaluated as the Default Button, it is
highlighted in the standard manner to inidcate that it is a default push
button.

Note: In a program set to be a Selection table, if you set the default push
button to raise the Select event, when you press ENTER the default push
button is not activated and the Select event is directly triggered by the
ENTER key as though you hadn’t defined a default push button. This
results in slightly modified behavior where the flow will not reach the
default push button as it does for other programs.
Reference Guide 794

Appearance

• Wallpaper - Specifies the screen pattern that serves as the background of
the window. You can create an expression to specify the wallpaper of a
task window, by zooming to the Expression Rules repository.

• Font - Specifies the font of the form. Zoom or double-click on the property
to choose a font from the Font repository. You can specify the value at
runtime by zooming to the Expression Rules repository to enter an
expression that evaluates to the number of a font in the Font list.

• Color - Specifies the color of the form. Zoom or double-click to the Colors
list. You can specify the value at runtime by zooming to the Expression
Rules repository, and entering an expression that evaluates to the number
of a color in the Color list. If you use an expression, the expression result
overrides the specific Color set in this property.

• Help Screen - Specifies whether to attach a Help screen to the form.
Zoom to the Help list to choose a Help screen

• Border Style - Specifies the style of the form’s border. The valid values for
this property are Thick, Thin or No Border.

Split

A split bar divides the form into two separate windows adjacent to each other.
Split properties are described below:

• Split Window - This property lets you select a Vertical or Horizontal split
bar. The default value is No.

• Primary Display - This property lets you determine where the content of
the parent task is displayed.When the Split Window property is set to
Vertical, the content can be displayed either in the left or right split
window. When you select Default, the default value is the left split window
for left-to-right applications and the right split window for right-to-left
applications.When the Split Window property is set to Horizontal, the
Reference Guide 795

content can be displayed either in the Top or Bottom split window. The
default value is Top.

• Split Offset % - This property lets you enter a percent number or set an
expression to offset the Vertical or Horizontal split from the top, left corner.

• Split Placement - This property lets you determine the split placement
factor where the splitter moves according to a change of the window's
dimensions. The default value is 0.

• Splitter Style - This property lets you assign the splitter style as either
2D or 3D style.

Navigation

• Fit to MDI - Enables you to set the display form for a task to fit the
available space of the eDeveloper MDI. This property simulates the
behavior of a maximized form.

When the Fit to MDI property is set to Yes, the Modal window, Floating
window, Minimize button, Maximize button, and Child window are
automatically set to No. In addition, the Startup Position property is
disregarded.

• Startup Position - This property lets you to define the mode for how the
GUI Display form opens. The Startup Position options are:

• Customized - The window opens at the location defined in the Top
and Left navigation properties of the form. The form size is defined
from the Width and Height navigation properties.

• Centered to Magic - The window opens centered within the
eDeveloper client area. The form size is defined by the Width and
Height properties.

• Centered to Desktop - The window opens centered within the
desktop area. The form size is defined by the Width and Height
properties.

• Centered to Parent - The window opens centered within the
parent window. The form size is defined by the Width and Height
properties.
Reference Guide 796

• Default - The window opens with the default location and size
provided by the operating system. The Top, Left, Width, and Height
properties are ignored.

Note: If the parent task does not have an opened form, the next ancestor
form is regarded as the parent form. If the opened form does not have a
form from an ancestor task, the eDeveloper client area is regarded as the
parent form, which will produce the same result as the Centered to Magic
option.

• Placement - The Placement property specifies whether GUI forms that are
defined as child forms are resized when a parent form is resized.
Standalone forms do not support the Placement property. The Placement
property is a combination of the following four percentage settings in the
Placement dialog: Left placement, Right placement, Top placement, and
Bottom placement. Zoom, F5, from this property to open the Placement
dialog.

When a GUI form’s Placement property equals 0, the relative size does not
change when the size of the parent form is changed in runtime. When the
Placement property is > 0, the relative size changes when the size of the
parent form is changed in runtime.

eDeveloper lets you define both a Placement value and an expression for a
corresponding Navigation property. In runtime, eDeveloper combines the
expression and the Placement property values.

• Left - Specifies the position of the left edge of a GUI form’s frame. You can
specify the value at runtime by zooming to the Expression Rules repository
and entering an expression that evaluates to the coordinates of the left
edge of the form’s frame.

• Top - Specifies the position of the top edge of a GUI form’s frame. You can
specify the value at runtime by zooming to the Expression Rules repository
and entering an expression that evaluates the coordinates of the top edge
of the form’s frame.

• Width - The horizontal dimension of the frame around the form. If the
frame is too small to display the controls, eDeveloper will display a scroll
Reference Guide 797

bar to scroll the contents within the window. You can change the Frame
Width by dragging the right edge of the frame.

• Height - The vertical dimension of the frame around the form. If the frame
is too small to display the controls, eDeveloper will display a scroll bar to
scroll the contents within the window. You can change the Frame Height by
dragging the bottom edge of the frame with the mouse.

GUI Display Commands

You can use the Command palette, the Align and Size pulldown menus, or the
context menu to edit the controls you have placed on the form. The Command
palette includes tools for aligning, resizing, and for arranging the Z-Order of
controls.

The buttons in the GUI Command palette are color-coded:

• Aqua-colored buttons align a selected group of controls.

• Yellow-colored buttons perform sizing operations.

• Green-colored buttons are used to determine the order of control
placement.

The maximum number of command operations saved in the Undo buffer is 10.
When expressions are deleted during the editing of control properties, the
Undo command operation becomes disabled and the Undo buffer is cleared.

The tool buttons that align controls are described in the following table:

Aligning
Tool

Description

Aligns all selected controls to the left side of
the select frame.

Aligns all selected controls to the horizontal
center of the select frame.

Aligns all selected controls to the horizontal
center of the form.
Reference Guide 798

These tool buttons that resize controls are described in the following table.

The buttons used to move controls forward or back, arrange the Z-Order of
controls on the form, and to remove dividers between breaks in the form are
described below.

Spaces all selected controls equally
horizontally within the select frame.

Aligns all selected controls to the right side
of the select frame.

Aligns all selected controls along the top of
the select frame.

Aligns all selected controls to the vertical
center of the select frame.

Aligns all selected controls to the vertical
center of the form.

Spaces all selected controls vertically within
the select frame.

Aligns all selected controls along the bottom
of the select frame.

Sizing Tool Description

Stretches all selected controls to the width of
the widest control.

Stretches all selected controls to the width of
the narrowest control.

Stretches all selected controls to the height of
the tallest control.

Stretches all selected controls to the height of
the smallest control.

Sizing Tool Description

Brings a selected control one layer forward in
the form.
Reference Guide 799

The buttons used for tables, links, undo and redo of the previous action, and
to resize a control’s frame to fit its text are described below.

Note: the maximum number of operations saved in the Undo buffer is 10.
When expressions are deleted during the editing of properties, the Undo
control becomes disabled, and the Undo buffer is cleared.

Sends a selected control one layer back in the
form

Brings a selected control to the front of the
form.

Brings a selected control to the front of the
form.

Displays the Z-order of the controls in the
form.

Enables the automatic Z-order of controls in
the form

Removes dividers between breaks in the form

Sizing Tool Description

Undo last action.

Redo last action.

Creates a parent-child link between controls.

Breaks a parent-child link between controls.

Attaches controls in a table.

Indicates a parent control.

Fits a group of selected controls as they
appear on the form.
Reference Guide 800

Z-Order of Controls

The Z-Order of controls in a form is the depth of the controls as you insert
them. The Z-Order becomes particularly important when you superimpose
controls on top of one another.

eDeveloper recognizes two groups of controls with regards to Z-Order:

• Group I

• Push buttons

• Check boxes

• Radio buttons

• Sliders

• Combo boxes

• List boxes

• OLEs

• RTFs

• Tree Control

• Group II

• Images

• Tabs

• Static controls

• Edit controls

• Lines

• Groups

You can rearrange the Z-Order within the two groups, but not between them.
eDeveloper automatically arranges the Z-Order between Group I and Group II
controls. For example, if you were to place an edit control on top of a push
button control, the Z-Order would arrange the controls so the push button
Reference Guide 801

control would be placed in front. You cannot bring a control from the second
group in front of a control from the first group. You use the Arrange context
menu or the Command palette to display or change the Z-Order of controls on
a form.

Parent-Child Linking of Controls

The Parent-Child feature lets you define a “parent” control to which “child”
controls can be linked.

Activation

• Linking is done in the Form Editor.

• By default, all controls on a form are children of the form.

• Each control may be assigned a parent control other than the form.

• A control that is a parent for other controls can be a child of another
control.

• One or more controls may be assigned to the same parent control.

• Parent-child relationships cannot be circular.

• Controls that are children of a Table control cannot have other controls
linked to them as children.

Runtime Behavior

• When a parent control becomes invisible, all its children are hidden.

• When a parent control is disabled, all its children are disabled.

• If an end-user invokes Help when parked on a control that does not have a
Help property, eDeveloper will search for and display the Help screen
associated with the Help property of the current control’s parent. If the
parent control also does not have a Help property, eDeveloper will
Reference Guide 802

continue to search ancestor controls until an ancestor with a Help property
is found. Note that the primary ancestor is the form itself.

Parent-Child Links Using Choice Controls

All choice controls enable the selection of a value out of a list of possible
values: radio button, tabs, list box, combo box, and check box. The allowed
values are based on the label property of the control. The possible choice
values in the Label property are comma delimited. The data value that can be
assigned to the data property variable is dependent on the data’s picture. An
expression can be given for the Label property of the control, allowing dynamic
creation of allowed choice values.

When the value of the variable assigned to the data property is not in the
allowed range, none of the options will be visually selected.

Keyboard shortcuts can be created to browse among choices in all controls.

You can associate child controls with each of the allowed choice values of a
Choice control (Radio, Tab, List, or Combo). In this case, the parent shows
only the children that are associated with the selected choice. When selected,
the parent control is displayed with a purple ruling box (a normal control
appears with a blue ruling box).

You can define child controls that are not associated with any choice of a
selection control, and are visible regardless of the selected choice.

When you drop a new control on a parent control, the new control
automatically becomes a child of the currently displayed layer of the parent
Choice control. If the current layer cannot be determined, the new control is
linked as a child of all the layers of the parent control.

When you change the displayed layer of a Choice control, the child controls
linked to the selected layer are displayed, and the child controls linked to other
layers are hidden.
Reference Guide 803

GUI Display Color Palette

The Color palette shares the same area as the Command palette. To toggle
between the two palettes, click on the tabs at the bottom of the palette.

The list of default and user defined controls colors is displayed on a palette.
Each color is identified by a Color button. Click a color button to insert that
color for a selected control. Access the Color repository to define the color
palette settings.

To change the color of a text or control background, select a form control and
click the color combination that you want.

GUI Display Controls
The buttons in the GUI Control palette are described in the table below:

Control
Type

Description

The selection tool in the Control palette. Use
this tool to select or unselect a control. You
must select a control in order to move,
resize or delete it, or to zoom to the Control
Properties dialog.

Inserts an edit control. You can attach this
type of control to a variable or an
expression in the Data property of the
Control Properties dialog.

Inserts a static text control.

Inserts a push button that the user clicks to
launch an action in the application.

Inserts a check box that the user can toggle
on/off. Use this type of control to represent
logical variables or expressions.
Reference Guide 804

Inserts a box for radio buttons.

Inserts a tab control containing two default
tabs. You can place other control types such
as edit controls and push buttons on a tab
control.

Inserts a list box control containing two
default items.

Inserts a combo box containing two default
items.

Draws a static rectangular box to group a
number of controls together visually. You
can include a label to describe the group.

Draws a static rectangle. You can add static
text to the rectangle and specify its position
in the rectangle in the Control Properties
dialog. Define the rectangle’s color in the
Color property of the Control Properties
dialog.

Draws a static ellipse. You can add static
text to the ellipse and specify its position in
the ellipse in the Control Properties dialog.
To define the ellipse’s color, set the Color
property in the Control properties dialog

Draws a graphic line. To define the line’s
color, set the Color property in the Control
properties dialog.

Inserts a vertical slider with direction
arrows.

Inserts a horizontal slider with direction
arrows.

Control
Type

Description
Reference Guide 805

The GUI controls are grouped in the following way:

Inserts a table control into the form. You
can place other control types, such as edit
controls, and push buttons on a table
control.

Inserts a graphic image control.

Inserts an OLE container

Inserts a rich text control containing static
text that can be formatted during
development. The formatting of a rich text
control is not implemented on the control as
a whole, but only during the editing of the
selected text of the control.

Inserts a rich edit control that contains a
variable or expression. This control is
implemented as a rich text control when the
text originates from a BLOB variable or
expression.

Inserts a Tree control that displays a
selected task dataview in a tree style with
parent and child nodes.

Control
Type

Description
Reference Guide 806

• Static Controls

• Choice Controls

• Slider Controls

• Edit, Action, and Image Controls

• Table Controls

• Tree Controls

Static Controls

Four controls are static in nature:

• Group - A rectangular background on which you can place controls that you
want to associate visually with one another. There is no logical linking of
the controls within the group.

• Text - Static text.

• Rectangle - A rectangular graphic shape.

• Ellipse - An elliptical graphic shape.

Choice Controls

Choice controls display multiple values. When you click a Choice control when
pressing the ALT key, all the controls associated with the selected layer are
marked.

The Choice controls are:

• Radio Buttons - Radio buttons are used for multiple-choice objects. A radio
button relates to a column with a discrete input range specification. Each
of the range values is displayed as a single radio button, with the value
displayed alongside it. The buttons appear inside a box that groups them
together as one control, although the buttons look like separate entities.
The user selects only one button from the group. When the user selects a
button, a black dot appears in the circle to indicate that it has been
Reference Guide 807

selected. The column gets the value represented by the button selected. If
a logical column is displayed as a radio button and its range is not defined,
eDeveloper uses the default values True and False.

• Tab Control - A Tab control is similar to a divider in a file cabinet or
notebook. You can use the Tab control to define multiple logical pages or
sections of information within the same window. Tab titles or labels can
include text or graphics. The user selects the tab title to open the tab card
containing the child controls of the selected tab title.

• List Box Control - A pre-constructed control for displaying lists of choices
for end-users. The List box control is used to display a collection of items,
and in most cases supports the selection of an item or items from the list.

• Combo Box Control - Combines a text box with a list box, allowing the user
to choose an entry from the list. The Combo Box Height property sets the
height of the closed combo box. An open combo box automatically closes
after the time specified for the Pulldown menu close timeout property
located under Preferences in the Environment dialog.

Data Bound Choice Controls

The various choice controls can be set to be data bound, which will provide the
end-user with a range of available options taken from a defined database
table.

You can easily make a choice control data bound by defining the following
properties:

• Source table - the table from which the choice control options are taken.

• Display field - The field that is displayed as the option to be selected.

• Linked field - The field value that is returned as the selected value.

• Index - The index by which the table records are ordered.

• Range Fields - A list of range values set for defined variables of the source
table to limit the range of options.

A data control may display duplicate values of the displayed field in the choice
control. Selecting any one of the duplicate options returns the corresponding
Reference Guide 808

linked field. Duplicate value options of the linked field are disregarded and are
not displayed. Only the first occurrence of the linked field value is displayed.

The view created by a choice control is cached for every data control.

1. The view is cached according to its defined range criterion. The view
of a data control will be taken from the cache only if the full range
criterion matches a previously fetched view of the same data control.

2. The cache of the various views is handled separately for each select
operation, and it is not reused for identical data controls of other
select operations. Each data control of a specific variable has its own
cache of records.

Slider Controls

The slider controls include a Horizontal Slider control and a Vertical Slider - A
slider is based on a numeric column with a range that specifies the scale of
values the slider represents. The column is displayed as a rule bar, and the
position of the moving indicator on the rule bar specifies the value of the
column. You can control the slider’s appearance on the form by setting the x,y
position indicators in the Control Properties dialog. The slider can be displayed
in any x,y combination. You can add vertical and horizontal sliders anywhere in
a form.

Editing, Action, and Image Controls

Edit Controls

Edit controls contain either variables or expressions, specified in the Value and
Exp columns of the Data property. To customize an edit control, select it and
zoom to access the Control Properties dialog.

Drag and Drop operations can be performed only for the selected text in the
Edit control.
Reference Guide 809

Push Button Controls

Push buttons are used as an alternative means of invoking eDeveloper internal
events, such as the zoom action. The content of the Push button property
becomes the button label. You specify the Push button’s action in the Raise
Event property in the Control Properties dialog. Choose an action from the
Action list.

At runtime, pushing the button triggers a zoom action that then causes the
Call Task, Call Program, or triggers an event.

Other applications for Push buttons are the OK, Cancel, and Help buttons.
These buttons can issue OK, Cancel, and Help actions respectively. The actions
set by the buttons will be captured by the eDeveloper programs according to
the program context.

You can use the default Windows Push Button design, or design your own Push
Button controls by setting the Button Style property of the Control Properties
dialog to Yes.

Image Push Button

The user only needs to provide one bitmap image that can be used for the four
different image conditions of the button: default in toolkit, focused, selected,
or disabled in runtime. The Image Push Button feature changes the color and
shading for a single bitmap image to create the three dimensional effect
required for each button condition.

Checker Messages

The syntax checker issues the following warnings when the push button is
handled by the Click event or the push button handler raises the Internal Click
event:
Reference Guide 810

• Handling a push button should be done by using a user event.

• A push button should not be set to raise a Click event.
Consider raising a user event instead.

Check Boxes

Check boxes are used to set logical fields to True when checked and to False
when not checked. The field name is the description of the content, as in any
ordinary field. The input value of the check box is supplied by the space bar or
a mouse click on the check box. Either a space bar or a mouse click toggles the
check mark on and off.

Image Controls

Image controls contain graphic images. You can insert these graphic images
by specifying a file name, by mapping a variable that is a graphic image, or by
defining an expression that evaluates to yield a graphic image.

Line Controls

The Line control draws a line between two grid points. Lines can also be placed
with an Edit box.

OLE Controls

OLE lets you combine objects supported by different applications. eDeveloper’s
OLE control is a container for either embedded or linked OLE objects in your
application.

OLE embedded objects are data objects, that, when moved or copied, retain
their native editing and operating capabilities in their new container.

OLE linked objects are pointers or links to data objects in other locations or in
other containers. For further details see OLE Control Properties.

OLE controls do not support eDeveloper’s Drag and Drop operations.

RTF Controls

The Rich Text control, shown on the left, allows user to insert a Rich Text
Format that can be better formatted during development.
Reference Guide 811

The Rich Text control is part of the static control group.
The Rich Text control allows the developer to set the color and font for each
character and set the paragraph design for each line inside the control.

To change the properties of text in an Rich Text control:

1. Park on the Rich Text control.

2. Press Enter. The control's border changes from blue to pink, which is
the control's Edit mode.

3. Mark some of the text in the Rich Text control.

4. Right-click the mouse to open the Rich Text control shortcut menu,
where you can make changes to the properties of the text.

Another RTF control, shown on the left, enables the user to insert a Rich Edit
control that contains a variable or expression.

The Rich Edit control behaves the same as the Rich Text control, but only
during runtime.

Only a variable with a Blob attribute can be attached to a Rich Edit control and
allows the end-user to edit the text with any color, font, or paragraph setting.

You can define the numeric size for an RTF edit field through a setting called
‘RtfBufferSize’ that is located in the MAGIC_SPECIALS section of the Magic.ini
file.

For example, RtfBufferSize = 64 displays the RTF edit field as 64Kb.

The RtfBufferSize setting is read each time a new screen is built, prior to the
Task Prefix. When the RtfBufferSize setting has a new value, and the user
utilizes the INIPut function, the size value of the RTF edit fields is updated and
displayed in the form of the task.

Revising the RtfBufferSize setting within a task does not affect the size of the
RTF edit fields that were already created.

Drag and Drop operations can be performed only for the selected text in an
RTF Edit control.
Reference Guide 812

Table Controls

Table controls have two parts: Title area and a Repeated area, in which the
lines of the table appear.

When you resize a form grid that has a Table control, the Table control resizes
accordingly. For Horizontal placement, the Table control has the Size
Placement property that controls the resizing percentage for the table. For
example, if the Size Placement property is set to 80%, and the size of the form
is increased by 10 pixels, then the size of the Table control is increased by 8
pixels.

For Vertical placement, the table control will display additional or fewer rows
according to how the form is resized. The Table control displays empty rows
when no more data is available. The parked Table Control row is always
displayed.

Resizing in Development Mode

In the Development mode, each column is resized according to the resizing of
the table. Each column has a Placement property. When the user sets this
property to Yes, then the column is resized proportionally according to the
total number of columns. For example, if each of the four columns has Yes set
for the Placement property, then each column will be twenty-five percent of
the table.

For columns that have Placement property = No, the size will not change. For
example, you have a table control that is 8 pixels wide. The Size Placement
property is set to 100%. There are four columns. Each column is 2 pixels wide.
Two columns have Placement property = Yes. Two Columns have Placement
property = No. When the form grid is increased by 8 pixels, then two columns
will be 2 pixels wide, and two columns will be 6 pixels wide.

Resizing in Deployment Mode

The end-user can resize a table column in runtime by setting the Column
Resizing property to Yes. Resizing the column by its right divider will increase
the size of the column and push the remaining columns to the right. The
remaining columns will maintain their size, so increasing the size of the
column will increase the size of the entire table. Though the table will be the
Reference Guide 813

same size on the form, fewer columns will be displayed. When the table is
resized so that the table columns cannot be displayed together, a horizontal
scroll bar will appear for the table.

The Drag Operation for a Table Control

Drag and Drop operations can be performed for the selected text in the Table
control.

For a Table control with marked records, the Drag Begin handler is raised for
every marked record. eDeveloper identifies the Drag operation and does not
open the Edit mode when the mouse’s left button is clicked and held.

Multi-Marking in a Table

Table controls allow multi-marking that is similar to the multi-marking feature
in a Windows application. The multi-marking feature is available in both toolkit
and runtime for interactive online forms only, GUI=0.

To enable multi-marking in the table control of a task, click Yes in the Multi
marking property of the Table Control property sheet. The Multi marking
property is enabled for interactive online tasks only.

Marked rows are reflected by the reverse of the Windows system color.

The following actions can be implemented for marked records:

• Delete - toolkit and runtime

• Check - toolkit, Check Syntax

• Copy - toolkit

Marking Columns

To mark an entry in a column, click Yes in the Marking Column property of the
Column Control property sheet. When the Marking Column property is
enabled, the record cells of the column appears raised. Clicking a record on an
enabled column will mark the record. Clicking on a marked record will unmark
the record.
Reference Guide 814

Note: In order to mark the column only, hold down the ALT key and left-click
on the column (anywhere in the column except for the table caption and the
first row).

Event Handlers for Multi-Marking

The user can enable an event handler to process each marked table row by
clicking Yes for the Enable Multi-Marking property. Once the action is invoked,
the event is implemented for each selected row from the beginning of the data
view to the bottom.

For example, the user wants to re-calculate totals for a summary table
displayed on the form. The user calls the program that calculates and updates
the total. Once the action is implemented, the event handler calls the program
for each selected row, and displays the updated total.

When the event handler is complete, then marked rows can be maintained by
clicking Yes for the Keep Multi-Marking property.

The multi-marking functions are listed below.

Tree Control

You can use the tree control to display a task dataview in a data hierarchy, a
tree structure with parent and child nodes that represent different levels of
data.

The different data levels are displayed:

• Root Value - The expression value used as the starting point for the
runtime engine to build the data tree. The root value is displayed as the
top node that connects to the next level of data. When there is no root
value, there is no top record that connects to the next level of data. As a

MMStop Stops the multi-mark handler.

MMCount Provides the number of marked rows.

MMCurr Provides the current row of the number of
marked rows in the counting process. For
example: Row 5 of 15.
Reference Guide 815

result, the runtime engine builds the data tree with the next level of data
displayed as separate parent nodes.

• Parent Node - A variable value representing a parent record in the task
dataview. The parent node cannot be defined from an expression.

• Node - A variable value representing a child record in the task dataview.
The node cannot be defined from an expression.

Generating a Data Tree

The following runtime behavior occurs when an online task containing a tree
control on the task’s main form is opened:

1. The dataview range is calculated.

2. If the root value exists, the runtime engine displays the root value as
the top parent node and fetches the record from the database.

3. The initial expand level for the tree is determined by the value
selected for the Auto Expand or Single Expand properties.

4. When the Node Preload property is set to Yes, the runtime engine
automatically retrieves the child records of each parent found in the
dataview range. When the Node Preload property is set to No, the
runtime engine only retrieves the child records for the expanded
levels.

5. For each retrieved record, a new node is added to the tree with the
relevant node’s GUI data. Steps 4 and 5 will be repeated for all the
records specified by the Auto Expand or Single Expand property.

Tree Control Events

You can use internal tree control events to let the end-user move, expand, and
collapse nodes in the data tree.

The tree control events are:

i The Tree control can only display records from a Main or Link Join
table that are defined in a single database table.
Reference Guide 816

• Collapse Node

• Collapse SubTree

• Create Child

• Edit Node

• Expand Node

• Expand SubTree

• Move to First Child

• Move to Next Sibling

• Move to Parent

• Move to Previous Sibling

Expand and Collapse Node Events

The information about triggering a node can be provided through arguments
passed by the Expand Node and Collapse Node events. When selecting either
the Expand Node or Collapse Node events, eDeveloper prompts you with a
confirmation message about creating the Tree Node Level and Tree Node Value
virtual variables.

When the Expand Node or Collapse Node events are triggered, the
corresponding virtual variable for the user-defined handler is updated with tree
node values related to the triggered event. The first Select operation is
updated with the Tree Node Level. The second Select operation is updated with
the Tree Node Value.

Raising the Expand Node and Collapse Node events outside the scope of the
Tree control will not update the Tree Node Value and Tree Node Level fields.

Arguments passed by a Raise Event operation for the Expand Node and
Collapse Node events are set in the handler’s virtual fields after the first two
variables.
Reference Guide 817

Edit Node Toolkit and Runtime events

The Edit Node Toolkit and Runtime events let you edit the Tree control node
descriptions in Toolkit or Runtime mode. Triggering the Edit Node Runtime
event only lets you edit a mode that is parked upon. Click the left mouse
button to select the node. Click the left mouse button a second time to trigger
the event.

Adding or Deleting Nodes

You can add a node to the data tree by clicking F4 or by selecting the Create
Child event when the:

• Task has been opened in Modify mode

• Main screen is displayed

• Selected parent node has been expanded

You can delete a node by clicking F3. All nodes must be deleted prior to
deleting the parent node. After you delete a node, the runtime engine
automatically refreshes the data tree.

Navigating in the Data Tree

The runtime engine always points to the current node of the dataview,
represented by the current node in focus. When you move to another node,
the GUI layer instructs the runtime engine to update the current node.

If the parent node is expanded for the first time, the GUI layer sends a request
to the runtime engine to retrieve the records for nodes associated with the
expanded parent node. If the parent node was expanded previously, the GUI
layer displays the expanded node level, but does not send a request to the
runtime engine.

If an expanded parent node is collapsed, the GUI layer displays the closed
node, but does not send a request to the runtime engine. If the selected node
is part of the collapsed parent node, the GUI layer displays the parent node as
selected and sends a request to the runtime engine to change the current
record.
Reference Guide 818

Parking on a Node

The runtime engine remains parked on the selected node even when the focus
moves from the data tree.

Editing the Node Text

You can change the node text by:

1. Clicking the mouse once to focus on the specified node.

2. Clicking the mouse again to edit the node’s string value.

3. Press ENTER after the text has been edited. The updated text will be
saved and the runtime focus will remain on the selected node. If any
other key is pressed, the edited text will not be saved.

Refreshing the Data Tree

The data tree content is refreshed when:

• A parent or child node has been added, modified, or deleted.

• A Screen Refresh event is invoked.

Any other task modification only changes how the data tree is displayed.

Selecting Multiple Nodes

You can select multiple nodes only when the Multi-Marking property is set to
Yes.

Tree Control Functions

The Tree control functions are:

TreeLevel - Retrieves the current level of the selected node in the data tree.

TreeValue - Retrieves the node identification number determined by the
current level of the selected node.

For more information, see the TreeLevel and TreeValue functions in Chapter 8,
Expression Rules.
Reference Guide 819

Drag and Drop
Drag and drop functionality is supported within an eDeveloper application and
between an eDeveloper application and other applications running on the
same machine. Its main purpose is for passing information within an
eDeveloper application and between applications by dragging and dropping,
which have become a standard in Windows applications.

The Allow Drag control property determines the ability to perform a drag
operation, and the Allow Drop control property determines the ability to
perform a drop operation.

Drag Begin Event

When the left mouse button is clicked and held down on a control whose Allow
Drag property has been set to Yes, the control can be dragged from side to
side.

When a drag operation begins, the eDeveloper engine can automatically set
the drag operation data according to the type of control on which the drag
operation is performed, as described in the table below:

Control Type Data Format

Edit Marked text Text

Text No data is set
automatically

N/A

Push button No data is set
automatically

N/A

Check box No data is set
automatically

N/A

Radio button Displayed value of
selected item

Text

Tab Displayed value of
selected item

Text
Reference Guide 820

A user-defined handler can be defined to handle the drag begin event so that
you can handle the task data and affect the drag operation in the following
ways:

• Control the drag operation data by using the DragSetData function

• Control the drag operation icon by using the DragSetCrsr function

For more information, see the description of these functions in the Functions
section on page page 553.

When performing a drag operation on a table control where the records are
marked, a handler written for the drag begin event is executed for every
marked record.

Drop Event

Releasing the left mouse button over a control where the Allow Drop property
has been set to Yes allows the control to be dropped. A user-defined handler
can be defined so that you can handle the task data and affect the drop
operation in the following ways:

List box Displayed value of
selected item

Text

Combo box Displayed value of
selected item

Text

Static controls
(Group,
Rectangle, etc.

No data is set
automatically

N/A

Table No data is set
automatically

N/A

Image No data is set
automatically

N/A

Tree Control No data is set
automatically

N/A

Control Type Data Format
Reference Guide 821

• Check if a certain format is supported by the current drag and drop
operation using the DropFormat function.

• Retrieve the data of a defined format using the DropGetData function.

• Retrieve the Mouse coordinates at the time of the DROP operation using
the DropMouseX and DropMouseY functions.

For more information, see the description of these functions in the Functions
section on page page 553.

Drag and Drop Limitations and Environment Settings

A disabled control cannot be dragged, but a non-parkable control can be
dragged.

When the Propagate property of the top user-defined drag begin event handler
has been set to No, automatic handling of the drag data cannot be performed.

When the Propagate property of the top user-defined drop event handler has
been set to No, automatic handling of the drop data cannot be performed.

eDeveloper automatically only handles the drag operation data for Edit
controls by updating the control where the dropping occurs.

The Allow Drag and Allow Drop properties are available for the controls listed
below:
Reference Guide 822

• Form (for Allow Drop only)

• Edit

• Text

• Push button

• Check box

• Radio button

• Tab

• List box

• Combo box

• Static (Group, Rectangle, etc.)

• Table

• Image

• Tree

The Allow Drag and Allow Drop properties are not available for the controls
listed below:

• Form (not available for Allow Drag)

• Slider

• RTF Edit

• RTF

• OLE

• Active-X

You must let the eDeveloper engine know the names of the user-defined
formats to be retrieved within the scope of an active drop event as a result of
a drag operation.

The Drop Data supported user formats environment setting lets you set the
names of the expected user-defined formats. For more information on this
Reference Guide 823

setting, see the Drop Data Supported User Format environment
setting in Chapter 2, Settings.

The GUI Display Variable Palette
The Variable palette is accessed by clicking the Variables tab next to
the Controls tab on the Control palette.

The Variable palette displays a list of the available variables for the
task and its ancestors. Each entry contains the variable’s letter
identifier, the variable’s name, and indicates if it is a real variable,
virtual variable, or parameter.

When crossing task boundaries, a separator with the task name
appears.

You can drag and drop a variable onto the form in the same way you
add controls to the form. You can drop a variable onto a table control
to create a corresponding column title.

Press ESC or click a task name separator to cancel a variable tool
selection.

You can easily resize the Variable palette by dragging the palette’s
edges. The size of the Variable identifier column will not be affected
by resizing, and you will also not be able to reduce the palette’s size
to less than the minimum size required for the Control palette.
Resizing the Variable palette will not affect the Control palette.

GUI Display Control Properties
After you have entered a control into a form, you can assign
properties to the control. Select the control with the mouse and
press F5 or double-click to zoom to the Control Properties sheet.

The Control Properties sheet lets you assign variables as Data
properties for controls, and to define properties for their format. It is

important to note that the tab order in which eDeveloper accesses the
variables at runtime is specified by the order of entries in the Task Operation
repositories and not by the sequence of controls on the form.

If a variable is chosen as a Data property in more than one control in the
window layout, only the last selection is updated at runtime. If it is necessary
to show a variable more than once within a window layout, you must create a
virtual variable for each extra occurrence of that variable, and then display the
virtual variable.

When you are creating a text-based form (Class > 0), control properties that
are not supported in text-based forms are disabled. This is true also for Java
forms and HTML forms.

Control properties are organized into separate categories, varying with each
type of control. The properties in each list also vary as appropriate to the
control. The GUI control properties are listed below.

Radio Button Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Data - Data can be defined either as Variable (Value) or Expression.

• Variable Name - Defines the variable selected in the current position. To
select a variable, enter the variable's identification in the Value column or
zoom to choose a variable from the Variable list.

• Items List - Use this property to enter a string that defines the available
options that can be selected from a list box control. The options are
concatenated one after the other, where each option is delimited by a
comma character.

If the Display List property is not defined, each string of each item is used
both for the display and for the returned value. You may set a display list
Reference Guide 825

by using the Display List property to differentiate between the displayed
string and the returned string.

This property supports the As Data mode. This mode instructs the control
to use the Range property of the associated field as the Item List value.

• Display List - You can enter options separated by a comma that are
displayed for the control but are not return values. The Display List values
must be entered in the same order as the return values entered for the
Items List property.

For example, If you enter 1, 2, 3 in the Items List property field, where 1
is red, 2 is blue, and 3 is green, the red, blue, and green string must be
entered in the order of 1, 2, 3.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CTRLNAME function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Attribute - The attribute of the selected variable or expression. The
Attribute property is fixed for variables. You can change the setting for
items based on an expression.

• Source Table - You can display the values of a table selected from the
Tables list or defined as an expression from the Expression Rules
repository. Table values can be combined with Items List values. When a
source table is selected, you must add Display List values that represent
the table values.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
Reference Guide 826

defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
defining a handler over the Drop event, or automatically by the
eDeveloper engine.

• Source Table - The table name as it appears in the Table repository. You
can select the table from the Table list or define an expression from the
Expression Rules repository. Valid only for List and Combo box controls.

• Display Field - The field name from the selected table. You can select the
field name for the selected main table from the Variable list. Note that you
must first select the Source table.

• Linked Field - The field name from the selected table. You can select the
field name for the selected linked table from the Variable list. Note that the
variables from the main table appear on the Variable list when a linked
table is not defined.

• Index - An index name from the selected table. You can select an index
that is defined for the Source table.

• Field Ranges - You reach the Field Range list by zooming from the Field
Ranges property in the Control Properties sheet of a Combo Box or List
Box control.When a source table is defined for the list box or combo box,
you can define a range of values for each field to limit the range of
Reference Guide 827

displayed options.If the Source table does not have a range of values
defined for a field, none will appear in the Field Range list.

 Input

• Must Input - Specifies whether the end-user must enter a value into a
control. You can set the value of the control at runtime with an expression
in the Expression Rules repository.

• Modifiable - Specifies whether the user can change the value in the control
during runtime. A No setting denies the user access to the control. A Yes
setting allows the user to modify the value in the control.

• Select Program - Specifies whether the end-user can invoke a program at
runtime using Edit/Zoom. The default setting is Yes. Specify a Program ID
in the Program property or zoom to the Program list to choose a program.

• Select Mode - Specifies when eDeveloper calls the program defined in the
Select Program property. The valid values are: After - specifies that when
the called select program terminates, the cursor moves to the next
property. Before (Default) - specifies that when the called select program
terminates, the cursor returns to the property. Prompt - specifies that the
program is automatically executed prior to entering the property, to allow
the user to immediately select the lookup value. In this case, after exiting
the Select program, the cursor returns to the property as in 'Before' mode.

• Modify in Query - Lets you toggle from the following choice controls even
when the task is in Query mode.

• Radio button

• Tab

• List box

• Combo box
Reference Guide 828

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Help Prompt - Specifies whether a Help prompt is associated with this
control. The default setting is Yes.No indicates that no prompt line is
associated with this variable.If the setting is Yes, tab to the Prompt's
property to enter a number that specifies the number of a Help screen
associated with this variable that will automatically appear at runtime.
Zoom to the Help list to choose a Prompt line entry.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Style - Defines the appearance of controls. The valid values are:

• 3-Dimensional Raised

• 3-Dimensional Sunken (Default)
Reference Guide 829

• 2-Dimensional

• Border Style - Defines the style of the control's border. The valid values
are: Thin - Surrounds the control with a thin line. Thick - Surrounds the
control with a thick line. No Border - Leaves the control without a visible
border. The default setting varies from one control type to another.

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

• Choice Columns - Applies to Radio Button controls. Defines the number of
columns displayed in a Radio Button control.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer- If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
Reference Guide 830

control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

Rectangle Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

 Detail

• Text - Specifies the text that appears on Static controls and Check Box
controls.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CTRLNAME function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Enable RTF - A Yes value enables the Rich Text format, which allows for
better text resolution during development.

• Static Type - You can zoom on Static Type in the Properties sheet to display
the Static Control Types Values dialog. The choices in this dialog appear in
combo boxes. Explanations of the properties are as follows: NE-SW Line -
Reference Guide 831

Inserts a diagonal line from the upper right hand corner down to the lower
left hand corner of the Static control.

• NW-SE Line - Inserts a diagonal line from the upper left hand corner down
to the lower right hand corner of the Static control.

• Horizontal Line - Defines the Static control as a horizontal line.

• Vertical Line - Defines the Static control as a vertical line.

• Rectangle - Defines the Static control as a rectangle.

• Rounded Rectangle - Defines the Static control as a rounded rectangle.

• Ellipse - Defines the Static control as an ellipse.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
defining a handler over the Drop event, or automatically by the
eDeveloper engine.

 Input

• Multi-line Edit - This property specifies whether the Edit control can contain
more than one line of text.When using a Multi-line Edit control on a text-
based form, the text can be enlarged to fit the entire text. This control can
be enlarged to the size of a page and span multiple pages. Multi-line Edit
controls that are over a page length continue on the next page with all of
Reference Guide 832

eDeveloper's header and footer mechanisms.If the control is in a table, the
table cell enlarges to fit the edit control size. The title of the table prints on
each page. Other controls appear either above or below the edit control.

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Style - Defines the appearance of controls. The valid values are:

• 3-Dimensional Raised (Default)

• 3-Dimensional Sunken

• 2-Dimensional

• Border Style - Defines the style of the control's border. The valid values
are: Thin - Surrounds the control with a thin line. Thick - Surrounds the
Reference Guide 833

control with a thick line. No Border - Leaves the control without a visible
border. The default setting varies from one control type to another.

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

• Vertical Alignment - Defines the vertical alignment of text in the control.
The valid values are Top, Center, and Bottom.

• Line Style - Defines the appearance of lines in a Static control. The valid
values are Regular, Dotted, Dashed, DashedDot, and DashDotDot.

• Line Width - Defines the width of the line in a Static control. Specify a
numeric value based on the measurement units you have defined for the
form.

• 3D Line - Defines the width of the line in a Static control. Specify a numeric
value based on the measurement units you have defined for the form.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.
Reference Guide 834

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout.
This property is relevant only for controls that are linked to Choice
controls.

Table Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Keep Width - When set to Yes, the table keeps its set width even when
columns are hidden or displayed.When set to No, the table does not keep
its set width, but will change the width of the table as columns are hidden
or displayed.Table behavior for the Keep Width property is:

• When Keep Width = No and a column is hidden, all columns in the
table shift by the width of the hidden column, and the width of the
table is decreased by the width of the hidden column.

• When Keep Width = No and a column is displayed, all columns in
the table shift by the width of the displayed column, and the width
of the table is increased by the width of the displayed column.
Reference Guide 835

• When Keep Width = Yes and column is hidden, the consecutive
column shifts to the position of the hidden column and is enlarged
by the size of the hidden column. If the hidden column is the last
column, the last divider shifts to the position of the hidden column,
leaving blank space between the last column and the table slider.

• When Keep Width = Yes and a column is displayed, the consecutive
column shifts by the width of the displayed column. Its width is
decreased by the width of the displayed column. If the width of the
displayed column is greater than that of the consecutive column,
the consecutive column is set to a minimal width of 20 pixels, and
the remaining width of the displayed column is taken from the next
column. If the displayed column is greater than the width of the
next column, this column is also be reduced to 20 pixels, and the
column after will also be reduced.If the last column is reduced, but
the width of the displayed column has not been distributed, the
same procedure is performed for the column that precedes the
displayed column up to the first column of the table. If the first
column has been reduced, and the displayed column still has excess
width, the width of the displayed column will be the original column
width minus the remaining width. Note that the column width used
for the above calculation is always the width set for the column in
the form editor, and not by a runtime evaluated expression. After
the calculation, the columns are aligned; only then is their width
recomputed by the expression.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
Reference Guide 836

defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
defining a handler over the Drop event, or automatically by the
eDeveloper engine.

 Appearance

• Color - You can zoom from the Value column to the Color list and select a
color. When the Set Table Color property is set By Column, The Color
property is enabled for the 2D style only. When the Set Table Color
property is set By Table, the Color property is enabled for all styles.

• Set Table Color - This property lets you set the background color either for
each column or set the background color for the entire table.

When By Column is selected, the option specified in the Color property
affects the column background and the foreground of the column title for
the 2D tables.

When By Table is selected, the Table control Color property is enabled for
all styles, and the color assigned to a column is disabled. When the table
option is selected the selected color affects the following table styles:

• 2D - Column header backgrounds, empty space backgrounds, and
column backgrounds are affected by the background color set in the
Color property. The column titles and table dividers are affected by
the foreground color set by the Color property.

• 3D Raised - The column title is affected by the foreground color set
by the Color property.

• Windows 3D - The column background and the empty space
background are affected by the background color set by the Color
Reference Guide 837

property. The columns title are affected by the foreground color set
by the Color property.

• Alternating Background Color - This property lets you set the color of an
alternating row for a table. The default value is zero (0) and eDeveloper
accepts zero as a valid value. This property does not support a dynamic
value used in an expression. The Alternating Background Color property is
disabled when the Set Table Color property is set By Column.

In runtime, the row background switches from the table color to the
alternating color from one record to another. In the order of appearance,
odd records display the table color and even records display the alternate
color. When records are added or deleted, the background color of the
affected records change depending whether they have become even or
odd. When the table is not full, the table color and alternate color are
displayed for the remaining rows.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Style - Defines the appearance of controls. The valid values are:

• 3-Dimensional Raised (Default)

• 3-Dimensional Sunken

• 2-Dimensional

• Border Style - Defines the style of the control's border. The valid values
are: Thin - Surrounds the control with a thin line. Thick - Surrounds the
control with a thick line.No Border - Leaves the control without a visible
border. The default setting varies from one control type to another.

• Scroll Bar - This property determines whether or not to display a horizontal
scroll bar and a vertical scroll bar according to the properties Horizontal
Reference Guide 838

Scroll and Vertical Scroll. Select Yes to display the scroll bars defined for
an Edit control.

• Line Divider - Applies to a Table control. Defines whether the table displays
a divider between its rows.

• Row Highlight Style - This property lets you determine the style by which the
table highlights its current row.

The options are:

• None - The current row will not be highlighted.

• Frame - The current row is highlighted by a rectangular box
surrounding the row. The color of the rectangle frame color is the
foreground color defined in the Highlight Color property. When the
Line Divider = No, the rectangle frame is not displayed.

• Background - A current row is highlighted by a background color
specified in the Highlight Color property.

• BG & Controls - The current row is highlighted by a background
color just like the Background option. This mode also modifies the
color of all controls in the current row to display highlighted color.

• Row Highlight Color - This property sets the highlight color according to the
Highlight style property.

• Title Height - Defines the title height of a Table control. You can also set
this property by clicking and dragging the lower border of the title bar in
the Form Editor.

• Row Height - Defines the row height of a Table control. You can also set
this property by clicking and dragging the lower edge of the first row of the
table.

• Bottom Position Interval - This property sets the interval by which the
bottom position of the table is set within the defined height of the table.

When this property is set to:

• Row Height (Default) - The bottom position displays only full rows in
the Table control.
Reference Guide 839

• None - Partial rows are displayed and the bottom position matches
the full height of the table.

• Columns - Displays the number of columns in a Table control. The number
of columns can only be changed from the form layout.

• Column Divider - Defines whether the table displays a divider between its
columns.

• Last Divider - When set to No the indication of the last divider (on the table
title) will not be displayed. It is recommended to display the line divider in
GUI Display forms and to hide it (set to No) in GUI Output forms. The
default for this property follows the recommendation: Yes for GUI Display
tables, No for GUI Output tables.

• Table in Window - Displays the Table control in an embedded window. This
option allows the table to be larger than the display area. When a table in
window exceeds the display size, a horizontal scroll bar appears to enable
the user to scroll through the columns of the table.

• Allow Column Resize - When set to Yes, the end user will be able to change
the size of each column by dragging the adjacent column divider.A column
can be resized in two ways: 1. Clicking on a column divider and dragging it
to a different location - This action modifies the width of the columns on
both sides of the divider.2. Clicking on a column divider, pressing the
SHIFT key and dragging it to a different location. This action modifies the
width of the column positioned on the left side of the column divider (in
RTL applications it will be for the column on right) and the table width will
be affected accordingly.

• Multi-Marking - When set to Yes, the end user will be able to multi mark
various rows displayed in the table, perform user defined logic on all the
Reference Guide 840

marked rows, and use the eDeveloper internal delete operation on all the
marked rows.

Navigation

• Placement - The Placement property determines whether or not controls
are resized when a form is resized. You can set the placement coordinates
for the following positions.

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
Reference Guide 841

disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

Edit Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Data - Data can be defined either as Variable (Value) or Expression. For an
OLE control, however, Data must be defined as Blob.

• Variable Name - Defines the variable selected in the current position. To
select a variable, enter the variable's identification in the Value column or
zoom to choose a variable from the Variable list.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Format - Present for Edit and Push Button controls. Specifies the format
associated with this variable. The format can be modified here for the
current form display only. The initial setting is the Picture inherited from
the item's Column repository setting. You can specify the value of this
property at runtime by zooming to the Expression Rules repository and
Reference Guide 842

entering an expression that evaluates to the coordinates of the control's
format.

• Attribute - The attribute of the selected variable or expression. The
Attribute property is fixed for variables. You can change the setting for
items based on an expression.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
defining a handler over the Drop event, or automatically by the
eDeveloper engine.

Input

• Must Input - Specifies whether the end-user must enter a value into a
control. You can set the value of the control at runtime with an expression
in the Expression Rules repository.

• Modifiable - Specifies whether the user can change the value in the control
during runtime. A No setting denies the user access to the control. A Yes
setting allows the user to modify the value in the control.

• Select Program - Specifies whether the end-user can invoke a program at
runtime using Edit/Zoom. The default setting is Yes. Specify a Program ID
in the Program property or zoom to the Program list to choose a program.

• Select Mode - Specifies when eDeveloper calls the program defined in the
Select Program property. The valid values are: After - specifies that when
Reference Guide 843

the called select program terminates, the cursor moves to the next
property. Before (Default) - specifies that when the called select program
terminates, the cursor returns to the property. Prompt - specifies that the
program is automatically executed prior to entering the property, to allow
the user to immediately select the lookup value. In this case, after exiting
the Select program, the cursor returns to the property as in 'Before' mode.

• Multi-Line Edit - This property specifies whether the Edit control can
contain more than one line of text.When using a Multi-line Edit control on a
text-based form, the text can be enlarged to fit the entire text. This control
can be enlarged to the size of a page and span multiple pages. Multi-line
Edit controls that are over a page length continue on the next page with all
of eDeveloper's header and footer mechanisms.If the control is in a table,
the table cell enlarges to fit the edit control size. The title of the table
prints on each page. Other controls appear either above or below the edit
control.

• Horizontal Scroll - Applies to controls with Multi-line Edit set to Yes. Allows
horizontal scrolling.

• Vertical Scroll - Applies to controls with Multi-line Edit set to Yes. Allows
vertical scrolling between the lines of the control.

• Show Scroll Bars - This property determines whether or not to display a
horizontal scroll bar and a vertical scroll bar according to the properties
Horizontal Scroll and Vertical Scroll. Select Yes to display the scroll bars
defined for an Edit control.

• Allow CR in Data - Applies to controls with Multi-line Edit set to Yes.
Specifies whether eDeveloper will exit the control or move down one line
when the end-user presses ENTER.

• Expansion Window - Applies only to the Edit control. Allows you to define a
window for text that extends beyond the visible limits of the control. Zoom
Reference Guide 844

to the Form list to choose a form for the expansion window associated with
the control.

• Password Edit - Specifies whether access to this control is password-
protected. The options are: No (Default) - Access is not password-
protected. Yes - Access is password-protected.

• Viewed Currency - Lets you access a currency value from the European
Currency Conversion table. Zoom from the Viewed Currency property to
select a currency value from the Currency list. The Viewed Currency
property is active only for the Edit control with a numeric attribute.

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Help Prompt - Specifies whether a Help prompt is associated with this
control. The default setting is Yes.No indicates that no prompt line is
associated with this variable.If the setting is Yes, tab to the Prompt's
property to enter a number that specifies the number of a Help screen
associated with this variable that will automatically appear at runtime.
Zoom to the Help list to choose a Prompt line entry.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
Reference Guide 845

value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Style - Defines the appearance of controls. The valid values are:

• Windows 3-D (Default)

• 3-Dimensional Raised

• 3-Dimensional Sunken

• 2-Dimensional

• Border Style - Defines the style of the control's border. The valid values
are: Thin - Surrounds the control with a thin line. Thick - Surrounds the
control with a thick line. No Border - Leaves the control without a visible
border. The default setting varies from one control type to another.

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

• Vertical Alignment - Defines the vertical alignment of text in the control.
The valid values are Top, Center, and Bottom.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Reference Guide 846

Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control's Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.
Reference Guide 847

Column Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Column Title - Enter the column title in a table control.

• Sortable - If this property is set to Yes, the values in the table column can
be sorted.

• Marking Column - If this property is set to Yes, the values in the table
column can be marked.

 Appearance

• Top Border - If this property is set to Yes, a top border is displayed for the
table column.

• Right Border - If this property is set to Yes, a right border is displayed for
the table column.

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

• Vertical Alignment - Defines the vertical alignment of text in the control.
The valid values are Top, Center, and Bottom.

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
Reference Guide 848

value makes the control visible. A 'FALSE' logical value makes the control
invisible.

Navigation

• Placement - The Placement property determines whether the column is
resized with the resizing of the Table control. The property options are Yes
or No. You can also insert an expression with a Boolean value that is
evaluated at runtime.

• Width - The initial width of the control in units of measurement.

• Control's Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

Tab Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Data - Data can be defined either as Variable (Value) or Expression.

• Variable Name - Defines the variable selected in the current position. To
select a variable, enter the variable's identification in the Value column or
zoom to choose a variable from the Variable list.

• Items List - Use this property to enter a string that defines the available
options that can be selected from a list box control. The options are
Reference Guide 849

concatenated one after the other, where each option is delimited by a
comma character.

If the Display List property is not defined, each string of each item is used
both for the display and for the returned value. You may set a display list
by using the Display List property to differentiate between the displayed
string and the returned string.

This property supports the As Data mode. This mode instructs the control
to use the Range property of the associated field as the item’s list value.

• Display List - You can enter options separated by a comma that are
displayed for the control but are not return values. The Display List values
must be entered in the same order as the return values entered fro the
Items List property.

For example, If you enter 1, 2, 3 in the Items List property field, where 1
is red, 2 is blue, and 3 is green, the red, blue, and green string must be
entered in the order of 1, 2, 3.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Attribute - The attribute of the selected variable or expression. The
Attribute property is fixed for variables. You can change the setting for
items based on an expression.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
Reference Guide 850

applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
defining a handler over the Drop event, or automatically by the
eDeveloper engine.

• Source Table - You can display the values of a table selected from the
Tables list or defined as an expression from the Expression Rules
repository. Table values can be combined with Items list values. When a
source table is selected, you must add Display List values that represent
the table values.

• Display Field - The field name from the selected table. You can select the
field name for the selected main table from the Variable list. Note that you
must first select the Source table.

• Linked Field - The field name from the selected table. You can select the
field name for the selected linked table from the Variable list. Note that the
variables from the main table appear on the Variable list when a linked
table is not defined.

• Index - An index name from the selected table. You can select an index
that is defined for the Source table.

• Field Ranges - You reach the Field Range list by zooming from the Field
Ranges property in the Control Properties sheet of a Combo Box or List
Box control.When a source table is defined for the list box or combo box,
you can define a range of values for each field to limit the range of
Reference Guide 851

displayed options.If the Source table does not have a range of values
defined for a field, none will appear in the Field Range list.

Input

• Must Input - Specifies whether the end-user must enter a value into a
control. You can set the value of the control at runtime with an expression
in the Expression Rules repository.

• Modifiable - Specifies whether the user can change the value in the control
during runtime. A No setting denies the user access to the control. A Yes
setting allows the user to modify the value in the control.

• Select Program - Specifies whether the end-user can invoke a program at
runtime using Edit/Zoom. The default setting is Yes. Specify a Program ID
in the Program property or zoom to the Program list to choose a program.

• Select Mode - Specifies when eDeveloper calls the program defined in the
Select Program property. The valid values are:

• After - specifies that when the called select program terminates, the
cursor moves to the next property.

• Before (Default) - specifies that when the called select program
terminates, the cursor returns to the property.

• Prompt - specifies that the program is automatically executed prior
to entering the property, to allow the user to immediately select the
lookup value. In this case, after exiting the Select program, the
cursor returns to the property as in 'Before' mode.

• Modify in Query - Lets you toggle from the following choice controls even
when the task is in Query mode.

• Radio button

• Tab

• List box

• Combo box
Reference Guide 852

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Help Prompt - Specifies whether a Help prompt is associated with this
control. The default setting is Yes.No indicates that no prompt line is
associated with this variable.If the setting is Yes, tab to the Prompt's
property to enter a number that specifies the number of a Help screen
associated with this variable that will automatically appear at runtime.
Zoom to the Help list to choose a Prompt line entry.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Style - Defines the appearance of controls. The valid values are:

• 3-Dimensional Raised (Default)

• 2-Dimensional
Reference Guide 853

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

• Tab Control Side - Specifies where the tabs appear for a Tab control: Top,
Right, Bottom, or Left.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When the Placement property equals 0, the relative size of the control
does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
Reference Guide 854

disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

Ellipse Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Text - Specifies the text that appears on Static controls and Check Box
controls.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Enable RTF - A Yes value enables the Rich Text format, which allows for
better text resolution during development.

• Static Type - You can zoom on Static Type in the Properties sheet to display
the Static Control Types Values dialog. The choices in this dialog appear in
combo boxes. Explanations of the properties are as follows: NE-SW Line -
Inserts a diagonal line from the upper right hand corner down to the lower
left hand corner of the Static control.
Reference Guide 855

• NW-SE Line - Inserts a diagonal line from the upper left hand corner down
to the lower right hand corner of the Static control.

• Horizontal Line - Defines the Static control as a horizontal line.

• Vertical Line - Defines the Static control as a vertical line.

• Rectangle - Defines the Static control as a rectangle.

• Rounded Rectangle - Defines the Static control as a rounded rectangle.

• Ellipse - Defines the Static control as an ellipse.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
defining a handler over the Drop event, or automatically by the
eDeveloper engine.

Input

• Multi-line Edit - This property specifies whether the Edit control can contain
more than one line of text.When using a Multi-line Edit control on a text-
based form, the text can be enlarged to fit the entire text. This control can
be enlarged to the size of a page and span multiple pages. Multi-line Edit
controls that are over a page length continue on the next page with all of
eDeveloper's header and footer mechanisms.If the control is in a table, the
Reference Guide 856

table cell enlarges to fit the edit control size. The title of the table prints on
each page. Other controls appear either above or below the edit control.

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Style - Defines the appearance of controls. The valid values are: Windows

• 3-Dimensional Raised (Default)

• 3-Dimensional Sunken

• 2-Dimensional

• Border Style - Defines the style of the control's border. The valid values
are: Thin - Surrounds the control with a thin line. Thick - Surrounds the
Reference Guide 857

control with a thick line. No Border - Leaves the control without a visible
border. The default setting varies from one control type to another.

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

• Vertical Alignment - Defines the vertical alignment of text in the control.
The valid values are Top, Center, and Bottom.

• Line Style - Defines the appearance of lines in a Static control. The valid
values are Regular, Dotted, Dashed, DashedDot, and DashDotDot.

• Line Width - Defines the width of the line in a Static control. Specify a
numeric value based on the measurement units you have defined for the
form.

• 3D Line - Defines the width of the line in a Static control. Specify a numeric
value based on the measurement units you have defined for the form.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.
Reference Guide 858

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

Image Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Data - Data can be defined either as Variable (Value) or Expression.

• Variable Name - Defines the variable selected in the current position. To
select a variable, enter the variable's identification in the Value column or
zoom to choose a variable from the Variable list.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
Reference Guide 859

blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Attribute - The attribute of the selected variable or expression. The
Attribute property is fixed for variables. You can change the setting for
items based on an expression.

• Default Image File - The Default Image File Name property specifies the
name of the bitmap file for display on an image or push button.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
Reference Guide 860

defining a handler over the Drop event, or automatically by the
eDeveloper engine.

Input

• Must Input - Specifies whether the end-user must enter a value into a
control. You can set the value of the control at runtime with an expression
in the Expression Rules repository.

• Modifiable - Specifies whether the user can change the value in the control
during runtime. A No setting denies the user access to the control. A Yes
setting allows the user to modify the value in the control.

• Select Program - Specifies whether the end-user can invoke a program at
runtime using Edit/Zoom. The default setting is Yes. Specify a Program ID
in the Program property or zoom to the Program list to choose a program.

• Select Mode - Specifies when eDeveloper calls the program defined in the
Select Program property. The valid values are:

• After - specifies that when the called select program terminates, the
cursor moves to the next property.

• Before (Default) - specifies that when the called select program
terminates, the cursor returns to the property.

• Prompt - specifies that the program is automatically executed prior
to entering the property, to allow the user to immediately select the
lookup value. In this case, after exiting the Select program, the
cursor returns to the property as in 'Before' mode.

Appearance

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Reference Guide 861

Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Style - Defines the appearance of controls. The valid values are:

• 3-Dimensional Raised

• 3-Dimensional Sunken

• 2-Dimensional

• Border Style - Defines the style of the control's border. The valid values
are:

• Thin - Surrounds the control with a thin line.

• Thick - Surrounds the control with a thick line.

• No Border - Leaves the control without a visible border. The default
setting varies from one control type to another.

• Image Style - Controls the way an image is fitted into an Image control.
The valid values are:

• Tiled - The image is copied onto the control as many times as
needed to fill its entire area.

• Copied - The image is copied onto the control as is. If the image is
larger than the control, it is cropped. If it is smaller than the
control, the uncovered part of the control is painted with the
background color.
Reference Guide 862

• Scaled to Fit - The entire image is scaled onto the control while
maintaining the original aspect ratio of the image. This may result
in part of the control remaining uncovered, unless the aspect ratios
of the image and the control are identical.

• Scaled to Fill - The image is scaled to fill the entire control while
maintaining the original aspect ratio of the image. This may result
in only part of the image being seen on the control, unless the
aspect ratios of the image and the control are identical.

• Distorted Scaling - The image is shrunk or stretched to fill the entire
area of the control. The resulting image will be distorted, unless the
aspect ratios of the image and the control are identical.

• Image Effects - Optionally add special video display effects to an image on
an Image control. Click on the combo box to select an effect from the list
of options. The default is Normal (no special effect).

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.
Reference Guide 863

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

Text Control Properties

Details

• Text - Specifies the text that appears on Static controls and Check Box
controls.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Enable RTF - A Yes value enables the Rich Text format, which allows for
better text resolution during development.

• Static Type - You can zoom on Static Type in the Properties sheet to display
the Static Control Types Values dialog. The choices in this dialog appear in
combo boxes. Explanations of the properties are as follows:

• NE-SW Line - Inserts a diagonal line from the upper right hand
Reference Guide 864

corner down to the lower left hand corner of the Static control.

• NW-SE Line - Inserts a diagonal line from the upper left hand corner
down to the lower right hand corner of the Static control.

• Horizontal Line - Defines the Static control as a horizontal line.

• Vertical Line - Defines the Static control as a vertical line.

• Rectangle - Defines the Static control as a rectangle.

• Rounded Rectangle - Defines the Static control as a rounded
rectangle.

• Ellipse - Defines the Static control as an ellipse.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
defining a handler over the Drop event, or automatically by the
eDeveloper engine.

Input

• Multi-line Edit - This property specifies whether the Edit control can contain
more than one line of text.When using a Multi-line Edit control on a text-
based form, the text can be enlarged to fit the entire text. This control can
be enlarged to the size of a page and span multiple pages. Multi-line Edit
controls that are over a page length continue on the next page with all of
Reference Guide 865

eDeveloper's header and footer mechanisms.If the control is in a table, the
table cell enlarges to fit the edit control size. The title of the table prints on
each page. Other controls appear either above or below the edit control.

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Style - Defines the appearance of controls. The valid values are:

• 3-Dimensional Raised (Default)

• 3-Dimensional Sunken

• 2-Dimensional
Reference Guide 866

• Border Style - Defines the style of the control's border. The valid values
are: Thin - Surrounds the control with a thin line.Thick - Surrounds the
control with a thick line. No Border - Leaves the control without a visible
border. The default setting varies from one control type to another.

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

• Vertical Alignment - Defines the vertical alignment of text in the control.
The valid values are Top, Center, and Bottom.

• Line Style - Defines the appearance of lines in a Static control. The valid
values are Regular, Dotted, Dashed, DashedDot, and DashDotDot.

• Line Width - Defines the width of the line in a Static control. Specify a
numeric value based on the measurement units you have defined for the
form.

• 3D Line - Defines the width of the line in a Static control. Specify a numeric
value based on the measurement units you have defined for the form.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.
Reference Guide 867

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout.
This property is relevant only for controls that are linked to Choice
controls.

List Box Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Data - Use this property to define data information as either Variable
(Value) or Expression.

• Variable Name - Defines the variable selected in the current position. To
select a variable, enter the variable's identification in the Value column or
zoom to choose a variable from the Variable list.

• Items List - Use this property to enter a string that defines the available
options that can be selected from a list box control. The options are
Reference Guide 868

concatenated one after the other, where each option is delimited by a
comma character.

If the Display List property is not defined, each string of each item is used
both for the display and for the returned value. You may set a display list
by using the Display List property to differentiate between the displayed
string and the returned string.

This property supports the As Data mode. This mode instructs the control
to use the Range property of the associated field as the item’s list value.

• Display List - You can enter options separated by a comma that are
displayed for the control but are not return values. The Display List values
must be entered in the same order as the return values entered for the
Items List property.

For example, If you enter 1, 2, 3 in the Items List property field, where 1
is red, 2 is blue, and 3 is green, the red, blue, and green string must be
entered in the order of 1, 2, 3.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Attribute - The attribute of the selected variable or expression. The
Attribute property is fixed for variables. You can change the setting for
items based on an expression.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
Reference Guide 869

applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
defining a handler over the Drop event, or automatically by the
eDeveloper engine.

• Source Table - You can display the values of a table selected from the
Tables list or defined as an expression from the Expression Rules
repository. Table values can be combined with Items list values. When a
source table is selected, you must add Display List values that represent
the table values.

• Display Field - The field name from the selected table. You can select the
field name for the selected main table from the Variable list. Note that you
must first select the Source table.

• Linked Field - The field name from the selected table. You can select the
field name for the selected linked table from the Variable list. Note that the
variables from the main table appear on the Variable list when a linked
table is not defined.

• Index - An index name from the selected table. You can select an index
that is defined for the Source table.

• Field Ranges - You reach the Field Range list by zooming from the Field
Ranges property in the Control Properties sheet of a Combo Box or List
Box control.When a source table is defined for the list box or combo box,
you can define a range of values for each field to limit the range of
displayed options.If the Source table does not have a range of values
defined for a field, none will appear in the Field Range list.
Reference Guide 870

Input

• Must Input - Specifies whether the end-user must enter a value into a
control. You can set the value of the control at runtime with an expression
in the Expression Rules repository.

• Modifiable - Specifies whether the user can change the value in the control
during runtime. A No setting denies the user access to the control. A Yes
setting allows the user to modify the value in the control.

• Select Program - Specifies whether the end-user can invoke a program at
runtime using Edit/Zoom. The default setting is Yes. Specify a Program ID
in the Program property or zoom to the Program list to choose a program.

• Select Mode - Specifies when eDeveloper calls the program defined in the
Select Program property. The valid values are: After - specifies that when
the called select program terminates, the cursor moves to the next
property. Before (Default) - specifies that when the called select program
terminates, the cursor returns to the property. Prompt - specifies that the
program is automatically executed prior to entering the property, to allow
the user to immediately select the lookup value. In this case, after exiting
the Select program, the cursor returns to the property as in 'Before' mode.

• Selection Mode - Determines whether the List Box control supports Single
or Multiple item selections for Browser and GUI Display forms:

• Single - Only a single item can be selected.

• Multiple - More than a single item can be selected. The key
combinations below let the end-user select single or multiple items.

The key combinations below let the end-user select single or multiple items.

Click Selects the clicked item and deselects all other
items.

Ctrl+Click Selects or deselects the clicked item without
affecting the other selected items.

Shift+Click Selects all the items from the last selected item to
the clicked item.
Reference Guide 871

The Multiple selection option is available for List Box controls that have an Alpha, Memo,
RTF Blob, or Vector Attribute property value. The default value for this property is
Single.

When the Selection Mode = Single, the selected item is updated by the specified data
attribute value determined by the label or the linked field in the data-bound list box.

If the specified data attribute value is Vector, the selected value is stored in the vector
as the value of the first cell. The size of an updated vector reflects the total number of
selected items. For a Single selection, the List box data property, defined as a Vector,
returns 1.

When the Selection Mode = Multiple, the specified attribute value is displayed as series
of selected values determined by the label or linked field, separated by commas. The
order of the concatenated result string is by the order of the items as they appear in the
list and not by the order of selection.

Layering controls in a List Box is not supported for a List Box set as a Multiple selection.
However, the form editor does not prevent the developer from attaching another control
to a List Box layer when the List box is set as a Multiple selection.

• Modify in Query - Lets you toggle from the following choice controls even
when the task is in Query mode.

• Radio button

• Tab

• List box

• Combo box

Shift+Up Arrow Selects the clicked item and all items below it.

Shift+Down Arrow Selects the clicked item and all items above it.

Up Arrow Deselects all items and selects the item before
the currently selected item.

Down Arrow Deselects all the items and selects the item after
the currently selected item.
Reference Guide 872

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Help Prompt - Specifies whether a Help prompt is associated with this
control. The default setting is Yes.No indicates that no prompt line is
associated with this variable.If the setting is Yes, tab to the Prompt's
property to enter a number that specifies the number of a Help screen
associated with this variable that will automatically appear at runtime.
Zoom to the Help list to choose a Prompt line entry.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Style - Defines the appearance of controls. The valid values are:

• 3-Dimensional Raised

• 3-Dimensional Sunken (Default)
Reference Guide 873

• 2-Dimensional

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

• Choice Columns - Defines the number of choice columns displayed in a list
or radio button control.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
Reference Guide 874

disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

Line Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
Reference Guide 875

defining a handler over the Drop event, or automatically by the
eDeveloper engine.

Appearance

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Style - Defines the appearance of controls. The valid values are:

• 3-Dimensional Raised

• 3-Dimensional Sunken

• 2-Dimensional

• Line Style - Defines the appearance of lines in a Static control. The valid
values are Regular, Dotted, Dashed, DashedDot, and DashDotDot.

• Line Width - Defines the width of the line in a Static control. Specify a
numeric value based on the measurement units you have defined for the
form.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement
Reference Guide 876

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• X1 - The x-coordinate of the left point of a selected line control.

• Y1 - The y-coordinate of the left point of a selected line control.

• X2 - The x-coordinate of the right point of a selected line control.

• Y2 - The y-coordinate of the right point of a selected line control.

• Control's Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.
Reference Guide 877

OLE Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Data - Data can be defined either as Variable (Value) or Expression. For an
OLE control, however, Data must be defined as Blob.

• Variable Name - Defines the variable selected in the current position. To
select a variable, enter the variable's identification in the Value column or
zoom to choose a variable from the Variable list.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Attribute - The attribute of the selected variable or expression. The
Attribute property is fixed for variables. You can change the setting for
items based on an expression. Note: OLE controls do not support Allow
Drag and Drop properties.
Reference Guide 878

Input

• Must Input - Specifies whether the end-user must enter a value into a
control. You can set the value of the control at runtime with an expression
in the Expression Rules repository.

• Modifiable - Specifies whether the user can change the value in the control
during runtime. A No setting denies the user access to the control. A Yes
setting allows the user to modify the value in the control.

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Help Prompt - Specifies whether a Help prompt is associated with this
control. The default setting is Yes.No indicates that no prompt line is
associated with this variable.If the setting is Yes, tab to the Prompt's
property to enter a number that specifies the number of a Help screen
associated with this variable that will automatically appear at runtime.
Zoom to the Help list to choose a Prompt line entry.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
Reference Guide 879

value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
Reference Guide 880

disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

 OLE

• OLE Class - The object class that is to be inserted into the property. Leave
the OLE Class value field empty to allow the end-user to select any
available object type from the Windows Insert Object dialog during
runtime.To specify an object type for the end-user, zoom from the OLE
Class property and click No in the Active X dialog, which opens the
Windows Select Object Type dialog. When the end-user selects Edit/Insert
Object, the application serving the developer-specified class is opened.
Note that if the end-user does not have an application available that
supports the specified object class, a Windows error message appears.

• Display OLE As - There are three choices available in the combo box list:
Icon - When the OLE object is installed but not edited, an icon describing
the type of information that is stored in the container is displayed. Content
- When the OLE object is installed but not edited, a snapshot of the file's
contents is displayed in the container. Any - Gives the end-user the option
to display the object as an icon, or to display the object's contents as a
snapshot. The choice is made in the Insert Object dialog by selecting the
Display As Icon check box.

• Store OLE As - There are three choices available in the combo box list:
Linked - The OLE object will be kept as a linked object in runtime.
Embedded - The OLE object will be kept as an embedded object in
runtime. Any - The end-user has the option to keep the object as a linked
object or as an embedded object. This option is exercised in the Windows
Insert Object dialog by selecting the Link check box.

• Auto Link Update - This property enables automatic updating of a linked
document's content bitmap. This option is relevant when Display OLE As is
set to Content, Icon, or Any, and when Store OLE As is set to Linked or
Any.Yes - eDeveloper verifies that the content image is the most current
before displaying it on the form.No - The last saved content image is
displayed.
Reference Guide 881

• Use OLE Frame Type - When set to Yes, eDeveloper displays a different
frame style around the object, depending on the object's storage type.

Push Button Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Data - Data can be defined either as Variable (Value) or Expression.

• Variable Name - Defines the variable selected in the current position. To
select a variable, enter the variable's identification in the Value column or
zoom to choose a variable from the Variable list.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Format - Present for Edit and Push Button controls. Specifies the format
associated with this variable. The format can be modified here for the
current form display only. The initial setting is the Picture inherited from
the item's Column repository setting. You can specify the value of this
property at runtime by zooming to the Expression Rules repository and
entering an expression that evaluates to the coordinates of the control's
format.

• Attribute - The attribute of the selected variable or expression. The
Attribute property is fixed for variables. You can change the setting for
items based on an expression.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
Reference Guide 882

applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
defining a handler over the Drop event, or automatically by the
eDeveloper engine.

• Button Style

Push button - When the Button Style property is set to Push Button, the
Push Button control uses the default Windows Push Button design.The
conditions for defining a variable name for a Push button style button are
limited to:

• A thirty character name

• Leading and trailing blanks

• Blanks within the name

• Numbers and special characters

• Specific language characters as defined in the Language repository

Image Button - When the Button Style property is set to Image button, a
bitmap (.bmp) file can be selected. The bitmap must have images that
correspond to the four different states of a push button: Parked on,
Pressed, Disabled, and Default. During runtime, eDeveloper decides the
image to display. The size of the bitmap file is not relevant. You must
specify the file name for the bitmap file either in the Data property as a
variable or as an expression.The Default Image File Name property
displays the specified bitmap only in toolkit.
Reference Guide 883

Text on Image - This toolkit button lets you set an image and a text label
as it would appear in runtime according to the static values of the Format
and Default Image File properties. The purpose of this option is to let you
update the text label without recreating the image. The text format is
determined by the Font and Color properties. In runtime, the control data
determines the button image, such as Alpha or BLOB, and the format
determines the text label. This button type behaves exactly like an image
button. The only difference is that the label text is in the center of the
button.

Hypertext - When the Push button style is set to Hypertext, an
eDeveloper event is linked to the Push Button control. The Push Button
control appears as a 2D image with an underline. Zoom from the Return
Action property to access the Action list. The conditions for defining a
variable name for a Hypertext style button are limited to:

• A 30 character name

• Leading and trailing blanks

• Blanks within the name

• Numbers and special characters

• Specific language characters as defined in the Language repository
Reference Guide 884

• Default Image File - The Default Image File Name property specifies the
name of the bitmap file for display on a Push button.

• Raise Event - Lets you define the type of event that will be raised during
the flow of the eDeveloper engine when the button is clicked in runtime.

Input

• Modifiable - Specifies whether the user can change the value in the control
during runtime. A No setting denies the user access to the control. A Yes
setting allows the user to modify the value in the control.

• Select Program - Specifies whether the end-user can invoke a program at
runtime using Edit/Zoom. The default setting is Yes. Specify a Program ID
in the Program property or zoom to the Program list to choose a program.

• Select Mode - Specifies when eDeveloper calls the program defined in the
Select Program property. The valid values are: After - specifies that when
the called select program terminates, the cursor moves to the next
property. Before (Default) - specifies that when the called select program
terminates, the cursor returns to the property. Prompt - specifies that the
program is automatically executed prior to entering the property, to allow
the user to immediately select the lookup value. In this case, after exiting
the Select program, the cursor returns to the property as in 'Before' mode.

• Park on Click - This property determines whether the engine can park on
the Push Button control.

When set to Yes, the direct activation, clicking the button or pressing the
push button accelerator of the push button moves the focus to that control
by executing the flow logic from the engine's current location to the push
button. Only after the engine has parked on the push button will it raise
the event set for that control. The default value is Yes.

When set to No, the direct activation triggers the event set for the push
button control without leaving the engine's current location.
Reference Guide 885

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - This property is enabled when the button style is set to Text on
Image. You can either set the foreground color of the text or define an
expression that determines the foreground color at runtime.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Help Prompt - Specifies whether a Help prompt is associated with this
control. The default setting is Yes.No indicates that no prompt line is
associated with this variable.If the setting is Yes, tab to the Prompt's
property to enter a number that specifies the number of a Help screen
associated with this variable that will automatically appear at runtime.
Zoom to the Help list to choose a Prompt line entry.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
Reference Guide 886

value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
Reference Guide 887

disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

Combo Box Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Data - Data can be defined either as Variable (Value) or Expression.

• Variable Name - Defines the variable selected in the current position. To
select a variable, enter the variable's identification in the Value column or
zoom to choose a variable from the Variable list.

• Items List - Use this property to enter a string that defines the available
options that can be selected from a list box control. The options are
concatenated one after the other, where each option is delimited by a
comma character.

If the Display List property is not defined, each string of each item is used
both for the display and for the returned value. You may set a display list
by using the Display List property to differentiate between the displayed
string and the returned string.

This property supports the As Data mode. This mode instructs the control
to use the Range property of the associated field as the item’s list value.

• Display List - You can enter options separated by a comma that are
displayed for the control but are not return values. The Display List values
must be entered in the same order as the return values entered fro the
Items List property.

For example, If you enter 1, 2, 3 in the Items List property field, where 1
is red, 2 is blue, and 3 is green, the red, blue, and green string must be
entered in the order of 1, 2, 3.
Reference Guide 888

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Attribute - The attribute of the selected variable or expression. The
Attribute property is fixed for variables. You can change the setting for
items based on an expression.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
defining a handler over the Drop event, or automatically by the
eDeveloper engine.

• Source Table - You can display the values of a table selected from the
Tables list or defined as an expression from the Expression Rules
repository. Table values can be combined with Items list values. When a
Reference Guide 889

source table is selected, you must add Display List values that represent
the table values.

• Display Field - The field name from the selected table. You can select the
field name for the selected main table from the Variable list. Note that you
must first select the Source table.

• Linked Field - The field name from the selected table. You can select the
field name for the selected linked table from the Variable list. Note that the
variables from the main table appear on the Variable list when a linked
table is not defined.

• Index - An index name from the selected table. You can select an index
that is defined for the Source table.

• Field Ranges - You reach the Field Range list by zooming from the Field
Ranges property in the Control Properties sheet of a Combo Box or List
Box control.When a source table is defined for the list box or combo box,
you can define a range of values for each field to limit the range of
displayed options.If the Source table does not have a range of values
defined for a field, none will appear in the Field Range list.

 Input

• Modifiable - Specifies whether the user can change the value in the control
during runtime. A No setting denies the user access to the control. A Yes
setting allows the user to modify the value in the control.

• Select Program - Specifies whether the end-user can invoke a program at
runtime using Edit/Zoom. The default setting is Yes. Specify a Program ID
in the Program property or zoom to the Program list to choose a program.

• Select Mode - Specifies when eDeveloper calls the program defined in the
Select Program property. The valid values are: After - specifies that when
the called select program terminates, the cursor moves to the next
property. Before (Default) - specifies that when the called select program
terminates, the cursor returns to the property. Prompt - specifies that the
program is automatically executed prior to entering the property, to allow
Reference Guide 890

the user to immediately select the lookup value. In this case, after exiting
the Select program, the cursor returns to the property as in 'Before' mode.

• Modify in Query - Lets you toggle from the following choice controls even
when the task is in Query mode.

• Radio button

• Tab

• List box

• Combo box

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Help Prompt - Specifies whether a Help prompt is associated with this
control. The default setting is Yes.No indicates that no prompt line is
associated with this variable.If the setting is Yes, tab to the Prompt's
property to enter a number that specifies the number of a Help screen
Reference Guide 891

associated with this variable that will automatically appear at runtime.
Zoom to the Help list to choose a Prompt line entry.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Style - Defines the appearance of controls. The valid values are:

• 3-Dimensional Raised

• 3-Dimensional Sunken (Default)

• 2-Dimensional

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

• Choice Columns - Applies to Radio Button controls. Defines the number of
columns displayed in a Radio Button control.

• Visible Lines - Specifies the number of lines presented when the Combo
Box control is accessed.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
Reference Guide 892

control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

Slider Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Data - Data can be defined either as Variable (Value) or Expression.

• Variable Name - Defines the variable selected in the current position. To
select a variable, enter the variable's identification in the Value column or
zoom to choose a variable from the Variable list.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
Reference Guide 893

sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Attribute - The attribute of the selected variable or expression. The
Attribute property is fixed for variables. You can change the setting for
items based on an expression.

• Range - Applies to Slider controls. Defines the range of values for the
slider.

 Input

• Must Input - Specifies whether the end-user must enter a value into a
control. You can set the value of the control at runtime with an expression
in the Expression Rules repository.

• Modifiable - Specifies whether the user can change the value in the control
during runtime. A No setting denies the user access to the control. A Yes
setting allows the user to modify the value in the control.

• Select Program - Specifies whether the end-user can invoke a program at
runtime using Edit/Zoom. The default setting is Yes. Specify a Program ID
in the Program property or zoom to the Program list to choose a program.

• Select Mode - Specifies when eDeveloper calls the program defined in the
Select Program property. The valid values are: After - specifies that when
the called select program terminates, the cursor moves to the next
property. Before (Default) - specifies that when the called select program
terminates, the cursor returns to the property. Prompt - specifies that the
program is automatically executed prior to entering the property, to allow
the user to immediately select the lookup value. In this case, after exiting
the Select program, the cursor returns to the property as in 'Before' mode.

Appearance

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Reference Guide 894

Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Help Prompt - Specifies whether a Help prompt is associated with this
control. The default setting is Yes.No indicates that no prompt line is
associated with this variable.If the setting is Yes, tab to the Prompt's
property to enter a number that specifies the number of a Help screen
associated with this variable that will automatically appear at runtime.
Zoom to the Help list to choose a Prompt line entry.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Slider Style - Defines the direction of a Slider control. The valid values are
Horizontal or Vertical.

• Slider Step - Applies to Slider controls. Defines the step size within the
Slider Range.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
Reference Guide 895

control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

 Rich Text Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Text - Specifies the text that appears on Static controls and Check Box
controls.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
Reference Guide 896

blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Enable RTF - A Yes value enables the Rich Text format, which allows for
better text resolution during development.

• Static Type - You can zoom on Static Type in the Properties sheet to display
the Static Control Types Values dialog. The choices in this dialog appear in
combo boxes. Explanations of the properties are as follows:

• NE-SW Line - Inserts a diagonal line from the upper right hand
corner down to the lower left hand corner of the Static control.

• NW-SE Line - Inserts a diagonal line from the upper left hand corner
down to the lower right hand corner of the Static control.

• Horizontal Line - Defines the Static control as a horizontal line.

• Vertical Line - Defines the Static control as a vertical line.

• Rectangle - Defines the Static control as a rectangle.

• Rounded Rectangle - Defines the Static control as a rounded
rectangle.

• Ellipse - Defines the Static control as an ellipse.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
Reference Guide 897

defining a handler over the Drop event, or automatically by the
eDeveloper engine.

Input

• Multi-line Edit - This property specifies whether the Edit control can contain
more than one line of text.When using a Multi-line Edit control on a text-
based form, the text can be enlarged to fit the entire text. This control can
be enlarged to the size of a page and span multiple pages. Multi-line Edit
controls that are over a page length continue on the next page with all of
eDeveloper's header and footer mechanisms.If the control is in a table, the
table cell enlarges to fit the edit control size. The title of the table prints on
each page. Other controls appear either above or below the edit control.

 Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Style - Defines the appearance of controls. The valid values are:

• 3-Dimensional Raised (Default)

• 3-Dimensional Sunken
Reference Guide 898

• 2-Dimensional

• Border Style - Defines the style of the control's border. The valid values
are:

• Thin - Surrounds the control with a thin line.

• Thick - Surrounds the control with a thick line.

• No Border - Leaves the control without a visible border. The default
setting varies from one control type to another.

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

• Vertical Alignment - Defines the vertical alignment of text in the control.
The valid values are Top, Center, and Bottom.

• Line Style - Defines the appearance of lines in a Static control. The valid
values are Regular, Dotted, Dashed, DashedDot, and DashDotDot.

• Line Width - Defines the width of the line in a Static control. Specify a
numeric value based on the measurement units you have defined for the
form.

• 3D Line - Defines the width of the line in a Static control. Specify a numeric
value based on the measurement units you have defined for the form.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Reference Guide 899

Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.
Reference Guide 900

Check Box Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Data - Data can be defined either as Variable (Value) or Expression.

• Variable Name - Defines the variable selected in the current position. To
select a variable, enter the variable's identification in the Value column or
zoom to choose a variable from the Variable list.

• Text - Specifies the text that appears on Static controls and Check Box
controls.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Attribute - The attribute of the selected variable or expression. The
Attribute property is fixed for variables. You can change the setting for
items based on an expression.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
Reference Guide 901

controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
defining a handler over the Drop event, or automatically by the
eDeveloper engine.

Input

• Must Input - Specifies whether the end-user must enter a value into a
control. You can set the value of the control at runtime with an expression
in the Expression Rules repository.

• Modifiable - Specifies whether the user can change the value in the control
during runtime. A No setting denies the user access to the control. A Yes
setting allows the user to modify the value in the control.

• Select Program - Specifies whether the end-user can invoke a program at
runtime using Edit/Zoom. The default setting is Yes. Specify a Program ID
in the Program property or zoom to the Program list to choose a program.

• Select Mode - Specifies when eDeveloper calls the program defined in the
Select Program property. The valid values are: After - specifies that when
the called select program terminates, the cursor moves to the next
property. Before (Default) - specifies that when the called select program
terminates, the cursor returns to the property. Prompt - specifies that the
program is automatically executed prior to entering the property, to allow
the user to immediately select the lookup value. In this case, after exiting
the Select program, the cursor returns to the property as in 'Before' mode.

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Reference Guide 902

Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Help Prompt - Specifies whether the Help Prompt is associated with this
control. The default setting is Yes.No indicates that there is not a Help
Prompt line associated with this variable.If the setting is Yes, tab to the
Prompt's property to enter a number that specifies the number of a Help
screen associated with this variable that will automatically appear at
runtime. Zoom to the Help list to choose a Prompt line entry.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Style - Defines the appearance of controls. The valid values are:

• 3-Dimensional Raised

• 3-Dimensional Sunken (Default)

• 2-Dimensional

• Border Style - Defines the style of the control's border. The valid values
are:

• Thin - Surrounds the control with a thin line.

• Thick - Surrounds the control with a thick line.

• No Border - Leaves the control without a visible border. The default
setting varies from one control type to another.
Reference Guide 903

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
Reference Guide 904

disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

Group Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Text - Specifies the text that appears on Static controls and Check Box
controls.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Enable RTF - A Yes value enables the Rich Text format, which allows for
better text resolution during development.

• Static Type - You can zoom on Static Type in the Properties sheet to display
the Static Control Types Values dialog. The choices in this dialog appear in
combo boxes. Explanations of the properties are as follows:

• NE-SW Line - Inserts a diagonal line from the upper right hand
corner down to the lower left hand corner of the Static control.

• NW-SE Line - Inserts a diagonal line from the upper left hand corner
down to the lower right hand corner of the Static control.

• Horizontal Line - Defines the Static control as a horizontal line.

• Vertical Line - Defines the Static control as a vertical line.

• Rectangle - Defines the Static control as a rectangle.
Reference Guide 905

• Rounded Rectangle - Defines the Static control as a rounded
rectangle.

• Ellipse - Defines the Static control as an ellipse.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drop property, which enables the dropping of data
onto the control from other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls, (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied onto this control can be set manually by
defining a handler over the Drop event, or automatically by the
eDeveloper engine.

Input

• Multi-line Edit - This property specifies whether the Edit control can contain
more than one line of text.When using a Multi-line Edit control on a text-
based form, the text can be enlarged to fit the entire text. This control can
be enlarged to the size of a page and span multiple pages. Multi-line Edit
controls that are over a page length continue on the next page with all of
eDeveloper's header and footer mechanisms.If the control is in a table, the
Reference Guide 906

table cell enlarges to fit the edit control size. The title of the table prints on
each page. Other controls appear either above or below the edit control.

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Style - Defines the appearance of controls. The valid values are:

• 3-Dimensional Raised

• 3-Dimensional Sunken (Default)

• 2-Dimensional

• Border Style - Defines the style of the control's border. The valid values
are: Thin - Surrounds the control with a thin line. Thick - Surrounds the
Reference Guide 907

control with a thick line. No Border - Leaves the control without a visible
border. The default setting varies from one control type to another.

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

• Vertical Alignment - Defines the vertical alignment of text in the control.
The valid values are Top, Center, and Bottom.

• Line Style - Defines the appearance of lines in a Static control. The valid
values are Regular, Dotted, Dashed, DashedDot, and DashDotDot.

• Line Width - Defines the width of the line in a Static control. Specify a
numeric value based on the measurement units you have defined for the
form.

• 3D Line - Defines the width of the line in a Static control. Specify a numeric
value based on the measurement units you have defined for the form.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.
Reference Guide 908

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.

Rich Edit Detail Control Properties

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Data - Data can be defined either as Variable (Value) or Expression. For an
OLE control, however, Data must be defined as Blob.

• Variable Name - Defines the variable selected in the current position. To
select a variable, enter the variable's identification in the Value column or
zoom to choose a variable from the Variable list.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
Reference Guide 909

blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Attribute - The attribute of the selected variable or expression. The
Attribute property is fixed for variables. You can change the setting for
items based on an expression.

Input

• Must Input - Specifies whether the end-user must enter a value into a
control. You can set the value of the control at runtime with an expression
in the Expression Rules repository.

• Modifiable - Specifies whether the user can change the value in the control
during runtime. A No setting denies the user access to the control. A Yes
setting allows the user to modify the value in the control.

• Select Program - Specifies whether the end-user can invoke a program at
runtime using Edit/Zoom. The default setting is Yes. Specify a Program ID
in the Program property or zoom to the Program list to choose a program.

• Select Mode - Specifies when eDeveloper calls the program defined in the
Select Program property. The valid values are: After - specifies that when
the called select program terminates, the cursor moves to the next
property. Before (Default) - specifies that when the called select program
terminates, the cursor returns to the property. Prompt - specifies that the
program is automatically executed prior to entering the property, to allow
the user to immediately select the lookup value. In this case, after exiting
the Select program, the cursor returns to the property as in 'Before' mode.
Reference Guide 910

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Help Prompt - Specifies whether the Help Prompt is associated with this
control. The default setting is Yes.No indicates that there is not a Help
Prompt line associated with this variable.If the setting is Yes, tab to the
Prompt's property to enter a number that specifies the number of a Help
screen associated with this variable that will automatically appear at
runtime. Zoom to the Help list to choose a Prompt line entry.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Style - Defines the appearance of controls. The valid values are:

• Windows 3-D (Default)

• 3-Dimensional Raised

• 3-Dimensional Sunken

• 2-Dimensional
Reference Guide 911

• Horizontal Alignment - Defines the horizontal alignment of text in the
control. The valid values are Left, Center, and Right.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.
Reference Guide 912

Tree Control Properties

Changing the class number from 0 to 1 causes the Tree control to be deleted.

Model

• Model - You can reinherit any broken properties or disinherit all properties
for the specified control model. You can also select a different model.

Details

• Node ID - A variable value that defines a record in the task dataview. The
node cannot be defined from an expression.

• Parent ID - A variable value that defines a parent record in the task
dataview. The parent node cannot be defined from an expression.

• Root Value - The expression value used as the starting point for the
runtime engine to build the tree.

• Show Root - When Yes is selected, the root value is displayed as the top
node. If No is selected, the root value is not displayed but is still
considered the top node. If the root value is not specified, this property
will not be active.

• Control Name - This property enables a robust method to name controls
found in a Class 0 form, and to refer to them in functions. See the
CtrlName function for more information.The Control name is case
sensitive. The Control Name property is limited to 30 characters. Trailing
blanks are not allowed. The Copy operation for controls in the Form Editor
does not copy this property.

• Image List File Name - Click the Ellipse button to select a bitmap (.bmp)
image that has images that correspond to each of the following default
states of a tree node: Expanded, Collapsed, Parked Expanded, and Parked
Collapsed. You can have as many images as you want. The Tree control
displays the specified image dynamically. Due to size limitations, each
image within the bitmap should be 16 x 16 pixels.

• Expanded Image Index - If you have specified a bitmap file in the Image
List File Name property, click the Ellipse button to select an from the
Reference Guide 913

images contained in this file. You can also select an expression that
dynamically displays one of these imges during runtime. If you do not
specify an image, the runtime engine assigns a default image.

• Collapsed Image Index - If you have specified a bitmap file in the Image
List File Name property, click the Ellipse button to select an from the
images contained in this file. You can also select an expression that
dynamically displays one of these imges during runtime. If you do not
specify an image, the runtime engine assigns a default image.

• Parked Expanded Image Index - If you have specified a bitmap file in the
Image List File Name property, click the Ellipse button to select an from
the images contained in this file. You can also select an expression that
dynamically displays one of these imges during runtime. If you do not
specify an image, the runtime engine assigns a default image. When a
node is not parked on and expanded, the image is not displayed.

• Parked Collapsed Image Index - If you have specified a bitmap file in the
Image List File Name property, click the Ellipse button to select an from
the images contained in this file. You can also select an expression that
dynamically displays one of these imges during runtime. If you do not
specify an image, the runtime engine assigns a default image. The image
is not displayed when the engine is not parked on the node and the node is
not collapsed.

• Auto Expand - If Yes is selected, the data tree is displayed as expanded for
every parent node in runtime.

• Node Preload - If Yes is selected, the runtime engine loads the data of all
the records in the task dataview. If No is selected, the runtime engine only
loads the data of expanded records. Note that this property specifies how
the data is loaded at runtime. The data tree display is specified by the
Auto Expand and Single Expand properties.

• Allow Drag - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
Reference Guide 914

defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Allow Drop - The Allow Drag property, which enables the dragging of data
from the control to other controls in the same application or other
applications that run on the same machine, applies to the following
controls: Edit, Text, Push button, Check box, Radio button, Tab, List box,
Combo box, Static controls (Group, Rectangle, etc.), Table, Image, and
Tree control. The data copied from this control can be set manually by
defining a handler over the Drag begin event, or automatically by the
eDeveloper engine.

• Keep Tree View - This property instruct the Tree to keep its view and state
on reentrance to the tree's task. Setting this property to Yes is usually
required for tree controls that are displayed in phantom tasks.

Input

• Description Variable - Click the ellipsis button to select variable from the
Variable list. Your data can be defined as either as a variable or as an
expression.

• Variable Name - Defines the variable selected in the current position. To
select a variable, enter the variable's identification in the Value column or
zoom to choose a variable from the Variable list.

• Format - Present for Edit and Push Button controls. Specifies the format
associated with this variable. The format can be modified here for the
current form display only. The initial setting is the Picture inherited from
the item's Column repository setting. You can specify the value of this
property at runtime by zooming to the Expression Rules repository and
Reference Guide 915

entering an expression that evaluates to the coordinates of the control's
format.

• Attribute - The attribute of the selected variable or expression. The
Attribute property is fixed for variables. You can change the setting for
items based on an expression.

• Modifiable - Specifies whether the user can change the value in the control
during runtime. A No setting denies the user access to the control. A Yes
setting allows the user to modify the value in the control.

• Enabled - Defines whether or not the control will be active. Use an
expression to set the value at runtime. A 'TRUE' logical value enables the
control. A 'FALSE' logical value disables the control.

• Multi-Marking - When set to Yes, the end user will be able to multi mark
various rows displayed in the table, perform user defined logic on all the
marked rows, and use the eDeveloper internal delete operation on all the
marked rows.

Appearance

• Font - Defines the font for text that appears in a control. If you do not
enter a value in this property, the control takes the form's font as defined
in the Font property of the Form Properties dialog.

• Color - The number of a color in the Color list. This property is valid for 2-
Dimensional Style only. You can zoom from the Value column to the Color
list and select a color.

• Visible - Defines whether or not the control will be visible to the user. Use
an expression to set the value dynamically at runtime. A 'TRUE' logical
value makes the control visible. A 'FALSE' logical value makes the control
invisible.

• Help Screen - Specifies whether a Help screen is associated with this
control. This property is used for online forms only. The default setting is
Yes.If the setting is Yes, tab to the Help property to enter a number that
specifies the number of the Help screen. Zoom from this property to the
Reference Guide 916

Help list. Zoom again to create a new Help screen entry in the Help
repository.

• Help Prompt - Specifies whether a Help prompt is associated with this
control. The default setting is Yes.No indicates that no prompt line is
associated with this variable.If the setting is Yes, tab to the Prompt's
property to enter a number that specifies the number of a Help screen
associated with this variable that will automatically appear at runtime.
Zoom to the Help list to choose a Prompt line entry.

• Tooltip - Specifies whether a ToolTip is associated with this control. A
number specifies the number of the ToolTip Help in the Help list.

• Style - Defines the appearance of controls. The valid values are:

• Windows 3-D (Default)

• 3-Dimensional Raised

• 2-Dimensional

• Border Style - Defines the style of the control's border. The valid values
are:

• Thin - Surrounds the control with a thin line.

• Thick - Surrounds the control with a thick line.

• No Border - Leaves the control without a visible border.The default
setting varies from one control type to another.

• Show Buttons - If Yes is selected, the button image next to a parent node
is displayed. If No is selected, the button image is not displayed and the
end-user must double-click the parent node to expand the level.

• Show Lines - If Yes is selected, a line is displayed identifying the
relationship between parent and child nodes. If No is selected, the line is
Reference Guide 917

not displayed. When this property is set to Yes, the Row Highlight property
will not be enabled.

• Lines at Root - If Yes is selected, a line is displayed identifying the
relationship between the root value and the next level of nodes in the data
tree at runtime. If No is selected, the line is not displayed.

• Mouseover Indication - If Yes is selected, a line appears under the node
text when the cursor rests on or passes over the node. If No is selected,
eDeveloper does not indicate that the cursor rests on or passes over a
node.

• Row Highlight - If Yes is selected, the node row is highlighted in blue when
the cursor rests on or passes over it. If this property is set to Yes, the
Show Line property is not enabled.

Navigation

• Placement - The Placement property controls whether or not controls are
resized when a form is resized. You can set the placement coordinates for
the following positions:

• Left placement

• Right placement

• Top placement

• Bottom placement

When a control's Placement property equals 0, the relative size of the
control does not change when the form size changes in runtime. When the
Placement property is > 0, the relative size changes when the form size
changes in runtime. Note that a control with placement properties will not
resize to a size smaller than its original size.
Reference Guide 918

• Left - The initial x-coordinate of the upper left corner of a selected control.

• Top - The initial y-coordinate of the upper right corner of a selected control.

• Width - The initial width of the control in units of measurement.

• Height - The initial height of the control in units of measurement. The Table
control has only Left, Right, and Top properties.

• Control’s Layer - If the selected Choice control is linked as a child to a
parent, the Control's Layer property indicates to which of the parent
control's choice layers the selected control is linked. For example, assume
that a combo box that has three selections in its menu is on the form
layout. If you link an edit control to the third selection, then the number 3
displays in the Edit Control's Layer property. This property always appears
disabled, and can only be changed from the form layout. This property is
relevant only for controls that are linked to Choice controls.
Reference Guide 919

Output Forms 10
here are two kinds of Output forms: Internet forms and Report forms.
Internet forms can use any of the four Internet interface types: HTML,
Frame Set, HTML Merge, and Web Online Response. Report forms can

use either a GUI Output or a Text-based interface type. Output forms, which
are always based on batch tasks, must have their class defined as >0.

In this chapter:

• HTML Forms

• Frame Set Forms

• HTML Merge Forms

• Web Online Response

• GUI Output and Text-based
Report Forms

T

Reference Guide 920

HTML Forms
HTML forms must be defined as Class > 0. When an HTML form is displayed,
all forms of the same Class are displayed on the same form.

Because HTML forms are row-oriented, the GUI functionality provided by the
Form Editor may not always be implemented during runtime.

HTML forms let the end-user submit variables to the calling application, or to
where the hyperlink settings specify, through the Web server.

HTML Form Display

The eDeveloper HTML Form Editor attempts to display forms in the same way
the forms will actually be displayed on the Web browser. However, some
factors which affect form display, such as the actual font used or the exact
placement of controls, are beyond eDeveloper’s control and are determined by
the specific Web browser used.

HTML Control Placement

HTML imposes limitations on how controls can be placed on the form:

• If a control’s height is more than one row, all the rows are treated as one
logical row. The highest control defines the size of the logic row. The
logical row’s upper and lower borders are displayed when a control is
dropped on the form. All controls in a logical row are automatically aligned
to the bottom of the row.

• Pre-formatted controls can be placed anywhere on the form. The
appropriate padding is automatically added when the form is converted to
HTML.

• Other controls can only be placed at the beginning of each row, or
immediately following the last control on a row that already has a control
on it. A control dropped at the upper left corner of a form is automatically
placed at the beginning of the row, or creates its own row. For example,
the Table, Static Table, Rich Text, and Line controls take up a complete
Reference Guide 921

row. For a logic row of controls, you can specify where to place that control
by dropping it either before or after another control.

• Controls cannot be placed on top of each other with the exception of Table,
Static Table, and Image controls.

HTML Form Properties

The HTML Form properties listed in the Form Properties sheet are described
below:

Details

• Header File Name - The Header property lets you define an external file
that can be added to the Head section of the generated HTML in runtime.
The end-user then has the option to include the external Head file to the
Head section of the HTML form generated in eDeveloper. You can zoom
from the Header property to the Open dialog to select the desired Head
file.

The name of the Head file will be the result of the expression evaluation.
The conversion process adds the contents of the external file to the Head
section of the generated HTML form after the title tag. If the external file is
inaccessible for any reason, the conversion process will result in no
expression evaluation.

• Vertical Factor - Defines the vertical placement of a control on a form grid.

• Horizontal Factor - Defines the horizontal placement of a control on a form
grid.

• Show Grid - Specifies whether or not to show the grid lines on the form.

• Form Name - The Name in the Form repository. This name appears in the
browser’s title bar when the form is displayed. The corresponding HTML
code is <TITLE>Form Name</TITLE>.

Input

• Hyperlink - You can zoom from the Hyperlink Value property to the
Hyperlink dialog to specify what eDeveloper Program, URL or Control
Reference Guide 922

name should be accessed when the form is submitted to the Web server.
The corresponding HTML code is <FORM action=”Hyperlink”...>
For more information on defining hyperlinks, see the section on Hyperlink
Settings.

• Input Form - You can define an HTML document as a form, where you can
link a push button control to a specific action for submitting information to
a web server.

• Context Variables - See the section on Context Variables on page 927.

• Average Palette - For forms with many graphic images with different color
palettes, you can set Use Best Palette to Yes to enable eDeveloper to
create a combined color palette that provides the best color for each image
(only for images of 256 colors).

The default setting for this property is No. It is not recommended to
change the default value unless necessary.

Appearance

• Wallpaper - Zoom from the Wallpaper Value property to select the name of
the file to be displayed as the wallpaper image of the current form. The
corresponding HTML code is:
 <BODY BACKGROUND=”Wallpaper">

• Color - Zoom from the Color Value property to select the background and
default text colors of the form from the Color repository. The
corresponding HTML code is <BODY bgcolor="#xxxxxx" text="#xxxxxx">

• HTML Internal Attribute - You can select an attribute from the HTML Style
repository, which will be added to the control’s tag. Alternatively, you can
define an expression to specify the HTML style by zooming from the Exp
property to the Expression Rule repository.

Allows for the standardization of elements on the form by defining the
attribute in the HTML Style repository and referencing it in the HTML Inter-
nal Attribute property of each control.

Zoom to choose a style from the HTML Style repository. For more informa-
tion, see the HTML Style Repository section.
Reference Guide 923

Navigation

• Width - specifies the width of the window that displays the form during
development.

• Height - specifies the height of the window that displays the form during
development.

HTML Style Repository

To open the HTML Style repository, click Settings/HTML Styles.

The HTML Style repository contains the following fields:

• Name - A name representing an HTML style.

• HTML Tag - HTML tags containing the HTML style to be merged into an
HTML tag generated by eDeveloper.
Example: BORDER=0 to eliminate a border when displaying Hyperlink
objects.

Figure 10-1 HTML Styles File Settings
Reference Guide 924

Hyperlink Settings

You can define the URLs that are used when submitting forms to the Web
server or when clicking on hyperlinks to call an eDeveloper program.

You can access the Hyperlink dialog by zooming from the Hyperlink property
from the Input section in the HTML Form Properties sheet or from the Frame
Set Control Properties sheet.

An eDeveloper hyperlink can be designated for one of the following types:

• Magic program

• URL

• Control Name

eDeveloper Program

Select Magic program to create a hyperlink to another eDeveloper program in
any application.

When converting the form to HTML, eDeveloper constructs the URL from the
following parts:

• The HTTP Requester setting, as defined in the Enterprise Server tab of the
Environment repository.

• The eDeveloper system and Public name supplied by the user.

• Any parameters defined in the Arguments setting.

When an eDeveloper Program is selected as the Hyperlink type, you can define
the following hyperlink settings:

• eDeveloper system - Defines the name of the eDeveloper system
(application) in which the called program is located. You can zoom from
the left-hand field to choose an eDeveloper system from the Application
repository. You can also zoom from the right-hand field to select an
expression.

• Public name - Defines the public name of the program that is to be called.
This is the same public name defined in the Program repository. You can
Reference Guide 925

zoom from the left-hand field to choose a program from the Program list
for the current application. You can also zoom from the right-hand field to
select an expression.

• Arguments - Defines the parameters that are to be passed to the
eDeveloper program. You can zoom from the Arguments field to select the
arguments from the Argument repository.

To specify a call to an eDeveloper program that will use the input fields of
the HTML Merge form, zoom on the Arguments setting of the Hyperlink
Settings dialog to open the Argument repository.

• Var: The eDeveloper variable name in the Variable list

• Exp: Used to pass a constant value

• Description: Provide a variable description

• Destination frame - Defines the browser frame into which the application
will return the called program’s HTML output. You can zoom from the right-
hand field to select an expression. This field is not available when the
Hyperlink Settings dialog box is accessed from the Frame Set Control
Properties sheet.

URL

Select URL to create a hyperlink to any legal URL. When converting the form to
HTML, eDeveloper copies the URL as it is.

When URL is selected as the Hyperlink type, you can define the following
hyperlink settings:

• URL - Defines the complete URL string to be used as the hyperlink. The
URL string can be up to 1024 characters.

• Expression - Defines an expression which should evaluate to a complete
URL string at runtime.

• Destination frame - Defines the browser frame into which the application
will return the called program HTML output. You can zoom from the right-
hand field to select an expression. This field is not available when the
Hyperlink Settings dialog box is accessed from the Frame Set Control
Properties sheet.
Reference Guide 926

Control Name

You can select this option to create a hyperlink to a specified control.

Context Variables

Context variables maintain the context throughout an application when
moving from one HTML form to another.

Use the eDeveloper GetParam function to check for the value of a context
variable set in a previously called program.

Context Variables are implemented using either Cookies or Hidden Fields.

Cookies

Context Variables can be implemented as HTTP objects called cookies. The
data in a cookie is stored on the client (browser) machine in a special file. After
a cookie has been stored, the browser automatically sends the data stored in
the cookie when the same URL or site is accessed again.

eDeveloper automatically sends the data as cookies in the HTTP process. From
then on, whenever the same browser accesses a URL that falls within the
range defined by the cookies, the browser automatically sends the data in the
cookies as part of the HTTP process. In this way the data becomes accessible
to any subsequent eDeveloper program.

When using cookies, the context variables are available to every program
called afterwards by the Internet requester.

Remember that not all browsers support cookies, and those that do may offer
the user the option to disable this feature. Therefore using cookies for your
application’s context variables may not always be effective.

Hidden Fields

Context Variables can be implemented as hidden fields that are added to the
form.

<INPUT “type=hidden” NAME="MGCONTXTVAR" value …>
Reference Guide 927

“MGCONTXTVAR” is the value of this hidden field.

This implementation is available only for HTML forms.

When using hidden fields, the context variables are only available to the
program called by the Internet requester directly from the form where the
context variables were defined. If context must be maintained in subsequent
programs, each program’s form must include the appropriate context
variables.

Context Variable Settings

You can access the Context Variables dialog by zooming from the Context
Variables Value property under the Input section of the HTML Form Properties
sheet.

The fields of the Context Variable dialog are described below:

• Variables

• Defines the list of context variables to be set by his form.

• Zoom on the field to define the parameters in the Parameters dialog

• Use Cookies

• Specifies whether the context variables are implemented as cookies

Figure 10-2 The Context Variables Dialog
Reference Guide 928

or hidden variables.

• Default setting is Yes and can only be changed when the HTML Form
type is selected.

• Domain Restriction

• Applies only to context variables implemented as cookies.

• Specifies whether the cookie, and hence the context variables, will
be sent by the browser to all URLs or just to the URLs that are in the
same domain as that of the current form.

• Expiration Date and Expiration Time

• Applies only to context variables implemented as cookies.

• Defines the data after which this cookie expires and is not sent back
by the browser.

• If no date is specified, the browser deletes the cookie and the end of
the session.

• Zoom from this field to the Expression Rule repository to select the
appropriate expression.

• Secured Channel

• Applies only to context variables implemented as cookies.

• Form was first displayed. The corresponding HTML code is:
 <INPUT type=submit …> or <INPUT type=reset …>

The HTML Command Palette

You can edit controls in the HTML form using pulldown menus, context menus,
or the HTML Command palette. Command buttons are enabled or disabled
according to their context, as shown below.

The HTML Form Editor Command palette has an HTML Tab containing
commands specific for HTML control formatting and form editing. The General
Tab and Colors Tab commands are also accessible in the HTML Form Editor.
Reference Guide 929

A description of the buttons that activate functions in the HTML Command
palette follows.

Command Description HTML Code

Sets the bold attribute of
the selected control(s) or
selected

RTF text.…

Sets the italic attribute of
the selected control(s) or
selected RTF text.

<I>…</I>

Sets the pre-formatted
attribute of selected
control(s).

<PRE>…</PRE>

Hide wallpaper during
editing.

Display a list of fonts from
the font repository which
may be applied to the
selected control(s).

…

Default browser font

H1 - Sets the heading style
attributes of the row of the
selected control(s) to level
1.

<H1>…</H1>

H2 - Sets the heading style
attributes of the row of the
selected control(s) to level
2.

<H2>…</H2>

H3 - Sets the heading style
attributes of the row of the
selected control(s) to level
3.

<H3>…</H3>
Reference Guide 930

H4 - Sets the heading style
attributes of the row of the
selected control(s) to level
4

<H4>…</H4>

H5 - Sets the heading style
attributes of the row of the
selected control(s) to level
5.

<H5>…</H5>

H6 - Sets the heading style
attributes of the row of the
selected control(s) to level
6 (smallest or least
important).

<H6>…</H6>

Align Paragraph Left - Align
rows of all controls selected
to the left.

<DIV align=left>...</DIV>

Align Paragraph Center -
Align rows of all controls
selected to the center.

<CENTER>...</CENTER>

Align Paragraph Right -
Align rows of all controls
selected to the right.

<DIV align=right>...</DIV>

Indent - Indent the row of
the selected control.
Multiple indents are
allowed. Active only when
the Indent Characters
setting, in the Environment
dialog, is set to a value
other than 0. The Indent
command is active for all
HTML Controls except for
Hot Spots.

...

Command Description HTML Code
Reference Guide 931

HTML Static Table Command Palette

The HTML Control Palette does not let you independently format the title and
edit components of a variable control. The Static Table control, however, lets

Remove Indent - Remove a
single indent from the row
of the selected control.
Active only when the Indent
Characters setting, in the
Environment dialog, is set
to a value other than 0. The
Remove Indent command is
active for all HTML Controls
except for Hot Spots.

Numbered List - Sets the
numbered list attribute of
the row(s) of the selected
controls. Active for the Edit
control only.

……

Bulleted List - Sets the
bulleted list attribute of the
row(s) of the selected
controls. Active for the Edit
control only.

……

Save HTML - Save the form
as HTML into a file. Opens
the Save As dialog when
first selected.

View in Browser - Loads the
form into the Web browser
for viewing.

Command Description HTML Code
Reference Guide 932

you precisely place and independently format all HTML controls. Static Table
cells and rows can be easily modified for custom designing.

The Static Table Command palette contains commands specific for the HTML
formatting of a static table. The Static Table Command Palette buttons are
described below.

Command Description

Cell Properties - Accesses the Control
Properties for a Static Table cell.

Row Properties - Accesses the Control
Properties for a Static Table row.

Table Properties - Accesses the Control
Properties for a Static table.

Increase Padding - Increases the cell padding
of all cells in a selected table. Access the
Padding Properties parameter to determine
the padding width.

Increase Border Width - Increases the static
table border width.

Increase Cell Span - doubles the width of the
selected cell.

Decrease Cell Span - Decreases the selected
cell by half its width. This command is
accessible only if the selected cell size has
been increased.

Select Cell - Selects the cell of a static table.

Select Row - Selects the row of a static table.

Select Table - selects the entire static table.
Reference Guide 933

Decrease Spacing - Decreases the cell padding
of the table. This is accessible only if the cell
padding has been increased by using the
Increase Spacing command.

Decrease Border Width - Decreases the static
table border width.

Increase Row Span - Doubles the vertical size
of the selected cell.

Decrease Row Span - Decreases the vertical
size of the selected row. You can access this
command only if the selected cell had been
vertically increased.

Add Cell - Adds a static table cell to the
current row.

Add Row - Adds a static table row.

Add Column - Adds a static table column.

Increase Padding - Increases the space
between the cell border and the control placed
in that cell.

No Border - Removes the static table border.

Fixed Width Cell - Places specific dimensions
on a single cell.

Delete Cell - Deletes a single static table cell.

Delete Row - Deletes a static table row.

Delete Table - Deletes an entire static table.

Command Description
Reference Guide 934

HTML Control Palette

The Control palette in the HTML Form Editor displays the various types of
controls that can be inserted into an HTML form.

A description of the buttons that are unique only to the HTML Control palette
follows below. For all other control buttons, refer to The GUI Control Palette
section.

Decrease Padding - Decreases the space
between the cell border and the control placed
in that cell.

Control Description

Inserts a Square Hot Spot control used to
define a rectangular area on an image that is
linked to a specific program or URL. The
Square Hot Spot control can only be placed on
top of an Image control. Corresponding HTML
code: <MAP name=...><AREA
shape=rect...>...< /MAP>

Inserts a Circle Hot Spot control used to
define a circular or elliptic area on an image
that is linked to a specific program or URL.
The Circle Hot Spot control can only be placed
on top of an Image control. Corresponding
HTML code: <MAP name=...><AREA
shape=circle...>...</MAP>

Command Description
Reference Guide 935

The Variables palette in the HTML Form Editor displays all variables except for
OLE variables.

Inserts a Java control, used to display a Java
applet. The applet can be specified directly or
based on a variable or expression evaluated at
runtime. The source file name for the Java
applet appears on the Java control.
Corresponding HTML code: <APPLET
code=”...”...><PARAM name=”...”
value=”...”>...</APPLET>

Inserts an ActiveX control used to display an
ActiveX object selected from the ActiveX Class
dialog. This control can be specified directly or
based on a variable or expression evaluated at
runtime. The source file name for the ActiveX
object appears on the ActiveX control.
Corresponding HTML code: <OBJECT
classid=”...” code=”...”> <PARAM name=”...”
value=”...”>... </APPLET>

Inserts an HTML control used to include
another HTML formatted document at the
control’s position. The document can be
specified directly or based on a variable or
expression evaluated at runtime. The source
file name for the HTML object appears on the
HTML control.

Inserts an HTML static table control.

Inserts a hyperlink to a sound file in the HTML
form. The source file name for the sound
object appears on the Sound control.

Control Description
Reference Guide 936

Fonts and the HTML Controls

You can use any font in the Font repository for the control’s Font property.
However, remember that although the font you select is displayed in the Form
Editor, the actual font displayed in the browser is subject to the conversion
rules below:

Font Conversion for HTML Output

• The actual font used in the browser is specified by the browser
configuration. This does not apply to font attributes such as size, bold, and
italic.

• When using fonts 50-77, the font attributes are converted to the <Hn>,
, and <I> HTML formatting tags. If, for example, a text control is
defined with font #72 (Header 1 Bold Italic), the control will be converted
to HTML as <H1><I> text</I></H1>.

• When using font #7, the control is assumed to be a pre-formatted HTML
control and is converted using the <PRE>…</PRE> tag.

• When using other fonts, the font attributes are converted to the
, , and <I> HTML formatting tags, where the size
attribute is relative to the size of the font used.

Font Formatting Commands

Selecting formatting commands such as Bold, Italic, Font, Default, Headings,
and Pre-formatted from the Command palette changes the font property of the
selected control. If, for example, a text control has font #50 (HTML Default) in
the font property, and the Bold and Heading 3 commands are selected, the
font property changes to 60 (Header 3 Bold).

HTML Control Properties

HTML Control properties can be accessed by zooming from the appropriate
controls on your form. Different properties can be defined for different types of
controls. The HTML control properties are described below:
Reference Guide 937

Model

• Model - You can re-inherit any broken properties or disinherit all properties
for the form model. You can also select a different model.

Details

• ActiveX File Name - Applies to ActiveX controls. Defines the name of the
ActiveX .ocx file to be used. You can zoom on the property to choose an
ActiveX file. The corresponding HTML code is :

<OBJECT code=…>

• Alternate Text - Applies to Image, Sound, and Java controls. Defines the
text that appears instead of the control if the browser cannot display the
control contents. The corresponding HTML code is: <… alt=…>

• Control Name - Used to define a destination for a local hyperlink. When the
control name is used as part of a hyperlink that calls this form, the
browser scrolls the page and displays it starting with this control.
Corresponding HTML code: ...

The Control Name is not available when the Hyperlink Settings dialog box
is accessed from the Frame Set Control Property sheet.

• Default Image File - Applies to Image and Sound controls, and specifies the
image file name to be displayed. Any value is overridden when the data
property is used. You can zoom on the property to select an image file
from the open file dialog. The corresponding HTML code is:

• Enable RTF - Applies to static (text) controls. Converts text and static
controls to rich text format.

• Format - Applies to the Push Button control. specifies the label that
appears on the button, or formats the label text of an existing push button
label.

• HTML File Name - Applies to an HTML control. Defines the name of the
HTML file to be included in the control’s position. You can zoom on the
property to choose an HTML file.
Reference Guide 938

• Java File Name - Applies Java controls. Specifies the name of the Java
Class file to be used. You can zoom on the property to choose a Java Class
file. The corresponding HTML code is: <APPLET code=…>

• Label - Applies to choice controls (radio buttons, combo boxes, and list
boxes), and specifies the label that appears for each option in the control.

• Parameters - Applies to Java and ActiveX controls. Used to define
parameters based on variables and expressions that will be passed as
arguments to the Java Applet/ActiveX Control. You can zoom on the
parameter to select the parameters from the Parameter repository. Note
that the Parameter repository has an extra column, Name, which is
required for the name attribute of the <PARAM> tag. The corresponding
HTML code is: <PARAM name=…value=...>

Input

• Button Type - Applies to Push buttons. specifies the action taken by the
form when this button is pushed. The valid values are:

• Submit - To submit the form.

• Clear - To clear (reset) all parameters to the values displayed when
the form was first displayed. The corresponding HTML code is:

 <INPUT type=submit …> or <INPUT type=reset …>

• Hidden Variable - Applies to the Edit control. Specifies whether this control
is implemented as a hidden parameter that is not displayed to the end-
user, but is submitted. This lets you submit data without the end-user’s
intervention. The corresponding HTML code is:
<INPUT type=hidden …>

• Hyperlink - Applies to the following controls: Edit (non-modifiable), Text,
Image, Square Hot Spot, and Circle Hot Spot. specifies the URL called
when the control is clicked. A text control that has a hyperlink defined is
underlined. The corresponding HTML code is :
 or <AREA href=…> (for Hot Spots)

See also the section on Hyperlinks.
Reference Guide 939

• Modifiable - Applies to Edit controls. Specifies whether upon conversion to
HTML, this control will be implemented as an HTML edit parameter <INPUT
type=text...> whose value is submitted with the form, or whether the
control will be implemented as plain HTML text with optional formatting.

• Multi-line Edit - Applies to Edit controls. Specifies whether this control is
implemented as an HTML multi-line edit parameter. The corresponding
HTML code: <TextAREA...>...</TextAREA>

• Password Edit - Applies to Edit controls. Specifies whether this control is
implemented as an HTML password parameter where entered data is not
displayed to the end-user. The corresponding HTML code is :
<INPUT type=password...>

Appearance

• Align follow text - Applies to Image, Java, and ActiveX controls. Specifies
the alignment of text immediately following the control. The valid values
are: Top, Center, Bottom, Left, Right. The corresponding HTML code is: <…
align=…>

• Border Width - Applies to the Image control. Defines the border width of
the Image control. You can submit any numeric value to define the border
dimension. Alternatively, you can zoom from the Border Expressions (Exp)
parameter to the Expression Rule repository to create an expression that
will define a border value. The default value is 0.

The border value will be used for the Border tag of the image in the gener-
ated HTML. If the Image control is copied and pasted to another form, its
border properties will be retained. If, however, the Image control is
included as part of a template, the template format will override its border
properties.

The Border Property values will be defined by the IMG_BORDER_VAL and
IMG_BORDER_EXP keywords for template documentation.

• Color - Defines the color of text that appears in a control. You can also
zoom from the Exp field to create an expression that will specify the color
selection of the control. If you do not enter a value in this field, the control
takes the default color.
Reference Guide 940

• Font - Defines the font for text that appears in a control. You can also zoom
from the Exp field to create an expression that will specify the font format.
If you do not enter a value in this field, the control takes the font defined
as HTML Default in the Font repository.

• Remember that the font used to display the form in the browser may be
different than the font displayed in the Form Editor. The corresponding
HTML code can be any combination of:
<Hn>, , <I>, , etc.

• Horizontal Spacing - Applies to Image, Java, and ActiveX controls. Defines
the horizontal spacing to the left and right of the control. The value is
specified in pixels. The corresponding HTML code is:
<… hspace=…>

• Fix Size Table - Determines whether the table size depends on the size set
in the form (=Yes) or depends on the number of records printed on the
page (=No).

• HTML External Attribute - Selects an attribute from the HTML Style
repository that is added around the control’s tag. The Exp field lets you
define an expression that will specify the HTML style to be added to the
control’s tag.

Allows for the standardization of elements on the form by defining the
attribute in the HTML Style repository and referencing it in every control’s
HTML External Attribute property.

You can zoom to choose a style from the HTML Style repository. For more
information, see the section on the HTML Style repository.

• HTML Internal Attribute - Selects an attribute from the HTML Style
repository, which will be added inside the control’s tag; or an expression,
by zooming from the Exp field to the Expression Rule repository that
specifies the HTML style.

Allows for the standardization of elements on the form by defining the
attribute in the HTML Style repository and referencing it in every control’s
HTML internal attribute property.

You can zoom to choose a style from the HTML Style repository. For more
information, see the HTML Style Repository section.
Reference Guide 941

• Indent Level - Defines the indentation level of the control’s row in the form.
All controls in the selected control’s row are affected and have the same
indentation. The corresponding HTML code: …

• Paragraph Alignment - Defines the alignment of the control’s row in the
form. All controls in the selected control’s row are affected and have the
same alignment. The valid values are: Left, Center, Right.

• Text Type - Applies to a Text control. specifies whether the selected
control’s row has bullets or numbering preceding it. All controls in the
selected control’s row are affected and have the same indentation. The
valid values are: None, Bullet, Numbered. The corresponding HTML code:
numbered bullet …………

• Vertical Spacing - Applies to Image, Java, and ActiveX controls. Defines the
vertical spacing above and below the control. The value is specified in
pixels. The corresponding HTML code is: <… vspace=…>

• Visible - An expression that specifies the visibility of the selected control.

Navigation

• Height - Applies to Rich Edit Table, List Box, HTML Control, Table, Image,
ActiveX, Java, and Sound controls. Defines the vertical size of the control.
The corresponding HTML code is: <HR height=nnn>

• Width - Applies to Edit, Table, Line, Java, ActiveX, HTML, Image, and
Sound controls. Defines the horizontal size of the control by a set value or
an expression. Note that for Line controls, The Width property is active
only when %Width = 0.

• % Width - Applies to Line controls. Defines the horizontal size of the line in
relative terms as a percentage of the height of the window in which the
form is displayed. If the value is 0, the Width property of the control is
enabled and defines the absolute width. The corresponding HTML code is:
<HR width=nnn%>

ActiveX

• ActiveX Class - Applies to ActiveX controls. Defines the Class of the ActiveX
control. You can zoom on the property to choose an ActiveX class name
Reference Guide 942

from the ActiveX Class dialog, as shown in Figure 10-3. The corresponding
HTML code is: <OBJECT classid=CLSID:...>

Static Table Control Properties

The Static Table Control Properties can be accessed by zooming from a cell,
row, or table. Different properties can be defined for the different parts of the
table: cell, row, or the entire static table. All Static Control Properties are
described below.

• Border Width - Defines the width of a static table.

• Cell Spacing - Defines the space between each cell in a static table.

• Cell Padding - Defines the space that is between the cell’s borders and the
control placed in that cell.

• Color - Zoom from the Color Value property to select the background and
text colors from the Color repository. You can also zoom from the Exp field
to the Expressions Rules repository to define an expression that will
specify the color value.

• Column Spanning - Select the 2 value to increase the size of the selected
cell.

Figure 10-3 ActiveX Class Names
Reference Guide 943

• Columns - Select a value from the Columns property to specify the number
of columns. The Columns value must be from 1 to 100.

• Fix Width - Specifies if there is a specific default width of a static table cell.

• Horizontal Alignment - Select a value from the Horizontal Alignment
property to specify the placement of text in a row cell: Left, Center, or
Right. Cell default is Left.

• HTML External Attribute - Selects an attribute from the HTML Style
repository that is added to the control tag. You can also zoom from the Exp
field to the Expression Rule repository to specify an expression for an
HTML Style attribute. For more information, see the HTML External
Attribute section.

• HTML Internal Attribute - Selects an attribute from the HTML Style
repository which is added to the control tag. You can also zoom from the
Exp field to the Expression Rule repository to specify an expression for an
HTML Style attribute. For more information, see the HTML Internal
Attribute section.

• Paragraph Alignment - Select a value from the Paragraph Alignment
property to specify the horizontal alignment of the static table: Left,
Center, or Right.

• Row Spanning - Select the 2 value to increase the vertical size of a cell.

• Rows - Select a value from the Rows property to specify the number of
rows of a static table control. The Rows value must be from 1 to 100.

• Vertical Alignment - Select a value from the Vertical Alignment property to
specify the placement of text in a row cell: Top, Center, or Bottom. Cell
default is Center.

• Visible - Specifies whether or not the control will be visible to the user.
Zoom from the Exp field to define an expression that will specify when the
control will be visible to the user. For more information, refer to Visible
property in the GUI Control Properties sheet.

• Wallpaper - Zoom from the Wallpaper Value property to select the name of
the file that is displayed as the wallpaper image of the current form.

• Width - Specifies the default width measurements of a static table cell.
Note: the Width property is active only when Fix Width is set to Yes.
Reference Guide 944

Frame Set Forms
Frame sets are used to create a complex Internet document where the
browser window is divided into multiple frames. Each frame displays a
separate HTML page that originates from a different source.

The frame set defines a URL and a name for each frame. Each frame content is
initially read from the URL defined in the frame set. The frame name allows the
result of a hyperlink or submit action sent from one frame to be displayed in
another frame. In this way, applications can have parts of their displays, such
as a site navigation menu or a company logo, permanently displayed without
having to include and reload these parts with every page of the application.

HTML frames sets are hierarchical in nature. Each frame set can contain
another frame set, either defined as part of the same frame set or as the page
that the frame’s URL points to.

Figure 10-4 HTML Frame Set Forms
Reference Guide 945

Frame Sets must be defined as Class > 0 in the Form repository. You can zoom
from the name of a Frame Set form entry in the Form repository to access the
Frame Set Form Editor.

Frame Set Form Properties

The Form Set Form properties, which appear in the Form Properties sheet, are
listed below.

Model

• Model - The model from which this form can inherit pre-defined properties.

Details

• Form name - The name in the Form repository. This name appears in the
browser’s title bar when the form is displayed. The corresponding HTML
code is: <TITLE>Form Name</TITLE>

• Frame Set spacing - Specifies the width in pixels of all of the frame borders
in the frame. This property is disabled when With border is set to number.
The default setting is 1. The corresponding HTML code is: <FRAME SET
framespacing=n...>

• Relative Size - If the relative size is set to Yes, the size of all of the frames
in the frame set is defined as a percentage of the browser window or the
container frame size. When the browser window is resized by the user, all
frames are resized relatively.

If the relative size is set to No, the size of all of the frames is defined in
pixels. In this situation, resizing the browser window has no effect on the
size of the frames. The default setting is Yes.

When the Relative size=Yes, the corresponding HTML code is:
<FRAME SET … rows/cols=”nn%,nn%,…,*”>
or when the Relative size=No, the corresponding HTML code is:
 <FRAME SET … rows/cols=”nn,nn,…,*”>

• With Border - Specifies whether frame borders in this frame set are to be
displayed. If No is selected, all frames in the frame set are displayed
Reference Guide 946

without borders in the browser. The default setting is Yes. The
corresponding HTML code is: <FRAME SET frameborder=0/1...>

Input

• Context variables - Zoom from the Context Variables Value property to
specify the context variables for the form in the Context Variables dialog.

Appearance

• HTML Internal Attribute - Selects either an attribute from the HTML Style
repository, which is added to the control’s tag, or an expression, by
zooming from the Exp field to the Expression Rule repository, that specifies
the HTML style.

Allows for the standardization of elements on the form by defining the
attribute in the HTML Style repository and referenced in the HTML Internal
Attribute property of each control.

Zoom to choose a style from the HTML Style repository.

Navigation

• Width - Lets you specify the width of the form.

• Height - Lets you specify the height of the form.

The Frame Set Command Palette

You can edit frames in the Frame Set form using either the Commands
pulldown menu, the context menu, or the Frame Set Command palette.

The Frame Set Command palette contains commands for editing a frame or an
entire frame set.
Reference Guide 947

The following is a description of the Frame Set Command palette buttons.

Control Description

Split vertical - Click this button to change the
cursor to a vertical split cursor. Click with the
vertical split cursor on any frame to split the
frame vertically into two frames.

Split horizontal - Click this button to change
the cursor to a horizontal split cursor. Click
with the horizontal split cursor on any frame
to split the frame horizontally into two
frames.

Select frame set - Selects the selected
frame’s container frame.

Indicate frame set - Displays, but does not
select, the selected frame’s container frame.

Equal vertical divide - Splits the selected
frame vertically into two identical frames.

Equal horizontal divide - Splits the selected
frame horizontally into two identical frames.

3 thirds vertical divide - Splits the selected
frame vertically into three identical frames.

3 thirds horizontal divide - Splits the selected
frame horizontally into three identical
frames.

Hyperlink - Establishes a hyperlink between
the selected frame and the eDeveloper
Program or URL.

Unmark - Deselects the selected frame.

No border - Toggles between displaying and
hiding the frame borders on the browser. The
default option displays the borders.
Reference Guide 948

All other commands are the same as those in the HTML Command palette, or
as those in the GUI Command palette, described in Chapter 9, Display Forms.

Frame Set Control Properties

Each frame in the frame set has the following control properties:

Model

• Model - The model from which the form can inherit pre-defined properties.

Details

• Frame Name - Defines the name of the frame. The frame name is used to
reference the frame as the requested target when a hyperlink or submit
button is clicked in another frame. The corresponding HTML code is:
<FRAME name="..."...>

Relative size - Sets Relative size form
property to Yes.

Delete - Click this button to delete the
selected frame or frame set design displayed
on the form.

No Dividers - Removes the dividers between
frame set designs.

Undo - Undoes the most recent command.

Redo - Redoes the most recent command
undone by the Undo command.

Save HTML - Saves the HTML Frame Set
design file.

View in browser - Invokes the browser to
view your frame set design.

Control Description
Reference Guide 949

• Scrollable - specifies whether the frame has horizontal or vertical scrollbars
when the HTML contents displayed are larger than the frame. The default
setting is number. The corresponding HTML code is:
<FRAME scrolling=no...>

• Sizable - specifies whether the frame can be resized by clicking and
dragging on any of the frame borders. All frames adjacent to the border to
be dragged must have this property set to Yes. The default setting is
number. The corresponding HTML code is: <FRAME noresize...>

Input

• Hyperlink - specifies the source for the frame’s contents. Zoom or double-
click from the Hyperlink Value property to the Hyperlink dialog to define
the hyperlink. The selected hyperlink is displayed inside the frame. The
corresponding HTML code is: <FRAME src=”...”...>

Appearance

• HTML Internal Attribute - Selects an attribute from the HTML Style
repository to be added to the <FRAME> tag. You may also create an
expression by zooming from the Exp field to the Expression Rule
repository.

HTML Merge Forms
You can use the HTML Merge form to merge data from an eDeveloper task with
a predefined template file to create any dynamic HTML page based on a
predefined HTML design. The Merge functionality lets you also create an HTML
page enhanced with the Web online functionality. The Upload capability of the
Internet requester allows you to enable a file to be uploaded from the HTML
page and then have it received by an eDeveloper program.

You can zoom from the HTML Merge Name entry in the Form repository to
design an HTML Merge form using the Web Authoring Tool specified in the Web
Authoring Tool setting of Settings/Environment/Server. If the tool you
specified supports OLE drag-and-drop, you can drag-and-drop variables from
the task’s variable palette onto the HTML page.
Reference Guide 950

HTML Merge Form Properties

The HTML Merge Form properties are described below:

Model

• Model - The model from which the form can inherit pre-defined properties.

Details

• HTML File - Specifies the location and name of the HTML file to be used in
the HTML Merge form. Logical Names are allowed. You can zoom on this
column to choose a file from the Open File dialog.

This property defines an expression that evaluates to the name of the
template to be used. You can zoom on this cell to choose an expression
from the Expression Rule repository.

• Token Prefix - Defines the prefix for merge tags in the template.
(default: <!$)

• Token Suffix - Defines the suffix for merge tags in the template.
(default: >)

• Tags Table - Defines the merge tags in the associated HTML template that
are matched with and replaced by the appropriate data elements (a
variable or an expression). The merge mechanism searches for tags that
begin and end with the specified strings and replaces the values according
to the matches found in the Tags table but does not search for tags with
the specified token. Also, it does not replace their values according to the
tags in the HTML file. It replaces their values according with the matches
created in the Tags table. For more information, see the section on the
HTML Template File Tags.

• Input Fields - You can zoom from this property to the Input Fields list and
define the fields that will be used for event handling on the HTML page
using the Web online functionality. The columns in the Input Field list are:

• Field Name - On the HTML Merge form, the Field Name property
specifies the name of the HTML input field that can be used for
event handling.
Reference Guide 951

• Exp - The Expression field holds an expression number, defined in
the Expression Rule repository, that specifies the Field Name on the
HTML Merge form.

• Events - The Events property shows the number of event handlers
defined for the Input Field entry. You can zoom from the Event
entry to open the Merge Event Handler table, and define the event
handlers to be activated when an event occurs on an input field in
an HTML page.

• Form Name - The Name in the Form repository. This name appears in the
browser’s title bar when the form is displayed. The corresponding HTML
code is <TITLE>Form Name</TITLE>

• XML Output - When creating an XML file, there are some character values
that may not be used in the XML data, for example: <>. If XML Output is
set to Yes, any merged character value will be converted to a valid XML
value. If an expression is specified, the value will only be calculated the
first time the merged form is used and will not be recalculated.

Navigation

• Left - specifies the position of the left edge of the form’s frame. You can
specify the value at runtime by zooming to the Expression Rule repository,
and entering an expression that evaluates to the coordinates of the left
edge of the form’s frame.

• Top - specifies the position of the top edge of the form’s frame. You can
specify the value at runtime by zooming to the Expression Rule repository,
and entering an expression that evaluates to the coordinates of the top
edge of the form’s frame.

• Width - specifies the width of the window that displays the form.

• Height - specifies the height of the window that displays the form.

Web Online Event Handlers

The built-in event handlers that can be defined in the Merge Event Han-
dlers table, accessed from the Events column in the Input Fields table, are
Reference Guide 952

described below:

Event Handler Description

OnAbort An Abort event occurs when the user
aborts the loading of an image, for
example by clicking a link or clicking the
Stop button.

OnBlur A blur event occurs when a form element
loses focus or when a window or frame
loses focus. The blur event can result
from a blur method or from the user
clicking the mouse on another object
window, or tabbing with the keyboard.

OnChange A change event occurs when an HTML
input field loses focus and its value has
been modified. Use the OnChange event
handler to validate data after a user
modifies it.

OnClick A click event occurs when an object on a
form is clicked. For input fields, links, and
images, the OnClick event handler can
return False to cancel the action normally
associated with a click event.

OnError An error event occurs when the loading
of a document or image causes an error.

OnFocus A focus event occurs when a window,
frame, or frame set receives focus or
when a form element receives input
focus. The focus event can result from a
focus method or from the user clicking
the mouse on an object or window or
tabbing with the keyboard. Selecting
within a field results in a select event,
not a focus event.
Reference Guide 953

OnMouseOut A OnMouseOut event occurs each time
the mouse pointer leaves an area (client-
side image map) or link from inside that
area or link. If the mouse moves from
one area into another in a client-side
image map, you will get OnMouseOut for
the first area, and then OnMouseOver for
the second.

OnMouseOver An OnMouseOver event occurs once each
time the mouse pointer moves over an
object or area from outside that object or
area. If the mouse moves from one area
into another in a client-side image map,
you’ll get OnMouseOut for the first area,
then OnMouseOver for the second.

OnReset A reset event occurs when a user resets
a form by clicking the Reset or Reload
button.

OnSelect A select event occurs when a user selects
some of the text within a text or text
area field.

OnDblClick A double click event occurs when a user
double clicks an object on the form.

OnHelp A help event occurs when a user presses
F1.

OnLoad A load event occurs when the form is
loaded.

OnUnload An unload event occurs when the form is
removed.

OnKeyPress A key press event occurs when a user
presses any key.

Event Handler Description
Reference Guide 954

In addition to the built-in event handlers, you can define developer-defined
event handlers in the HTML template file according to the following
convention:

On <Event Name>=UserCommand (‘Magic Command’)

where:

• Event Name is the name of the event that activates the handler.

• UserCommand is the eDeveloper JavaScript function that handles
the event.

• Magic Command is the content of the command, according to the
eDeveloper Web Online Rules.

• Cmnd - The Command property displays the number of commands
defined in the Event Handler. From the Cmnd column you can zoom
to the Merge Command table and specify the commands to be
executed when an event occurs on an input field that activates the
event handler.

The Merge Command Table

The columns of the Merge Command Table, accessed from the Cmnd column of
the Merge Event Handler table, are described below:

• Command - The Command field specifies the commands that are executed
when an event occurs on an input field activating the event handler. You
can zoom from the Command field to the Merge Commands List.

Note that you can add your own commands to this list by specifying the
commands in a section of the Magic.ini file called [MAGIC_WEBONLINE] in
the following format:

CommandName = Function Name, Parameter Type

where:

CommandName is the command to be displayed in the Merge Command list
during development,

Function Name is the name of the applet function to be called, and
Reference Guide 955

Parameter Type can specify: N for field name parameter, V for value
parameter, or H for Hyperlink.

• Field Name - The Field name specifies a field name to be used as an
argument for the command.

• Field Name Expression (Exp) - The Expression field specifies a field name
argument for the command dynamically with an expression from the
Expression Rule repository.

• Value - Value specifies a value argument of the command. For details
regarding the arguments for each command, see the Merge Commands
List.

• Hyperlink - A Hyperlink command activates an eDeveloper program or a
call to a URL from the event handler. After specifying a Hyperlink
command in the Merge Command repository, zoom from the Hyperlink
column to the Hyperlink dialog to specify the program or URL to call and
relevant parameters.

• Condition - The Condition field displays a string expression that contains a
condition for execution of the command by the eDeveloper applet in the
browser. The string can contain the names of input fields and values to
which they can be compared.
Reference Guide 956

The Merge Command List

The commands available on the Merge Command List, accessed from the
Command field of the Merge Commands table, are:

Commands Arguments Description
Update Field Field Name,

Value
Updates a specific field with a
value. Use for setting the value
of Selection Lists, Check Boxes,
and Radio Buttons.

Disable Field Field
NameValue

Disables writing on the
specified field.

Move Focus Field Name Moves the cursor to the named
field.

Hyperlink 1. Application
Name,
Program
Name,
Arguments
2. URL address
(Target)

1. Calls the specified
eDeveloper program, updating
the received arguments
respectively.
2. Calls the specified URL.

Alert Alert string Displays a dialog containing the
alert string.

Status line Status string Displays the specified string in
the status line.

Update
Image

Field Name,
Image Source

Updates a specific image with
the new image source.

DisableField Field Name Disables writing on the
specified field.

Set Color Field Name,
Color

Sets the color of the specified
field.

Set ReadOnly Field Name,
Logical

Sets the specified field to read
only according to the value of
the Logical argument.
Reference Guide 957

HTML Template File Tags

The HTML Tags table is used to define the merge tags in the associated HTML
template that are matched with and replaced by the appropriate data
elements (a variable or an expression). You can open the HTML Tags table by
double clicking the ellipse button next to the Tag table property in the HTML
Merge property sheet.

When the Output Form operation is selected in runtime, the tags and displayed
values from the variable/expression and picture are sent to the merge
mechanism. If the merge mechanism cannot find the tags of the displayed
values in the template, it will disregard the tag and its value. If the tag is not
embedded in a repeat area it will replace its value with the tag. If a value is
sent more than once to a tag that is not embedded into a repeat area, then the
second value is not used.

Set BG Color Color Sets the background color of
the document to the specified
RGB color.

Set CheckBox Field Name,
Logical

Sets the specified check box to
checked or unchecked
according to the Logical
argument.

Set Selection
List

Field Name,
String1,
String2, …

Sets the values of the specified
selection list.

Set Selection Field Name,
Numeric value
(starting at 1)

Sets the current value of the
selection list.

Set Radio
Selection

Field Name,
Numeric value
(starting at 1)

Sets the current value of the
radio button.

Commands Arguments Description
Reference Guide 958

For tags that are embedded, each Output Form operation will duplicate the
contents of the repeat area and replace tags with values.

For tags that are at the head of an IF block (part of the MGIF tag), the value of
the tag will be regarded as a logical value, which will specify if the IF block will
be copied to the output, or the ELSE block (if one exists). An IF block may be
inside a repeat area. This means that there are multiple values of this tag, and
for each ‘TRUE’LOG the IF block will be duplicated.

When a non-logical value is sent by an Output Form operation into a tag that
“belongs” to an MGIF tag, the value will be regarded as ‘TRUE’LOG.

All trailing blanks of data strings sent as output to the merge mechanism are
trimmed.

The columns in the Tags Table are:

• Tag name - Specifies the name of the data element to be matched with a
data tag in the HTML template. If a template name was explicitly specified
for the selected HTML Merge file, you can zoom to select a tag name from
the Tag Name list of tags found in the HTML template file.

• Var - defines a variable whose value will replace the tag. Only a BLOB
variable cannot be selected. Zoom to select a variable from the list of
variables available.

• Exp (variable) - defines an expression whose value will replace the tag.

• Name - specifies the name of the selected variable or expression.

• Picture - defines the picture to be used when merging the value of either
the variable or the expression with the template. The picture will default to
either the picture defined for the variable or the default picture of the
expression.

• Exp (picture) - defines the picture as an expression evaluated at runtime.

HTML Merge Tags

The template file may be of any type as long as the eDeveloper merge tags are
stored as regular ASCII strings.
Reference Guide 959

HTML Merge tags have the following generic form:

{Token Prefix}{Token_[name]}{Token Suffix}

where Token Prefix and Suffix are defined for each I/O repository entry. By
default the Token Prefix and Suffix are defined as <!$ and > respectively.

The {Token_[name]} part of the tag is one of the following:

• <!$MG_name> - <!$MG_name> is a data tag that is matched during
runtime with a data element defined in the Tags repository of the HTML
Merge Properties dialog under the same name. If a match is found, the
value replaces the tag during the Output Form operation.

• <!$MGRepEAT> - The <!$MGRepEAT> tag defines the beginning of a
repeated area. The repeated area is duplicated and processed for each
Output Form operation, thereby allowing for an unknown number of data
rows. The tag is removed from the output.

• <!$MGENDRepEAT> - The <!$MGENDRepEAT> tag defines the end of a
repeated area. The tag is removed from the output.

• <!$MGIF_name> - The <!$MGIF_name> tag defines the start of an IF
block. The name specified is matched with a data element defined in the
Tags repository of the HTML Merge Properties dialog. The data is assumed
to be logical and is evaluated. If the data is True, the rest of the IF block is
processed. Otherwise the ELSE block is processed. If the data does not
evaluate to a logical value, the data is assumed to be True. The tag is
removed from the output.

• <!$MGELSE> - The <!$MGELSE> tag defines the start of an ELSE block
and the end of an IF block, which must precede the ELSE block. The ELSE
block is processed if the name data value of the IF block evaluates to
False. This tag is optional. The tag itself is removed from the output.

• <!$MGENDIF> - The <!$MGENDIF> tag defines the end of an IF block, or
an ELSE block if one exists. This tag is mandatory if a <!$MGIF_name>
exists. The tag is removed from the output.

• <!$MGINCLUDE> - The <!$MGINCLUDE> tag lets you include an entire
HTML file during the Merge process. This beginning tag is followed by the
Reference Guide 960

name of the file to be included. The file name can be a tag itself. The
Include process takes place after the file is fully merged.

• <!$MGENDINCLUDE> - The <!$MGENDINCLUDE> tag defines the end of
the Include command. This tag is mandatory if the MGINCLUDE tag exists.

Examples:

<!$MGINCLUDE> \tmp\t1.html <!$MGENDINCLUDE>
includes the file t1.html in the current HTML template file.

 <!$MGINCLUDE> <!$MG_T1> <!$MGENDINCLUDE>

includes the file referred to by the <!$MG_T1> tag in the current HTML
template file.

HTML Merge Syntax Rules

The number and order of the <!$MGRepEAT> and <!$MGENDRepEAT> tags
must match.

The number and order of the <!$MGIF_name>, <!$MGELSE>, and
<!$MGENDIF> tags must match.

<!$MGELSE> tags may only be placed between a pair of <!$MGIF_name> and
<!$MGENDIF>.

RepEAT and IF-ELSE-ENDIF blocks can be nested.

HTML Merge Runtime Behavior

When the Output Form operation is selected in runtime, the tags and displayed
values from the variable or expression and picture are sent to the merge
utility. If the merge utility cannot find the tags of the displayed values in the
template, it will disregard the tag and its value. If the tag is not embedded in a
repeat area, the merge utility will replace the tag’s value by the tag. If a value
is sent more than once to a tag that is not embedded into a repeat area, then
the second value is not used.
Reference Guide 961

For tags that are embedded, each Output Form operation duplicates the
contents of the repeat area and replace tags with values.

For tags that are at the head of an IF block, which are part of the MGIF tag,
the value of the tag will be regarded as a logical value that specifies if the IF
block, or the ELSE block, if one exists, will be copied to the output. An IF block
may be inside a repeat area. This means that there are multiple values of this
tag, and for each `TRUE’LOG the IF block will be duplicated.

When a non-logical value is sent by an Output Form operation into a tag that
belongs to an MGIF tag, the value will be regarded as `TRUE’LOG.

HTML File Merge Example

1. Create a HTML file with the following merge tags and save it in a
location easy-to-find:

2. Create an eDeveloper program with the following characteristics:

• Task Type - Batch

• End Task Condition - Counter(0)=10

• Evaluate Condition - After updating record

• Create a new I/O file with the following characteristics:

• Name - Merged File. You can enter any name.

• Media - File

• Exp/Var - Location and name for the resulting file, for example,
c:\out_merge.text

• One form with the following characteristics:

• Name - HTML template. You can enter any name.

<!$MGREPEAT>

<!$MG_number><!$MGIF_IsEven>Even<!$MGELSE>Odd
<!$MGENDIF><!$MGENDREPEAT>
Reference Guide 962

• Class - 1

• Interface Type - HTML Merge

• HTML File - Location and name for the HTML file that you created

• Tags Table - Creates two entries that will match the two HTML tag in
our Template file:

• Tag Number - Number replacee with the expression, Counter(0)

• Tag Name - IsEven replaced with the expression, Counter(0) MOD
2=0

• In the Record Suffix level, you can create a new line with the
following characteristics:

• Operation - Output form

• From - HTML template

• I/O - Merged File

3. Save the program, check and execute it. If you open the resulting file,
you should see the following lines:

1 Odd

2 Even

3 Odd

4 Even

5 Odd

6 Even

7 Odd

8 Even

9 Odd

10 Even
Reference Guide 963

Web Online Page

eDeveloper provides the web online feature as a way of creating and handling
interactive web pages. An eDeveloper Web Online page is an interactive page
in an eDeveloper application that runs in a standard Web browser and has the
appearance to the end-user of an online application. For example, an HTML
data entry application using eDeveloper Web Online is able to update the input
data fields without submitting and retrieving an HTML page for each event or
operation.

The eDeveloper Web Online facility is similar to the eDeveloper online data
entry process, where eDeveloper logic is being executed per field on the form.
This allows fields and other elements to be updated and validated on the fly
without any explicit requests. Event handling on a field level avoids the
commonly used heavy page mode. The “submit” button so prevalent on HTML
pages is not necessary.

Web Online Supports the UNIX Web Server

Web Online supports the UNIX Web Server by using the Web Document Alias
environment property as the location for the Web Online files (Jar, JS) that are
referenced on the Web Online page. This lets the end-user access a readable
directory other than the CGIBIN directory.

These files must be placed in the directory specified in the Web Document Path
environment setting. The alias must also be set in the Web server. If no Web
Document Path is set, the path for the Web Online files is specified from the
HTTP Requester property.

Web Online Response

The Web Online Response is used to specify the commands to be executed in
response to an eDeveloper program called by a Web Online page.

Web Online Response Form Properties

Use the Web Online Response Form Properties sheet to specify the HTML
Template file name or expression to be used by an Output Form operation as a
Reference Guide 964

Web Online Response. Press CTRL+P on the Web Online Response Name entry in
the Form repository to open the Web Online Response Form Properties sheet.

Upload Capability of the Requester

The Internet requester lets you design an HTML page on which you can enable
a file to be uploaded and then received by an eDeveloper program.

To enable this you should define your HTML file as follows:

1. The form method attribute type must be POST. For example:
<form action=/scripts/mgrqispi.dll method=post>

2. The form tag should include the following attribute:
ENCTYPE="multipart/form-data"
for example:
<form action=/scripts/mgrqispi.dll method=post
ENCTYPE="multipart/form-data">

3. You should add to the form an Input tag of type: FILE. This tag
creates both an edit box in which the user can enter the local path
and file name, and a push button allowing the user to browse to select
the file.
This input tag should be identified by a clearly defined name.
for example:
<input type=file name="MyFile">

4. The given name of the file input tag should be added to the hidden
input of the arguments.
for example:
<input type=hidden name="ARGUMENTS"
value="var1,var2,....,MyFile,...varn">

5. A corresponding BLOB virtual variable should be created in the called
eDeveloper program. This variable is updated with the uploaded file
content.
The variable's content can be converted to a physical file on the
server side using the Blb2File function.
Reference Guide 965

Report Forms
Report Forms have Class > 0 and either Text-based or GUI Output interface
types.

The Form Editor displays all the forms of the same class in the table.
Therefore, in the case of reports, all the associated header, detail and footer
forms are displayed together with a labeled divider.

GUI Table Control Functionality

The GUI printing mechanism allows printing of the Table control. This enables
easier and faster creation of reports in multi-line format.

A Table control can be added to GUI Output Forms. The following Table control
properties facilitate graphical printing:

• Fix Size Table - Valid values: Yes, No. No is the default.

• No - The table will have only one record line. This line repeats for
each record. The actual size of the table depends on the number of
records that are printed on the page.

• Yes - The table prints the size that is declared in the form.

• Title on Every Page - Valid values: Yes, No. Yes is the default. Specify Yes
to print a table header on every printed page. Specify No to print a Table
header prints only at the beginning of the table.

When the first record of a table is printed, the table header and all other
controls on the form are printed at the same time.

Controls that are not part of the table are printed once when the first
record and the header are printed. The location of these controls sets the
minimum size of the currently printed table. The table length will be long
enough to encompass the bottom-most control on the form.

• When records after the first record are printed, they are printed
adjacent to the previously printed record. Other controls in the form
are no longer printed. The table is resized accordingly.

• When a form with a table is printed, the height of the page footer is
Reference Guide 966

enlarged by the height of the closing line(s) of the table for
calculation of end of page condition. This happens when the record
to be printed overflows the original size of the form.

• When an end of page condition occurs while printing a record on a
table, the following actions are performed:

Closing line of the table - the header of the table (and all other
controls in the form) are repeated on the next page as if it is the
first record in the table that is being printed.

The header of the table is output after all other headers (if any) that
are repeated in an end of page condition.
When a different form is printed and the previously printed form
contained a table, the previous table is closed, and the closing line
or lines of the table are printed.

When a different form is printed and the previously printed form
contained a table, the new form is printed after the table’s form,
even if the table’s form is not completely filled with records. In this
case, the closing line(s) of the table are printed at the area of the
previous table form.

Multi-Line Edit Printing

You can print a Class > 0 form with variable length textual data with the
dynamic sizing of a Multi-Line Edit control during printing.

For a GUI Output form, set the Expand Form property to One Page or Multi-
Page. When printing, the control will resize to contain all of the text in the
control’s frame. The controls located below the Multi-line Edit control are
pushed down to keep the same distance from the Multi-line Edit control. The
form increases its size to make room for the Multi-line Edit control’s new lines.
One Page specifies that the control will expand the form up to a single page.
Multi-Page specifies that the form will expand across multiple pages to fit all
the lines of the Edit control.
Reference Guide 967

Note: Expanded controls in a table will be printed on multiple pages only if the
form does not contain expanded controls outside the table. In that case,
Expand Form will behave as if set to One Page.

Only the single page option is available for text-based forms.

Printer Attribute Support

The graphical printing feature supports WYSIWYG (what you see is what you
get) printing of GUI Output forms using fonts and colors. Colors are translated
to shades of gray on non-color printers.

The media column in the I/O file is defined as Graphic Printer, which directs the
output of an I/O file to a Windows printer driver, enabling standard Windows
printing.

eDeveloper’s printer attribute support lets you easily control the appearance of
printed output. Printer attribute support is relevant to text-based I/O only.
Your output can include whichever fonts (such as Times, Roman, Helvetica,
etc.) and type faces (for example, bold and italic) your printer supports.

If you print to a graphical printer using a font other than True Type font, and
the font is not available to the printer, there may be situations where some
characters will be altered in the printed output.
Reference Guide 968

Printer Settings

For each printer defined in the Printer repository, eDeveloper must know which
printer control codes are employed for each typeface/font combination, and
which colors are to represent which print styles. This information is contained
in two printer support files, the Print Attributes file and the Printer Commands.

The Print Attributes File

The Print Attributes file contains a listing of logical eDeveloper print styles that
may be used to enhance the appearance of a report form. The logical print
style is resolved in runtime to actual printer control codes. Because the
resolution of the logical style is done in runtime, the application can be written
without any prior knowledge of the physical printers in a specific installation.
All the necessary information is provided in the eDeveloper environment
settings while installing the application.

For each logical print style the Print Attributes file contains its association to
actual printer control codes by means of print styles. The print styles are
translated to actual printer control codes in the Printer Commands file. Several
print styles can be combined to create one logical eDeveloper print style.

The Print Attributes file also contains a color number that is used in the form
layout editor to represent the logical print style.

A style description provides the name by which the logical print style will be
recognized in the application.

This table can be modified with an eDeveloper editing tool, just like any other
eDeveloper table or repository.
Reference Guide 969

The Printer Commands File

The Printer Commands file lists the actual printer control codes (escape
sequences) for each print style. Each entry is either of the form:

style-name=start-sequence:end-sequence or

style-name=start-sequence

where style-name is a user-defined style name that appears in the Printer
Command file, start-sequence is a printer control (escape sequence) string
that is to be sent to the printer at the beginning of a text section that is to
appear in the given print style, and end-sequence is the escape sequence
string that is to be sent to the printer at the end of such a text section. The
start-sequence and end-sequence must be separated by a colon.

The second form is for printer commands that do not require a terminating
sequence, such as a restart command.

If you want to modify the Printer Command file, use a text editor.

Two sample Printer Command files are supplied with eDeveloper. These are:

1. LJ3.ATR for an HP Laserjet printer

2. EPSON.ATR for an Epson printer and compatible

 Print Styles

The Print Attribute repository is used to construct logical print styles that
combine print styles with eDeveloper colors. The colors are later used to paint
the form areas that should be output using the print attribute represented by
the color.

Each entry in this repository corresponds to a particular eDeveloper logical
print style. The columns in this repository are:

• # - A sequential line number, assigned by eDeveloper. You cannot edit this
column.
Reference Guide 970

• Name - A description of the logical print attribute. This description will be
displayed in the Print Attribute list when selecting a logical Print Attribute
for a designated form area.

• Print Command - The Print Command is a collection of one or more print
styles that make up the eDeveloper logical print attribute. Each print style
represents a font or a print typeface of a physical printer. The values for
this field are selected by zooming to the Printer Command list. The Printer
Command list contains a collection of style-names read from the Printer
Command files assigned to each eDeveloper Printer in the Printer
repository. Style names that appear in more than one command file
appear only once in the Printer Command list.

In runtime, when the logical print attribute is resolved to the actual printer
control codes, eDeveloper will send to the printer, the prefix part of all the
printer commands that are defined for the print attribute according to their
order of appearance in the Print Command field. Then the form control will be
sent to the printer. After the form item, eDeveloper will send all the suffix parts
of all the Printer Commands that are defined for the print attribute according
to their order of appearance in the Print Command field.

By combining several Print Commands into one logical print attribute, it is
possible to create custom print styles for use in the application.
Reference Guide 971

Color Print Attribute

Specifies the number of the color associated with the logical print attribute.
Zoom from this column into the Color repository specified in the Environment
dialog to choose the color.

The color is used to assign the print attribute to form areas. Color is used this
way because it occupies no form area, and it serves as a visual indicator of the
usage of print attributes.

Print Attribute Components

Figure 10-6 below shows the relationships among the various print attribute
components. Marking and painting a block on a form layout has the effect of
specifying a print attribute for that block. The print attributes are contained in
the Print Attribute list.You can open the Print attributes list by double-clicking

Figure 10-5 The Frame Control Properties Dialog
Reference Guide 972

the ellipse button related to the Color property for a selected text-based
control.

The Print Attribute repository relates each named print attribute to an actual
series of print commands, and, for reference, to specific colors.

The print commands identified in the Print Attribute repository are made up of
various components contained in the Printer Command list. This list is
generated from the total set of printer commands contained in all of the
various commands files within the eDeveloper system.

The Printer repository relates eDeveloper Printers or logical print names to
Printer Command files and to queue names representing physical printers.
Reference Guide 973

Runtime Resolution of Print Attributes

At runtime the print attributes specified in the form layout are resolved
according to the eDeveloper (logical) printer and the commands file specified,

Figure 10-6 Relationships Among Print Components
Reference Guide 974

and to the settings in the I/O File repository and in the Print Attribute
repository, as shown in the figure below.

Figure 10-7 The Printing Process
Reference Guide 975

Data Management 11
ata management lets you organize the data that is stored in the
physical database by determining when and how the stored data is
updated.

In this chapter:

• Transaction Processing

• Transactions and Execution Levels

• Deferred Transactions

• Transaction Processing Recovery

• eDeveloper’s Internal Transactions

• Deadlocks and Transaction Processing

• Rollback

• eDeveloper Cache

• Error Handling

D

Reference Guide 976

Transaction Processing
Transaction processing is a data processing technique used to preserve
database integrity. It can be defined as the execution of a set of logically
related data modifications, which must be committed (completed and written
to disk) or aborted as a single unit. Reservation and credit-checking operations
are typical examples of such transactions.

Transactions can also be used to secure Read operations, as opposed to Read/
Write operations. A Read transaction ensures that the data read within the
transaction is not modified by other users.

The transaction processing technique automatically logs all of the updates of a
transaction to a temporary transaction file. The updates in this file are cleared
only when the transaction is complete; that is, the updates to all the regular
database tables have been completed successfully. If a problem is detected in
any of the tables affected by the transaction, the entire transaction is canceled
and the database is rolled back; that is, restored to its original state before the
transaction occurred. The rollback uses the information stored in the
Transaction Log file to restore the application.

The major benefit of transaction processing is the protection from computer
system crashes. If the computer crashes in the middle of online data entry or
batch processing, the entire transaction is aborted. This prevents incomplete
updates to the database, and maintains database consistency.

Transactions and Execution Levels
You can activate transaction processing at any of the task execution levels by
setting the following Transaction properties in the Task Properties dialog:

Transaction Mode

• Deferred - Data Manipulation (DM) statements are stored in a cache.
During the task flow, the DM statements are not sent to the physical
database. The statements are only implemented in the database at the
expected commit time. All the DM statements accumulated in the cache
are implemented at once, and the transaction is closed.
Reference Guide 977

• Nested Deferred - Same as Deferred, except that when such a task is
called from another deferred task, it opens a new deferred transaction
nested within the hosting one.

• Within Active iTransaction - The task is implemented within the parent
transaction. A physical transaction that is a parent will have a physical
transaction as a child. A parent that is a deferred transaction will have a
deferred transaction as a child.

• Physical - DM statements are implemented after the Record Suffix (same
as in previous versions).

• None - eDeveloper does not open a transaction for the task. This option is
available for browser tasks only.

Transaction Begin

• Before Task Prefix - The transaction is opened before the Task Prefix and
closed after the Task Suffix.

• Group - The transaction is opened before the Group Prefix. The end-user
must specify the variable that triggers the Group transaction. This variable
must appear in one of the task’s group events. You can access the Group
transaction only when the Task Type property is set to Batch.

• On Record Lock - The transaction is opened before a record is to be locked
and closed after the record update.

• Before Record Prefix - The transaction is opened before the Record Prefix
and closed after the record update.

• Before Record Suffix - The transaction is opened before the Record Suffix
and closed after the record update.

• Before Record Update - The transaction is opened before the physical
updates are sent to the database.

• None - A transaction is not opened for the browser task. When eDeveloper
calls a task with the Transaction Begin set to None from a task with an
open transaction, the task behaves as if it is assigned to Within Active
Transaction.
Reference Guide 978

When changing the task type in the Task Properties dialog (for example, from
Online to Batch), all the transaction properties (that is, Transaction Mode,
Transaction Begin, Locking Strategy, and Cache Strategy) for that task revert
to their original default values specific to that task type.

Physical Transactions at Task Level

Before Task Prefix

When you define the Transaction Begin property as Before Task Prefix,
eDeveloper:

• opens the transaction before fetching the task,

• commits the transaction only after the data file updating, which follows the
execution of the Task Suffix, and

• includes all operations between the open and the commit, including
subtasks, within the transaction scope.

Task Level Transaction Usage Considerations

Defining a transaction at the Task level causes all updates made during the
task execution to be logged as a single transaction. Therefore:

• Use the transaction at the Task level in Batch tasks with a dataview that
includes only a few records for better concurrence. Use transactions at the
Task level in Batch tasks when performance is important (SQL databases).
ISAM type databases may require a lot of disk storage for extended
transactions in Batch.

• Using a transaction at Task level for Online tasks may cause problems for
other users accessing the same tables, in multi-user applications, because
the tables may be locked during the transaction for long periods of time.

• Task level transactions that cover large quantities of records will result in
the expansion of the Transaction Log file, thus reducing available space on
the disk drive. Be careful not to run out of disk space, because this will
abort the transaction.
Reference Guide 979

Physical Transactions for the Group Level

Group levels are available only for Batch tasks.

Group Level Transaction Usage Considerations

You can use a Group Level transaction to split the processing of a large table
into processing by record groups. This way you reduce the scope of the
transaction and maintain the benefits of transaction processing.

Physical Transactions for the Record Level

The Transaction Begin property in the Task Properties dialog has five different
values for record level transactions: On Record Lock, Before Record Prefix,
Before Record Suffix, Before Record Update, and None.

 On Record Lock

When you define the Transaction Begin property as an On Record Lock,
eDeveloper opens the transaction before the record is locked.

Before Record Prefix

When you define the Transaction Begin property as Before Record Prefix,
eDeveloper:

• opens the transaction before fetching the record,

• commits the transaction only after the data file update that follows the
execution of the Record Suffix, and

• includes all operations between the open and the commit, including
subtasks, within the transaction scope.

Before Record Prefix Level Transactions Usage Considerations

Because the transaction is open during the interactive stage (Record Main),
you should not usually define a transaction at Prefix level for Online tasks in a
multi-user environment. The transaction involves locking and may cause
problems for other users trying to access the same records or table.
Reference Guide 980

Before Record Suffix

When you define the Transaction Begin property as Before Record Suffix,
eDeveloper:

• opens the transaction before executing the Record Suffix, and

• commits the transaction only after the dataview update that follows the
execution of the Record Suffix.

Before Record Suffix Level Transaction Usage Considerations

All the Record Suffix operations, including subtask calls, are included in the
transaction.

In case of transaction failure, the engine recovers or aborts execution,
depending on the Error Behavior Strategy property setting in the Task
properties dialog. Alternatively, you can define your own error handler to
intercept the error.

Before Record Update

When you define the Transaction Begin property as Before Record Update,
eDeveloper:

• opens the transaction after the Record Suffix execution, just before the
execution of data file updating, and

• commits the transaction only after the data file update has been executed.

Before Record Update Level Transaction Usage Considerations

Note that a Record Level transaction defined as Update does not include
Record Suffix operations. The transaction defined as Update is the one most
highly recommended for multi-user applications, because it reduces potential
problems of concurrence among end-users.

None

As for all the other levels, None means that no transaction is required at
Record level.
Reference Guide 981

Deferred Transactions
In previous versions, eDeveloper implemented Data Manipulation (DM)
statements (insert/update/delete) after the Record Suffix. This process, called
physical transactions, updated the content of the physical database after each
DM statement. Processing the changes of records in a dataview for an
application in runtime mode is time-consuming.

Deferred transactions delay the implementation of the Data Manipulation (DM)
statements until the time you must commit the changes made to records of a
dataview. eDeveloper stores each DM statement in a cache. When you are
ready to commit the changes to the database, all changes are implemented
concurrently. This keeps the transaction duration as short as possible

Transaction Begin

When the Transaction mode is set to Deferred, the following actions occur at
the different Transaction Begin options:

Before Record
Prefix

All updates at the Record level are
collected as a group. At record update
time, a transaction is opened, the
changes are applied, and the
transaction is committed.

Before Task
Prefix

All updates at the Task level are
collected as a group. After the Task
Suffix, a transaction is opened, the
changes are applied, and the
transaction is committed.

Group The updates are collected at the Group
level, and are updated whenever a
specific variable changes its value.
When using the Group Level
transaction, you must define the
variable on which the group is based.
Reference Guide 982

Locking Strategy Property

Deferred transactions can have the following lock set values:

• On-Modify - selecting the On-Modify locking strategy in a deferred
transaction task does not issue locks to the database. These locks are
handled through the eDeveloper locking mechanism. eDeveloper lock
settings should be used as required. For more information about
eDeveloper locking, refer to Databases in Chapter 2, Settings.

• No Lock

SQL Range Statement

The DB SQL Range does not apply to deferred transaction mode tasks.

The Magic SQL Range is a new eDeveloper feature that lets you send Where
clauses directly to the database from a deferred transaction. For more
information, refer to the Range/Locate section in Chapter 6, Programs.

Direct SQL

Direct SQL tasks can only be included within a physical transaction mode task.

Numeric Field Updates

This property is for Deferred Transaction Mode tasks only.

Previous versions of eDeveloper allowed only absolute numeric updates. For
example, you could only set value X for field FLD1 (FLD1=X).

eDeveloper Version 9 lets you make differential updates for tasks that run in
Deferred or Nested Deferred Transaction mode only. For example, you can
update FLD1 by using the value FLD1+X (FLD1=FLD1+X).

The Update Style property has been added to the Field Properties sheet. The
values for the property are:
Reference Guide 983

• Absolute - a fixed value as allowed by previous versions of eDeveloper
(FLD1=X)

• Differential - differential values (FLD1=FLD1+X)

This property is only enabled for the Numeric field type that has a normal
storage type and relates to an SQL table. This property is enabled for Deferred
and Nested Deferred mode task or to the Within Active Trans transaction mode
task that evaluates to deferred in runtime. This is not relevant for ISAM files.

The Update Style property has also been added to the Select Real operation.
Besides the Absolute and Differential values, you can choose the As Table
option, which takes the Update Style property from the Table properties.

For more information, refer to the Column Repository section in Chapter 4,
Tables, or to the Select Operation section in Chapter 7, Operations.

Update/Delete Statements

This property is for Deferred Transaction Mode tasks only.

You may determine the procedure by which eDeveloper creates a WHERE
clause for each update or delete statement that is issued. The possibilities are:

• by Position only - Only fields that are part of the position will be included.

• by Position and Updated fields - The original value of the updated fields as
well as the position fields.

• by Position and Selected fields - The original value of all the selected fields
as well as the position fields.

A new property called Identify Modified Row has been added to the Table
Properties. This property may accept any of the above values. Note that this
property is only enabled for Deferred or Nested Deferred transaction tasks, or
to the Within Active Trans transaction mode, which evaluates to the deferred
transaction mode in runtime. The Identify Modified Row property has also been
added to the DB Table repository.

For more information, refer to the Table Repository section in Chapter 4,
Tables, or to the DB Table Repository section in Chapter 6, Programs.
Reference Guide 984

Record Update Fail Before Call

This deferred transaction property lets you control the order of the execution
of Data Manipulation statements.

In previous Magic versions, Data Manipulation statements (such as insert,
update, or delete) were sent according to the Record Suffix order.

For example:

A parent task calls to a child task. The child task completes its processing and
then returns to the parent task. The parent task must also complete its
processing. Therefore, eDeveloper processes the Record Suffix operations of
the child task before the Record Suffix operations of the parent task, even
though changes to the parent task were made prior to calling the child task.

Nested Transactions

When a parent task calls a child task the following behavior can occur:

Parent Transaction
Mode

Child Transaction
Mode

Transaction
Behavior

Deferred/Nested
Deferred

Physical The child transaction
opens a physical
transaction. The
updates are sent to
the database
independent of the
parent task.
Reference Guide 985

A task that opens as a physical transaction can still have a deferred or nested
deferred child providing that the parent does not actually open the physical
transaction.

Deferred/Nested
Deferred

Deferred The child transaction
runs within the
parent’s transaction.
The Data
Manipulation (DM)
statements of the
child task are sent
only when the
parent task
commits.

Deferred/Nested
Deferred

Nested Deferred The child task opens
as a new deferred
transaction. Its
transactions are
committed to the
database
independent of the
parent task.

Physical Physical The child task
submits database
updates with the
parent after each
record or task.
Parent and child
tasks share the
same transaction

Physical Deferred or Nested
Deferred

Runtime error.

Parent Transaction
Mode

Child Transaction
Mode

Transaction
Behavior
Reference Guide 986

When a task is opened from an event handler that is defined for a different
task, the transaction nesting is according to the runtime transaction and not
the toolkit definitions.

For example:

Task A, defined as a deferred transaction, opens Task B, which is defined as a
physical transaction. Task B updates the database as a physical transaction,
and an event is triggered. The handler for this event is defined in Task A, and it
calls Task C, which is a deferred transaction. Task C, a deferred transaction,
cannot run under Task B, a physical transaction, and runtime error occurs. If,
however, Task C was defined as Within Active Transaction, it would have
opened as a physical transaction, and no runtime error would have occurred.

Transaction Tree
When running a browser-based program, the user can open several browsers
at once. Separate browsers can run different tasks that have no transactional
connection. eDeveloper supports separate browsers by separating deferred
transactions into logical branches. Each branch is its own transaction tree
without any connection to other branches.

eDeveloper lets you open a nested transaction in a modeless task for a
deferred transaction. The behavior between parent and child tasks does not
change from the previous version.

Open Transaction

When the calling task in the event tree has no open transaction, the called
task opens a transaction according to its task properties. If the task is defined
to open a transaction, the transaction will open in record or task level.

When the calling task in the event tree has an open transaction, the called task
behavior depends on the called task properties listed below:

• Deferred Transaction - The task does not open a new transaction.

• Nested Deferred - The task opens a new transaction.
Reference Guide 987

• No Transaction - The task behaves as a deferred task.

Close Transaction

A transaction is closed in the task where it was opened.

An exception is when a task opens a transaction where there are child
programs of the same transaction. When the child programs remain open
when the transaction is closed with the calling program, they will be left
without a transaction.

The child programs must be part of a transaction. The first called child
program will manage the transaction and all of the child programs in the
transaction. The management of the transaction moves down the event tree
when a parent task is closed. The transaction hierarchy is determined by the
order of open tasks. When a transaction is closed and there are still open tasks
within that transaction, another transaction is opened immediately and is
managed by the first child task.

When the management of the transaction is moved to a new task, the new
transaction is always opened in the task level regardless of the values defined
in the properties of the task.
Reference Guide 988

Runtime Tree Sample

A sample of a runtime tree is displayed below for a browser-based task with
many open browsers.

The example displays five concurrent open transactions.
The five transactions start in the following tasks:

1. A

2. C

3. D

4. H

5. I

Figure 11-1 Transaction Tree Example
Reference Guide 989

At the end of each transaction, the data is committed or rolled back according
to the task logic.

Cache data cannot be shared between different tree branches before the data
is committed. Task E cannot view data from Task I. After Task I commits its
changes to the database, the updated data is available for Task E from the
database.

Transaction Processing Recovery
Transaction processing recovery lets you determine eDeveloper’s default
behavior for the different database errors. For more information, refer to
Chapter 12, Error Handling.

eDeveloper’s Internal Transactions
eDeveloper has two types of internal transactions:

• Read - Used for Read Only operations on data files.

• Write - Used for Write operations on data files.

Mapping Transactions to Databases

To implement the transaction processing mechanism, eDeveloper utilizes the
transaction processing facilities of the underlying databases. Because each
database has its own transaction facilities, eDeveloper maps its internal
transactions to those available in the various databases.

i For more information, see DB Table Repositories in Chapter 6, Programs.
Reference Guide 990

ISAM Databases

According to the way ISAM databases implement transaction processing,
eDeveloper maps its internal transactions in the following manner:

• Read-transactions and Lock-transactions have no implementation in ISAM
databases. Therefore, eDeveloper does not transfer them to the ISAM
database gateways.

• A Write-transaction is mapped to the ISAM transaction that logs the
updates and is able to do rollback. Such a transaction can lock all or part
of the table.

SQL Databases

According to the way SQL databases implement transaction processing,
eDeveloper maps its internal transactions in the following manner:

• A Read-transaction is mapped to a R/O (read only) transaction. This
transaction takes snapshots of the database situation when the transaction
is opened.

• If the Access mode of all tables in a Lock or Write transaction is Read, the
Lock or Write transaction is mapped to a R/O (read only) transaction.
Otherwise, a Lock or Write transaction is mapped to a R/W (read/write)
transaction. This transaction locks all the records referred within the
transaction scope.

Deadlocks and Transaction Processing
In a multi-user environment, deadlocks are a common cause of transaction
failure. A deadlock situation occurs when two users are each waiting for a
resource owned (that is, locked) by the other.

The various Database Management Systems (DBMSs) behave differently when
a deadlock occurs. Some DBMSs are able to detect the deadlock and issue a
warning. In this case, eDeveloper rolls back the transaction and continues
execution according to the Error behavior strategy setting for the transaction.
Reference Guide 991

Because some ISAM databases may hang in deadlock situations, eDeveloper
provides a deadlock prevention mechanism for ISAM and SQL databases. To
activate the deadlock prevention mechanism, set the Deadlock Prevention
setting in the Environment dialog to Yes. The deadlock prevention mechanism
locks exclusively all tables opened with Write access, in the same order as
defined, for the period of the transaction. Temporary tables are not locked.

Rollback
The Rollback function can be used to roll back a transaction to a specified
nesting level, or to abort the transaction completely. The Rollback function
receives as a parameter the number of nesting levels for the rollback point.
The parameter number must be a number of open nested transactions. A
parameter value of zero will roll back the entire transaction to the first level.
After forcing a rollback, eDeveloper resumes processing according to the
rollback level defined in the Error Behavior Strategy property.

The Rollback function lets you display a confirmation dialog to the end-user
before the actual rollback operation starts.

Rollback Behavior for Browser-Based Programs

When a browser-based program is rolled back, all the open tasks in the
transaction will be closed except for the task that opened the transaction.
Nested tasks are not affected.
For example, when a task in a different transaction rolls back an open parent
transaction, the child task will stay open and will not be affected.

An exception is when a child program is called by a handler triggered from a
higher level. The child program opens its own task level transaction. If there
are several child programs, all of them will be in a new transaction and will be
managed by the first called child program.

A child program in a task should be closed when it is called by the Call
operation.
Reference Guide 992

Sync Data
This property is part of the Call operation. It lets you do the following:

• Sends the parent task’s Data Manipulation statements before the child
task’s Data Manipulation statements by selecting Yes.

• Lets eDeveloper control the order of the execution of Data Manipulation
statements by selecting No.

• Defines a logical expression that can be evaluated as Yes or No.

The Sync Data property is enabled for Call Task and Call Program operations at
the Record, Control and Handler levels.

For more information, refer to the Call Operation section in Chapter 7,
Operations.

eDeveloper Cache
The basic assumption behind the need for caching is that the same data will be
needed more than once. Therefore, if data can be re-fetched without
performing disk I/O operations, overall performance will be enhanced.

Unlike general purpose disk caches that employ generic algorithms for their
caching, the eDeveloper Cache lets you fine-tune the cache according to your
knowledge of the physical data and the nature of the application, and even on
a user-by-user basis in an application.

The eDeveloper Cache does not call any file manager as other hardware or
software caching methods might. The eDeveloper Cache therefore avoids the
additional file manager overhead of traditional methods.

What Can Be Cached

The eDeveloper Cache can be used for Main tables and for linked tables. The
eDeveloper Cache is implemented on a task and Main table and link basis. This
means that if a parent task and a subtask are accessing the same table, and
Reference Guide 993

both tasks enabled caching on the table, then two caches will be used. The
same applies for two link operations to the same table in a task. In this case
also, two caches will be used.

When is the Cache Used

Data can be read from the cache only when eDeveloper does not need to issue
a lock for the row. The need for a lock is determined by the following three
factors.

• The Locking strategy, defined under the Enhanced tab of the Task
Properties dialog.

• The Cache strategy, defined under the Enhanced tab of the Task Properties
dialog.

• The definition (in the DB Table repository) of the Access and Share modes
with which the table was opened.

A lock is issued only for tables that are opened with write access and share.
The timing of the lock is determined by the locking strategy.

Moving from Query mode to Modify mode, and from Modify mode to Query
mode, is done using the cache. The records in view when switching modes are
not refreshed.

A Sort operation automatically creates caches for the sort file.

When accessing Create mode, or when User Locate, User Range, or Sort
operations are taking place, the cache is released.

Toggling between Modify and Query modes in eDeveloper V9 causes
eDeveloper to access the cache and eliminates the need to re-fetch data from
the database.

Activating the Cache Size

In the task level DB Table repository it is possible to define the cache of a
linked table as disabled or enabled. This definition is set by using a Yes or No
Reference Guide 994

setting. When the Cache column in the DB Table repository is set to No,
caching is disabled for the linked table in the task. If the column is set to Yes,
the table cache is used.

The default value in the task’s DB Table repository depends on the properties
set in the Table Properties dialog.

Changes to Program Behavior

Use of the eDeveloper Cache changes the behavior of programs. Whenever
data is found in the cache, the data may not be the same as the data in the
table. However, before updating the data, eDeveloper will always read the row
from the disk. As an example, consider a simple Online program created by
the Automatic Program Generator (APG). Whenever the insertion point is
moved from one row to another, the dataview of the new row is automatically
reread.

In the case of another user who has changed the data, we will not see the
change when we park on the row (if the data was in the cache), but if we try to
modify the data, the current values data will be read from the disk, and the
following message will appear:

Record has been updated, Restart.

There are cases where the application definition does not allow the cache to be
used. For example, assume an order entry application where the Prices table is
accessed for read with Write Share. If a price had been changed by one end-
user, and the new price of an item resides in that user’s cache, no other end-
user will be able to see the new price.

Cache and Resident Tasks

Whenever an eDeveloper cache is assigned in a resident task, the cache will
not be terminated when the task is exited, but only when eDeveloper returns
to the menu. Thus, if a task is reading the same data from a linked table, and
all of the data is cached, then the second time the task is called, the cache will
be reused.
Reference Guide 995

Cache and The Rollback Operation

For the Rollback operation, all the caches that were updated during the
transaction are invalidated. The invalidation causes all data to be erased from
the cache. Only caches that had Update Delete or Insert operations will be
invalidated.

Cache and Client/Server

The eDeveloper Cache resides on the client. Using the eDeveloper Cache in a
Client/Server environment will not only reduce disk I/O, but will also generate
less network traffic. This is an important factor, as the network is usually the
bottleneck for Client/Server applications.

eDeveloper Cache Internal Implementation

Every row that eDeveloper reads is inserted into the cache. In addition, any
modification, deletion, or insertion of new rows, is also placed in the cache.
Whenever a row that already exists is reread by eDeveloper, it will supersede
the previous value. If a row that does not exist in the cache is read, the
eDeveloper Cache automatically places it in the cache. If the cache is full, an
LRU (Least Recently Used) algorithm is used to determine which element is to
be dumped from the cache.

The use of the LRU mechanism ensures that data that is read more frequently
will have a lower chance of being swapped out of the cache.
Reference Guide 996

Error Handling
The Error Handling feature lets you override eDeveloper’s default behavior for
the different errors that can arise during an application’s execution.

Error Handling Mechanism

There are two levels in which you are able to control eDeveloper’s behavior
when an error occurs. The first level consists of two, pre-defined error
strategies that you can select from the Error Behavior Strategy property in the
Task Properties dialog on the Enhanced tab.

The second is a more sophisticated error handling level that lets you write
actual eDeveloper code for the errors, using error handlers. eDeveloper
provides a list of known and expected errors that can be intercepted, and lets
you handle other errors specific to your DBMS error code. This level also
provides you with a list of new engine directives to control the behavior of the
eDeveloper engine after implementing the error handler.

The errors that are described in this chapter are for database-related errors
only.

Error Behavior Strategies

eDeveloper provides two pre-defined strategies – Abort and Recover. The
strategy option is set in the Task Properties dialog as shown on the next page.
Reference Guide 997

If the strategy is chosen carefully, you will not have to change any of the
defaults of the error handling task properties or write handlers for error
handling. Of course, you can still change the default settings by writing error
handlers in those places where the default strategy does not apply.

Abort Strategy

With the Abort strategy, whenever an error occurs eDeveloper rolls back the
current transaction, whether physical or deferred, removes the current
dataview, and aborts the task in which the error occurs. The Abort strategy
does not roll back the current transaction for errors that the end-user can
recover from, such as Locking and Incorrect Login errors.

Recover Strategy

With the Recover strategy, whenever possible, eDeveloper will keep the
current dataview, stay on the current task, and allow the end-user to recover
from the error. The Recover strategy lets the end-user continue working in the
application after an error has occurred.

Figure 11-2 Selecting an Error Behavior Strategy
Reference Guide 998

Error Strategy Behavior

The following is a list of errors and the specific behavior that will be
automatically applied depending on the strategy selected. For a detailed
description of each strategy behavior, see the Engine Directive section.

Error Abort
Strategy

Recover
Strategy

Unable to lock table Auto Retry Auto Retry

Locked row Auto Retry Auto Retry

Max connections Abort Task Auto Retry

Duplicate index Abort Task User Retry

Constraint failure Abort Task User Retry

Trigger failure Abort Task User Retry

Record has been updated Abort Task Rollback and
Restart

Record has been
changed by
another user

Abort Task Rollback and
Restart

Table open failed Abort Task Abort Task
Reference Guide 999

Error Handlers

You can write an error handler in the Handlers table of the Task Execution
repository. This is the same table that lets you define event handlers.

An error handler has the following properties:

• Level

• Event

• Details

• Engine Directive

• DBMS Message (Msg.)

• Scope

• Propagate

• Enable

• Operations

Level

The level for an error handler is defined at the handler level. They are similar
to other handlers at the task level.

Figure 11-3 Creating an Error Handler
Reference Guide 1000

Event

The Event property lets you specify the error type from the following list of
error types:

• Any

• Locked row

• Duplicate index

• Constraint failure

• Trigger failure

• Record has been updated

• Record changed by another user

• Insert/Update/Delete failure

• Unmapped errors

If you do not specify an error type, the value Any is assigned to the property.
The ‘Any’ Error type can be executed for any error type that occurs.

Engine Directive

When defining a user-defined error handler, the Engine Directive property
determines what action occurs after the execution of the error handler.

As Strategy

eDeveloper verifies the error strategy for the current task, and acts in
accordance with it. Note that all other error strategies are exceptions to As
Strategy.

Abort Task

The Abort Task aborts the task from the transaction source, rolls back the
data, and removes the dataview.

Rollback and Restart
Reference Guide 1001

Rollback is the same for all errors and transaction modes, but may vary
according to the task’s mode (Online, Batch, Browser), and according to where
the transaction was opened.

Automatic Retry

On some errors, such as Locked Row, Unable to lock table, and Max
connections, recover means that eDeveloper retries the operation
automatically, without input from the end-user. Only a few errors can be
automatically retried by eDeveloper as displayed in the table below. Most
errors require user intervention as explained in the User Retry section.

Task Mode Transaction on Behavior

Online or
Browser

Record Cursor stays on the
record that began the
transaction.

Task Cursor stays on the task
that began the
transaction, and re-
fetches the data and
position of the first
record.

Batch Record

Task

Goes to the next record.

Aborts the task.

Error Behavior

Unable to lock table
Locked Row
Max Connections

eDeveloper automatically retries
the operation. eDeveloper does
not rollback the transaction,
regardless of whether it is
physical or deferred, and does
not rollback the dataview. The
cursor parks on the same record
and retries locking or connecting
until the time-out value expires.
Reference Guide 1002

In the Deferred Transaction mode, Automatic Retry refers to all errors that
occur in the flush phase of the transaction, for the commands accumulated
during the deferred transaction. The physical transaction is rolled back and
then restarted, including all the operations that were already implemented.

Duplicate Index
Constraint failure
Trigger failure

Deferred transactions only.
eDeveloper automatically retries
the entire physical transaction in
the flush phase, which is when
eDeveloper writes the data to
the database.

Table open failed
Table Create err
Table delete failed
Table copy failed
Commit transaction failed
Open transaction failed
Internal transaction err
Deadlock
Connect failed
Fatal err
Insert/Update/Delete failure
SQL execution err
Invalid SQL command
Invalid open Query Exp
Invalid table name
Table does not exist
Cannot modify R/O table
Record has been updated
Record has been changed by
another user
Record lost

Not applicable. eDeveloper never
uses the Automatic Retry option
for these errors.

Error Behavior
Reference Guide 1003

User Retry

The User Retry behavior will not automatically rollback the transaction or
dataview, but will leave them and return the control to the end-user,
positioning the cursor on the record where the error occurred. User Retry is
not applicable for physical tasks. The table below displays the errors that
eDeveloper lets the end-user recover from.

Error Behavior

Incorrect Login This is relevant for all task types.

In Runtime and Toolkit modes,
the login window opens for the
end-user to try to login again.

In Background mode, the login
window does not open.
Reference Guide 1004

Duplicate Index
Constraint failure
Trigger failure

Online and Browser Client
Deferred Transaction - Only
the flush phase is rolled back. The
dataview stays with the current
values.

At Record level, eDeveloper stays
on the record.

At Task level, eDeveloper stays
with the task, and positions the
cursor on the first record.

Physical
The transaction is rolled back.

The dataview is recreated.

At the Record level, eDeveloper
stays on the record and the
cursor appears at the beginning
of the current record.
At Task level, eDeveloper stays
with the task, and positions the
cursor on the first record.

Not applicable for Batch tasks.

Record has been updated Online
The dataview will display the
values after the update, and
eDeveloper will stay on the
current record. If the transaction
is on the record, the record will
be rolled back. If the transaction
is on the task, the task will not be
rolled back.

Not applicable for Batch tasks.

Error Behavior
Reference Guide 1005

Locked Row
Table open failed
Table Create err
Table delete failed
Table copy failed
Commit transaction failed
Open transaction failed
Internal transaction err
Unable to lock table
Deadlock
Max connections
Fatal err
Insert/Update/Delete
failure
SQL execution err
Invalid SQL command
Invalid open Query Exp
Invalid table name
Table does not exist
Cannot modify R/O table
Record lost
Record has been changed
by another user

Not applicable. eDeveloper never
uses the User Retry option for
these errors.

Error Behavior
Reference Guide 1006

Ignore

Ignore causes eDeveloper to skip the error and to continue to the next record
as explained below.

• Physical

• Batch - continues to the next record.

• Online and Browser Client - continues to the next record according
to the operation that is performed. If it is not possible to park on
the next record because it is locked, eDeveloper will park on the
previous record.

• Deferred - If the error occurs during a non-flush phase, eDeveloper
behaves as if it is a physical transaction. If the error occurs in the flush
phase, eDeveloper skips the current command, and continues to the next
command.

DBMS Errors

You can specify whether eDeveloper displays DBMS messages for fatal or
unexpected errors.

• Yes - displays DBMS messages. If this parameter is set to Yes, it overrides
the Display Full Messages setting (Settings/Environment/Preferences).

• No - does not display DBMS messages.

Scope

The Scope property allows for the following options:

i The Ignore option for the Physical mode corresponds to
the Skip option in previous Magic versions. It skips the
whole record cycle - Record Prefix, Record Main, and
Record Suffix. The Ignore option for the Deferred mode
only skips the relevant command and not the whole
record cycle, because the commands in the Deferred
mode are not executed in correlation with the record
cycle.
Reference Guide 1007

• Task - executes the error handler triggered in a specific task.

• SubTree - executes the error handler triggered in a specific task and its
sub-tasks.

• Global - executes the error handler triggered only in the Main Program.
This option is relevant only for handlers defined in a component, and not in
the internal (hosting) application.

Propagate

You can propagate an event to an event handler defined in a higher level.
When eDeveloper regards the event as not handled, the dispatcher searches
for an event handler at the next level.

Enable

Lets you enable or disable the error handler. This property can be an
expression. If it evaluates to No, the handler will not intercept the error.

Operations

The number of operations listed in the Operation repository.

Error Information

The information about the error is available to you through a series of
functions that can be evaluated even before entering the handler. With this
information you can decide to disable or enable a user-defined error handler.
The functions are:

• ErrTableName - Returns the physical name of the table on which the error
has occurred. If you have main and linked tables, this function can be used
to determine where the error occurred. This function is only relevant for
errors that are connected to a table.

• ErrDatabaseName - Returns the name of the database on which the error
has occurred.
Reference Guide 1008

• ErrDbmsCode - Returns the DBMS error code. This can be useful for fatal
and unexpected errors, assuming that you are familiar with your DBMS
internal error codes.

• ErrDbmsMessage - Returns the original DBMS error message for fatal or
unexpected errors.

• ErrMagicName - Relevant if the error handler is set to Any error. Returns
the eDeveloper literal of the error. This function can be used to handle
several errors that share the same operations.

• ErrPosition - Provides a reference to the position of the record on which the
error occurred.

For more information, refer to Chapter 8, Expression Rules.

Runtime Error Handling

When eDeveloper encounters an error situation, the eDeveloper error handling
mechanism searches for a defined error handler to intercept the error in the
same task, according to the error name. If the error handler exists,
eDeveloper performs the operations that are defined for the handler, and then
performs the corresponding action according to the Engine Directive property
that was evaluated by the handler.

The search for an error handler is similar to the search for an event handler. If
the handler does not exist in the task, higher task levels are searched for an
appropriate handler, according to the error name.

If the required error handler does not exist, and a handler for the Any error is
defined, the error handler for the Any error is executed.

Task Range According to a Record’s Position

An important feature for error handling is to provide you with a method to
display the error record or the range of records according to its position.

In eDeveloper Version 9:
Reference Guide 1009

• You can locate a task according to a specific position.

• The CurrPosition function returns the current record’s position. For more
information, refer to Chapter 8, Expression Rules.

• The position of the record on which the error occurred is returned through
the ErrPosition function.

Range/Locate Properties

The following Range/Locate properties are located in the Usage field of the
Range/Locate dialog. These properties are enabled only when you define an
expression in the Position field.

• Range From - Lets you enter an expression that indicates the position of
the record from which the task will range. There is an AND operation
between the Range field in the Select operation, the task’s range
expression, and the Range From property. If the record does not exist, no
records are displayed.

• Range On - Lets you enter an expression that indicates the position of a
single record to which the task displays. There is an AND operation
between the Range field in the Select operation, the task’s range
expression, and the Range From property. If the record does not exist, no
records are displayed.

• Locate Position - Lets you enter an expression that indicates the position of
the record to which the task will locate. You can have a logical AND
operation between the locate field in the Select operation, the locate
expression on the task, and Locate Position.

These properties are relevant only for the Main table of the task. You cannot
perform range or locate on linked tables according to their positions.
Reference Guide 1010

Applications from Previous Versions

Error Property Values for Online and Batch Tasks

The table below shows how eDeveloper Version 9 sets the error strategy for
online programs imported from previous Magic versions.

Previous Magic Version New

Task (only the highest level is referenced)

Transaction - Abort in the On Error

Sets the error
strategy of the new
task to Abort.

Record (only the highest level is
referenced)

Transaction - Abort in the On Error

Sets the error
strategy of the new
task to Abort.

Task (only the highest level is referenced)

Transaction - Retry in the On Error

Sets the error
strategy of the new
task to Recover.

Record (only the highest level is
referenced)

Transaction - Retry in the On Error

Sets the error
strategy of the new
task to Recover.

Record level transaction - Skip in the On
Error

Sets the error
strategy of the new
task to Abort. Adds
an error handler for
the error type Any
with the Engine
Directive set to
Ignore.
Reference Guide 1011

The error strategy for batch programs imported from previous versions of
Magic is described in the tables below.

Batch Tasks - On Record Locked

Previous Versions New

On Record Locked = Retry Default for both error strategies - no
change needed.

On Record Locked = Abort Adds an error handler on error Locked
Row with the Engine Directive of Abort
Task.

On Record Locked = Skip Adds an error handler on error Locked
Row with the Engine Directive of
Ignore.

Batch Tasks - On Access Fail

Previous Version New

On Access Fail = Skip No error handlers

On Access Fail = Retry Error handler for Any error with the Enabled
property set to an expression that checks if
there is no transaction. The handler has the
Engine Directive set to Auto Retry.

On Access Fail = Abort Error handler set to Any error, if there is no
transaction. The handler has the Engine
Directive set to Abort Task.
Reference Guide 1012

Batch Tasks - On Change

Previous
Version

New

Transaction -
Abort in the On
Error

Sets the error strategy of the new task to
Abort.

Transaction -
Retry in the On
Error

Sets the error strategy of the new task to
Recover.
Reference Guide 1013

End-User Menus & Help 12
his chapter explains how to define the menus and help in your
application. You can determine menu contents, accessibility, size, and
format. The different menu formats include pulldown menus, toolbar

buttons that activate menu options, and context menus. eDeveloper provides
a facility to design end-user help information in the form of help screens,
prompts, and tooltips. You can design help screens that can be viewed when
the user requests help from forms, or from individual form controls. In
addition, you can design help messages that are automatically displayed for
form controls. When you define a data item, a model, a form, a control, or a
menu item, you can specify associated help information.

In this chapter:

Menu Formats
Pulldown menus cascade down from the menu bar. Toolbar buttons are
shortcuts to menu options. Context menus are activated by clicking the right

• Menu Formats

• Menu Repository

• Menu Definition Repository

• Menu Authorization Options

• Menu Properties Dialog

• Help Screen Repository

• Help Types

T

Reference Guide 1014

mouse button, and are displayed where the mouse is right-clicked on the
screen.

Pulldown Menus

For every new application, eDeveloper generates a set of default pulldown
menus, including File, Edit, Options, and Help menus, with all the basic options
a Runtime application needs. You can then change, delete, or extend these
default menus using the procedures described in this chapter.

You can design your application to have up to ten levels of pulldown menus,
including the menu bar as the top level. The menu bar entries are displayed
when the user selects the application in Runtime mode. For most applications,
you would probably have at least one menu entry that has a program name
and connects the menu to an entry in the Program repository.

You can define a toolbar button as a shortcut to any pulldown menu option.

Context Menus

Context menus appear when the user clicks the right mouse button in Runtime
mode.

eDeveloper generates a default context menu for each application. You can
also define other context menus that override the default context menu. You
can associate context menus with specific tasks to make these menus context-
sensitive.

You can design your application to have up to ten levels within a context
menu.
Reference Guide 1015

Menu Repository
You define pulldown and context menu structures in the Menu repository.

The Menu repository contains one default pulldown menu structure and one
default context menu structure. These default menu structures cannot be
deleted from the Menu repository.

In the Menu repository you can define additional context menu structures to
have as many context menus as you want in an application. However, you
cannot define additional pulldown menu structures because you can only have
one pulldown menu bar in an application.

You can zoom from each menu structure entry in the Menu repository to a
Menu Definition repository and define the specific menus and their options for
each menu structure. You can define up to ten menu levels for each menu
structure.

The default context menu set is automatically present for applications that run
as an eDeveloper client. When you define a context menu set in addition to the
default context menu and you associate this set to a specific task, the defined
set overrides the default set when the context menu is activated from the
context of the associated task. If a task has no context menu associated with
it, the default context menu appears when the right mouse button is clicked
from the context of that task.

You can associate a menu structure to a specific task in the Attached context
property in the Advanced tab of the Task Properties dialog.

Entries in the Menu repository are either default or user-defined menu
structures.
Reference Guide 1016

Menu Name

The Menu Name column is the only accessible column in the Menu repository.
This column contains the logical name of the menu structure, which is not the
same as the menu name that the end-user sees at runtime.

Menu Type

The cursor cannot park in the Menu Type column. When you create a new
menu structure entry, the new Menu Type will always be Context menu.

Menu Definition Repository
You can zoom from each menu structure entry in the Menu repository to a
Menu Definition repository and define the specific menus and their options for
each menu structure. You can define up to ten menu levels for each menu
structure.

Menu
Structure

Description

Default When a task does not have a specific pulldown or
context menu attached to it, eDeveloper displays
the default pulldown and context menu structures.
The pulldown and context menu structures
imported from previous Magic versions are
imported as default menu structures.

User-
defined

User-defined context menu structures can be
attached to any online task for an eDeveloper
client application.
Reference Guide 1017

Entry Types

The menu entry types in the Menu Definition repository are:

• Program - Contains a program number from the Program repository. The
corresponding program name appears on the menu. When selected by the
end-user at runtime, this program is executed.

• OS Command - Contains an operating system command. When selected by
the end-user at runtime, this operating system command is executed.

• Event - Contains an eDeveloper Action. When selected by the end-user at
runtime, the function associated with this eDeveloper Action is executed.

• Separator - Contains a horizontal line at this position. Available for context
menus only.

• Menu - Contains an end-user menu.

Entry Text

What you enter in the Entry Text column becomes the text entries that the
end-users see displayed in the menu at runtime.

For a pulldown menu at the top level, the name in the Entry Text column will
appear on the menu bar. For pulldown submenu levels and for all context
menu levels, the name in the Entry Text column becomes a menu option that
invokes either a submenu, a related display, or an action.

You can specify an access key for any level pulldown or context menu by
putting an ampersand, &, before the letter to be underlined. When the menu
is displayed at runtime, typing the underlined letter selects the menu option.

Entry Name

This column contains the logical name of the menu entry itself, which does not
appear in the menu that the end-user sees. Note that the cursor can park on
the Entry Name parameter for pulldown menus.
Reference Guide 1018

Menu Parameters

Each parameter category in the Menu Params column is associated with one
menu entry. You can zoom from the Menu Params column to access the menu
definition of that entry and see the next submenu level in the menu hierarchy.

Figure 12-1 The Menu Definition Type Entry
Reference Guide 1019

.

Menu Access Key

The Acc Key column is only enabled in Default Pulldown menus.

When the entry type is not a menu or separator, you can zoom from the Acc
Key column to open a dialog and define shortcut keys to the menu options.

Entry Type Menu
Params

Meaning Values

Program Program
Number

Zoom to display and select
a program from the
Program list.

A program
number.

OS
Command

OS Command An immediate exit to an
operating system
command. Type in any
executable operating
system command,
including scripts or batch
files, or zoom to select a
file from the Windows File
dialog.

An alphanumeric
string. An
expansion box
opens
automatically. If
the OS command
is left blank,
eDeveloper exits
to an operating
system shell
whenever this
menu option is
selected at
runtime.

Event Action Zoom to display and select
an action from the Action
list, to give the end-user
control of the environment.

Any eDeveloper
Action.

Separator N/A Display a horizontal line in
the menu to segregate
groups of preceding items
from subsequent items.

None.

Menu Sub-lines Zoom to display a Menu
Definition repository for
the next submenu level in
the menu hierarchy.

Number of
options on this
submenu level.
Reference Guide 1020

Menu Authorization Options
When defining menus, you can click Authorize on the Options menu to open a
Rights Assignment dialog, as shown in Figure 12-2, and set the authorization
for developer access rights to the menu systems. You can specify which
developers have rights to Query, Modify, Delete, and Create.

End-user access rights to menus and individual menu items are specified in
the Menu Properties dialog, accessed by selecting Edit/Properties, and
described below.

The Menu Properties Dialog
You can select Edit/Properties from a Menu Definition repository to open the
Menu Properties dialog, as shown in Figure 12-3. The contents of each
Properties dialog varies according to the type of Menu entry to which it applies.

From the Properties tab you can assign an Access Right to the menu item. The
Access Right number you enter in the Menu Properties dialog determines
whether or not the end-user has access to this menu item. An end-user
without the right specified here will not see this entry on the menu.

Figure 12-2 The Rights Assignment Dialog
Reference Guide 1021

A special Menu Properties dialog opens for OS Command menu entries. In
addition to the Access Right property, you can also specify how to open the OS
session in the Show and Wait fields.

The Menu Properties dialog contains three tabs:

• Properties tab

• Toolbox tab

• States tab

Properties Tab

Rights

This property determines the end-user access to menu entries of an
application menu at runtime.

Figure 12-3 The Menu’s Properties Dialog
Reference Guide 1022

Help

This property determines if a help screen is accessible for an application menu.
Zoom to the Help list to select the appropriate Help screen to connect to the
application menu. For more information, refer to the Help Screen Repository
section in this chapter.

Prompt

This property determines if a Prompt Help is connected to an application
menu. Zoom to the Help list to select the appropriate Prompt Help to connect
to the application menu.

Show

The Show property is only accessible for OS Command menu entries. This
property determines the appearance of the external program. The possible
values of the Show property are Hide, Normal, Maximize, and Minimize.

• Hide - Specifies that the external program will run behind the visible
windows. Certain external programs, such as drvspac.exe, will ignore this
setting because they cannot be hidden.

• Normal - The default setting. Specifies that the external program will run in
the top visible window.

• Maximize - Specifies that the external program will run in the top visible
window and that its window will be maximized to the full screen.

• Minimize - Specifies that the external program will run minimized, and that
only its icon will be visible.

Wait

The Wait check box lets you specify if the eDeveloper program will wait for the
called program to complete before it continues. The developer can only access
this property from the OS Command line.

• Not Selected - This is the default setting. When the Wait check box is not
selected, the eDeveloper program will not wait for the called program to
complete before continuing.
Reference Guide 1023

• Selected - When the Wait check box is selected, the eDeveloper program
will wait for the called program to complete before the eDeveloper
program continues.

Arguments

This property is only available for Program menus.
The Argument repository, accessed by zooming from the Argument (Arg) field,
displays the passed arguments.
You access the list of variables by zooming from the Variable (Var) column in
the Argument repository. For more information, refer to Call Operations in
Chapter 7, Operations.

Toolbox Tab

Image For

This property specifies where the option image appears. The available options
are:

• None - no menu image is displayed at all

• Both - the menu image is displayed both in the toolbar and menu

• Toolbar - the menu image is displayed in the toolbar only

• Menu - the menu image is displayed in the menu only

Tool Image

A User Image file based on the eDeveloper Image file description. This image
will be displayed on the toolbar button.

Tool Number

A number of an Internal eDeveloper image. These images are embedded
inside eDeveloper and are available for selection. Zoom from this property and
Select an image from the Get Image box.
Reference Guide 1024

Tool Group

The number of the group where the tool button is located (0-9999). A
separator will be inserted between groups.

Tooltip

A text string, up to 50 characters long, that will be displayed when the mouse
cursor pauses on the button tool.

States Tab

Checked

Select this check box to display the menu entry with a check mark. A tool
button will appear pressed if this check box is selected.

Visible

Select this check box to display the menu entry or toolbar button, or clear this
check box to hide the Menu entry or toolbar button.

Enabled

Select this check box to show the menu entry or toolbar button as enabled, or
clear this check box to show the menu entry or toolbar button as disabled.

Notes: When the external application runs hidden or silent, it is advisable to
redirect standard output messages of the external program from the screen to
either a disk file or a null file.

Click on a toolbar button to activate the same pulldown menu operation as if it
was selected from the menu.

The toolbar will display all icons as long as they fit into the toolbar window.
Reference Guide 1025

Help Screen Repository
You define end-user Help in the Help Screen repository, which contains the
columns described below.

• # - This column contains an automatically generated sequential number
used by eDeveloper as a Help identifier. You cannot edit this column.

• Name - A descriptive name for the Help.

• Type - The type of Help.

• Folder - If you want this Help to reside in one of the Help Screen folders
defined in the Navigator, click the Folder box and select the appropriate
folder for this Help.

• Public Name - Defines the public name of the Help by which it will be called
by an Internet requester or a Call Remote operation. The public name
must be unique within the application file.

Figure 12-4 The Help Screen Repository
Reference Guide 1026

Help Types
eDeveloper Version 9 supports five different Help types.

• Internal - Magic V5.7-compatible Help

• Prompt - informative message to be displayed in the status bar

• Windows - connection to a Windows WinHelp or HTML Help system

• Tooltip - information about buttons on the toolbars

• URL - browser-based Help

You define each of the eDeveloper Help Types in the Help Screen repository, as
shown in Figure 12-4. The default value for a Help Type is Internal. You can
click the Type box and select another type. Note that the actual contents of
Windows Help and URL Help are defined outside of eDeveloper.
Reference Guide 1027

Internal Helps

Magic V5.7-compatible Helps are referred to as Internal Help. In this type of
Help you zoom to a default edit control and place the text of the Help there.

From the Internal Help Edit screen you can select Edit/Properties or press
CTRL+P to open the relevant Help Properties sheet.

In the Text property on the Help Properties sheet, you can enter the message
to be displayed on the status bar when the Prompt help is invoked. You can
click the Ellipsis button or zoom to open a text box, as shown in Figure 12-5,
and see the entire message, if the space provided is not sufficient.

The Internal Help properties that you can set are organized by Input,
Appearnace, and Navigation.

Input

• Title Bar - Specifies whether the Help form has a title bar. The title bar text
is taken from the Name column of the Help Screen repository. Without a

Figure 12-5 Internal Help Properties
Reference Guide 1028

title bar, the end-user cannot move the form nor display Minimize and
Maximize buttons.

• System menu - Specifies whether or not the end-user can access the Help
screen from the System menu. The System menu is only enabled when
Yes is specified.

Appearance

• Font - Specifies the font style for the Help screen. Zoom to open the Font
repository.

• Border Style - Specifies the style of the border. The available styles are
Thick, Thin, and No Border.

Navigation

• Left - Positions the Help screen at the left of the screen.

• Top - Positions the Help screen at the top of the screen.

• Width - Specifies the width of the Help screen.

• Height - Specifies the height of the Help screen.

Prompts

From a Prompt Help line in the Help Screen repository, you can select Edit/
Properties or press CTRL+P to open the relevant Help Properties sheet and
create a Prompt Help.

In the Text property, you can enter the message that will be displayed on the
status bar when the Prompt help is invoked.
Reference Guide 1029

Windows WinHelp Connections

A Windows-type help is a hook to the Windows Help system. When a Windows-
type help is declared in the Help Screen repository, you can zoom to the
Windows Help Properties sheet, as shown in Figure 12-6.

The Windows Help properties are:

• Help filename - This can be inherited from the Environment dialog entry or
you can zoom to an Open File dialog to select another file name. Once
another file name is selected, that file will be the default within the
application until a different file name is selected.

• Help command - From the Help command pulldown menu, you can select a
command to be passed to the Windows Help Engine. The available
commands are:

• Context - Displays Help for a particular topic identified by a context
number defined in the [MAP] section of the .HPJ file.

• Contents - Displays the Contents topic as defined by the Contents

Figure 12-6 Windows Help Properties
Reference Guide 1030

option in the [OPTIONS] section of the .HPJ file.

• Setcontents - Designates a topic as the Contents topic and
determines which Contents topic Help should display when a user
presses the F1 key.

• Context Popup - Displays a particular Help topic in a popup window.
The topic is identified by a Context number that has been defined in
the [MAP] section of the .HPJ file.

• Key - Displays the topic found in the keyword list that matches the
keyword passed in the Data property if there is one exact match. If
there is more than one match, Key displays the Search dialog box
with the topics listed in the Go To list box.

• Command - Executes a Help macro.

• Force file - Ensures that the application is displaying the correct
Help file. If the correct Help file is currently displayed, there is no
action. If an incorrect Help file is displayed, WinHelp opens the
correct file.

• Help on Help - Displays the Contents topic of the designated How To
Use Help file.

• Quit- Informs the Help application that Help is no longer needed. If
no other applications have asked for Help, Windows closes the Help
application.

• Help Key - A number or string that identifies the Help screen. Select a
command from the Help Command list that can be passed to the Windows
Help Engine. The input type for this property varies by the Help command
selected:

• For Context, Setcontents, or Context Popup, enter the context
number for the required help topic according to the selected Help
command

• For Contents, Force file, Help on Help, or Quit commands, the help
key is not required and this property is ignored.

• For Command, define a string containing a Help macro that can be
Reference Guide 1031

executed.

• For the Key command, define a string containing a keyword for the
selected topic.

See the Microsoft Windows Help Application documentation for further
information.

HTML Help

eDeveloper supports HTML Help (CHM) files. Select Windows as the Help Type.

From the Help File Name property, click and browse to the CHM file. The
HTML Help Commands are:

• Context - eDeveloper displays Help for a particular topic identified by a
context number. The context number is displayed in the Help Key property.

• Contents - eDeveloper displays the Contents topic as defined by the
Contents option in the [OPTIONS] section of the HPJ file.

Tooltips

Tooltips provide information about buttons on the toolbar. Tooltips display in a
rectangle when the end-user places the cursor over a button.

To create a Tooltip Help, zoom from the Name setting of a Tooltip Help entry in
the Help Screen repository to the appropriate Help Properties sheet.

The contents of the Tooltip Text field will be displayed when the end-user
places the cursor on a control that the tooltip is attached to.

To attach a tooltip to a control, use the Tooltip setting in the Input tab of the
GUI Control Properties dialog. The display will remain on the user’s screen for
the period of time defined in the Tooltip Timeout setting in Settings/
Environment/Preferences or until the cursor is moved.

The font used will be the Tooltip Font as defined in the Font repository. No
choice of color is provided. The maximum length of a tooltip is 500 characters.
Reference Guide 1032

URLs

The URL entry specifies the browser page that will open when F1 is invoked
from the browser. Click on the right of the URL property in the URL Help
Properties sheet to enter the URL text.
Reference Guide 1033

Authorization System 13
he Magic Authorization System enables developers and certain users to
control access to Magic applications in both runtime and toolkit. This
control is achieved through setting access keys to various Magic

Application elements, and by assigning specific rights to users and user
groups.

In this chapter:

Rights assignment is used to control or restrict access to different elements of
toolkit or runtime, program execution, menu selection, and other application
elements. The Magic Authorization System also provides a means to utilize
underlying database security features for restricted data table access and for
data encryption. To simplify the assignment of a collection of rights to a class
of similar users, the system supervisor can define groups, and can then define
rights and assign them at a group level. Group membership for an individual
user is optional. One user may belong to several groups.

• Rights Repository

• Rights Assignment Dialogs

• Magic Access Keys

• Environment Authorization

• Data Security

• User ID Repository

• User Group Repository

T

Reference Guide 1034

The requirement, “Jan has the right to create records in the customer file,” will
be used in the following sections to illustrate basic features of the Magic
Authorization System.

Magic Security and People’s Roles
The Magic Authorization System consists of a layer of application-level
elements, where pieces of an application are declared accessible for various
actions such as creation or modification, and a layer of environment-level
elements, where roles are assigned to the people using and developing
applications. The bridge between a defined role, such as Manager, and an
allowable access to an application component, such as “is allowed the
customer-deletion right,” is made by the process of Rights Assignment, as
described below.

The developer should consider both runtime aspects of a security system: data
and processing. The data security aspect of Magic’s authorization system
combines Magic facilities with those of the underlying database; it can affect
both the application file itself and the application’s data file. The processing
aspect in turn has two layers: the application layer and the environment layer.

• The Application Layer - where application-specific security is defined, by
the application’s developer. In the application layer, the developer can
define a bank of rights and assign them to the application’s various
dictionaries and elements. Any application element that has an access
right assigned to it will be blocked to users who have not been assigned
this right. Application-layer security can be defined only during application
development.

• The Environment Layer - external to any application, this is where users
are defined and application rights are associated to users. The
environment layer is initially defined by loading a fresh version of Magic,
and can be modified by the Supervisor. This layer contains the bank of
users, user groups, and other authorization components. Environment-
layer security components are accessible to the Supervisor during both
runtime and toolkit.
Reference Guide 1035

Getting Started as Supervisor
A new Magic environment opens with a default Supervisor defined with a blank
password. The first step in accessing the Magic Authorization System is to log
on as a Supervisor, using the Logon dialog (Settings/Logon), as shown in
Figure 13-1.

Rights Repository
The Rights repository lists the name and keys of all the rights defined for the
application. The Rights repository can store 9,999 rights per user.

For our sample requirement, “Jan has the right to create records in the
Customer file,” you could define a key called XYZ, and name it Create-
Customer in an entry in the Rights repository.

Description of the Rights Repository

The Supervisor has exclusive authority to modify the Rights repository,
although any user can view it in a limited way. Magic displays only those rights
owned by the user who is viewing the repository. Repository entries for rights
not assigned to the viewer are filled with asterisks.

Figure 13-1 The Logon Dialog
Reference Guide 1036

To view the Rights repository, select Workspace/Rights from an open
application.

The Rights repository has the following properties:

Name

Name is intended to be a description of the right. Create-Customer is an
example of a descriptive right name. The name given here will appear as part
of the title in Rights Assignment dialogs for this right.

This Name is used in the property of the Rights function.

Key

The Key is the code name used to identify a Right. The example sets XYZ as
the key for creating customer records. This key will be used to associate this
Right to a user, by placing XYZ in that user’s Rights repository.

Public

The valid values for the Public property are:

• Yes - Setting the Public property to Yes means the right is made visible
outside of the application, in the Rights repository for the user or group of
users. Whenever the Supervisor is working with the User ID or Groups
repositories, it is possible to zoom to the Rights repository and see only
those rights that are public.

Figure 13-2 Rights Repository
Reference Guide 1037

• No - Setting the Public property to No means the right is concealed from
the view of the Supervisor when working with the User ID or Groups
repositories. A developer may want to conceal rights to protect certain
core elements of the application while allowing access to the others.

It is not necessary for the Supervisor to know the Key to a public right,
because the right’s name will appear as the search argument in a selection list
that returns the right’s Key. However, the Supervisor can assign a non-public
right to users or groups only by directly typing in the Key - the selection list
will not, of course, include the names of non-public rights.

In general, the non-public classification is intended for assignment to those
rights that are relevant only for developers, and not for end-users. The original
developer of an application may assign certain non-public rights to another
developer, for modifying that application. This feature allows a software house
that has developed an application to sell or license the application to a
programmer, without giving the programmer unrestricted access to the source
code. The programmer can be authorized to use the software for developing
custom applications, while subject to whatever access restrictions the software
house considers appropriate.

Because Public rights appear in a rights selection list that is external to the
application, and because the rights selection list returns a right’s Key, it is
important that access to Public rights be protected. This protection is
accomplished when a developer defines the Public Rights Access key in the
Application Properties dialog; if a Public Rights Access key is specified, Magic
requires that this key also be specified in the supervisor’s Rights repository.
The supervisor cannot learn the Public Rights Access key to an application
from Magic.

The Rights function allows the developer to query whether a user has a
particular right. To facilitate use of this function, the Expression Rules
repository includes a button, labeled Rights, that allows access to the Rights
repository.

Folder

Displays the name of the folder in which the right entry is stored. You can
create a folder by highlighting the Rights icon on the Navigator pane and
Reference Guide 1038

clicking F4. Folders let you group rights entries. For more information about
Folders, see Chapter 1, Introduction.

Public Name

Defines the public name of the right entry in which it will be called by an
Internet requester or a Call Remote operation. The public name must be
unique within the application file.

Rights Assignment Dialogs
The Rights Assignment dialogs are used to identify which activities within
various application elements are to be permitted. These activities may be
relevant to both toolkit and runtime modes. When the developer attempts to
perform an activity (for example to create a new line in the Table repository, or
to invoke a program), Magic will execute the attempted activity only if the
developer owns the right that corresponds to that activity. Similarly, when an
end-user attempts to add a new customer to the Customer file, Magic will add
the customer only if the end-user owns the right to add new customers.

The Rights Assignment dialogs are accessed by selecting Options/Authorize
from anywhere in the Model, Table, Program, Help, or Menu repositories, or
through the Application Properties dialog.

Only the Supervisor and the application’s Super Key holders (explained below)
have unrestricted access to Rights Assignment dialogs. For each activity
appearing in a Rights Assignment dialog, these people can type in the number
of a right or zoom into the Rights repository to select the number and name of
the right whose holders are to be authorized to perform the given activity.
Once an activity has been authorized, all of the right’s holders will see the
number and name of its corresponding right.

It is possible to associate one right with more than one Magic activity.

An activity that has not been associated with any right is unprotected. Because
access to the activity is unrestricted, it can be invoked by any Magic user.
Reference Guide 1039

Any user or developer who has a particular right displayed in one of the Rights
Assignment dialogs can view the relevant dialog line, can change the entry to
a different right that he or she holds, and can even remove the right.

For example, Jan, as the holder of right number 4, is authorized to use the
Automatic Program Generator for a given file. Another user who holds this
right as well as right number 6 can change the APG property in the Rights
Assignment dialog accessed in the Table repository from 4 to 6, meaning Jan
can no longer use APG.

Someone who does not have a particular right, however, cannot modify or
even view the corresponding Rights Assignment dialog property. A user or
developer who does not have right number 6 will see an asterisk in the rights
number entry for the APG property and a line of asterisks where its description
would normally appear.

Model Repository Rights Assignment

When you access the Rights Assignment dialog from the Model repository, the
following property meanings will be applied to its entries:

Query

The Query property is assigned a rights number that determines the level of
authorization for the user to view models. Updates will not be prevented, but

Figure 13-3 Assigning Model Repository Rights
Reference Guide 1040

they will not be saved. Note that without Query rights, the user cannot open or
view any program, help screen, menu, model, table, or object.

Modify

The Modify property is assigned a rights number that determines the level of
authorization for the user to update models. This property also controls the
ability to export the model definitions.

Delete

The Delete property is assigned a rights number that determines the level of
authorization for the user to delete models. Note that for the users to delete
models, they must also have the Modify rights.

Create

The Create property is assigned a rights number that determines the level of
authorization for the user to create new models for the application. Note that
for users to create models, they must also have the Modify right.

Table Repository Rights Assignment

When you access a Rights Assignment dialog from the top of the Table
repository when no entry is highlighted, you can assign Create, Query, Modify,
Delete, and APG rights. These rights effect all entries in the Table repository.

Figure 13-4 Defining Table Repository Rights
Reference Guide 1041

When you access the Rights Assignment dialog from a specific entry in the
Table repository, the following property meanings will be applied to that
repository:

• Query

• Modify

• Delete

• Create

• Execute/APG - The Execute/APG property holds the number of the right to
which the user is authorized to use the Automatic Program Generator
facility to generate programs from the entry.

Query, Modify, Delete, and Create properties are explained in the Model
Repository Rights Assignment section on page page 1040.

Program Repository Rights Assignment

When you access a Rights Assignment dialog from the top of the Program
repository when no entry is highlighted, you can assign Create, Query, Modify,
Delete, and Execute rights. These rights effect all entries in the Program
repository.

Figure 13-5 Defining Program Repository Rights
Reference Guide 1042

When you access a Rights Assignment dialog from a specific entry in the
Program repository, the following property meanings will be applied to that
program:

• Query

• Modify

• Delete

For more information on the above properties, refer to the Model Repository
Rights Assignment section on page page 1040.

• Execute/APG

The Execute/APG property holds the number of the right to which the user is
authorized to execute the program at runtime.

While the Execute property allows only Go/No-Go assignment, a finer-grained
security scheme for execution can be implemented by using the functions
Rights() and USER() within the program (these functions are detailed in the
chapter). For example, insertion point parking and even user input can be
restricted on the basis of user rights. Moreover, by using an expression for the
visible property of a control, it is possible to make controls invisible to
particular users on the basis of their User IDs and authorization privileges. A
conditional Verify Exp operation can similarly restrict certain activities, such as
entering values for a control outside a given range.

Note: the Execute right is relevant only in Runtime mode, while the other
Program repository rights are relevant only in Toolkit mode.

• Create

The Create property is accessible only from above the first line of the Program
repository, when no entry is highlighted. The Create property holds the
number of the right whose owners are authorized to create new programs for
the application.
Reference Guide 1043

Help Screens Repository Rights Assignment

When you access the Rights Assignment dialog from the Help Screens
repository, the following property meanings apply:

• Query

• Modify

• Delete

• Create

For more information on these properties, refer to Model Repository Rights
Assignment section on page page 1040.

Figure 13-6 Assigning Help Screen Rights
Reference Guide 1044

Menu Definition Rights Assignment

When you access a Rights Assignment dialog from either the Context or Pull-
down Menu Definition repository, the following property meanings will apply:

• Query

• Modify

• Delete

• Create

For more information on these properties, refer to Model Repository Rights
Assignment section on page page 1040.

Runtime Menu Access Rights

The preceding rights are used to control developer access to menu definitions.
In addition, the runtime behavior of each menu item can be controlled by
assigning an access right to that item. If at runtime a user does not have the
access right, then the menu item, and all of its descendent menus, will not
appear.

Figure 13-7 Assigning Menu Definition Rights
Reference Guide 1045

To assign an access right to a menu item, highlight the desired menu item in
the Menu Definition repository, and select Edit/Properties. Then, in the menu’s
Properties dialog, assign the number of the right to the Access Right property.

Component Repository Rights Assignment

When you access the Rights Assignment dialog from the Component
repository, the following property meanings apply:

• Query

• Modify

• Delete

For more information on the properties above, refer to Model Repository Rights
Assignment section on page page 1040.

• Create - This property is only accessible from the first line of the
component repository, when no entry is highlighted. The Create property
holds the number of the right whose owners are authorized to create new
components in the application.

• Execute/APG - This property holds the number of the right to which the
user is authorized to execute the component items at runtime.

Figure 13-8 Assigning Component Rights
Reference Guide 1046

Application Properties Dialog Rights Assignment
The following Access keys are displayed when opening the Application
Properties dialog and by selecting Options/Authorize.

• Query

The Query property holds the number of the right whose owners are
authorized to examine, but not modify, the Application Properties dialog.

• Modify

The Modify property holds the number of the right whose owners are
authorized to modify the Application Properties dialog. Without owning this
right, a user who wants to export or import a given Magic element, such as the
Model repository, will not be authorized to export or import the Rights Holders
list associated with the element.

• Flow Monitor Right

You can restrict Flow Monitor access so that only certain users can remotely
monitor the application. Only users allocated with this right can remotely
monitor the application.
Reference Guide 1047

The following Access keys are displayed in the Security tab of the Applications
Properties dialog:

 Application Access Key

When an Application Access key has been defined, only holders of the key can
open the particular application for development or runtime.

Once the Application Access Key property has been entered and the
Application Access key assigned, someone who is not an Application Access
key holder who accesses File/Application Properties will not see the Application
Access key property in the dialog.

Public Rights Access Key

By creating a Public Rights Access key, a developer can improve security for a
given application. The supervisor’s ownership of this key serves to hamper any
attempts of an unauthorized user to remove system password protection by

Figure 13-9 Security Tab
Reference Guide 1048

destroying the Security File (usr_std), which contains all user passwords, and
by then logging in as the supervisor. An unauthorized user lacking this key, will
not be able to find out which rights are associated with which keys in a
particular application. After zooming from the Rights property of the User ID
repository, a bogus supervisor will not be able to see the Rights Name
property, which describes the rights associated with given keys, nor be able to
zoom from the Key property into the full Rights repository.

The Super Right Key

The supervisor can create a Super Right key for an application, to give its
holder all of the rights to all of the application’s activities, for development and
runtime purposes. The holder of the Super Right key does not have to hold
separate rights to individual application activities.

Once the Super Right property has been entered and the Super Right Key
assigned, someone who is not a Super Right Key holder who accesses File/
Application Properties will not even see the Super Right Key property in the
dialog.

Force MVCS Key

The Force MVCS Key property appears only when the Application Properties
dialog is accessed by the owner of the Force MVCS Key. This property holds the
name of the Force MVCS Key.

The supervisor can create a Force MVCS Key for an application to give its
holders the rights of limiting access to one developer in the application.

For a more detailed explanation refer to Chapter 2, Settings.
Reference Guide 1049

Restricting Import and Export

Import and Export of Magic Application Elements

To prevent unauthorized users from exporting Magic application elements, and
then importing them to a different application, the right to import and export
Magic application elements is associated implicitly with the rights to modify
and create those same elements.

If a user has the right to modify a repository (Model repository, Table
repository, Program repository, Menu Definition, Help Screen, Components,
Application Properties) then that user automatically has the right to export the
object. If a user has the right to create an entry in a repository, then that user
has the right to import the repository.

Importing and Exporting Rights

The global action rights for a particular Magic element, such as the Create
right for the Program repository, are exported or imported as part of the
application data section. However, only if the user is authorized to modify the
Application Properties dialog can these rights be exported or imported.

Environment Authorization
The environment layer of Magic’s Authorization System contains all of the
Authorization repositories that are not application-specific. Information in
these repositories applies to all applications within one Magic installation
environment. The repositories at the Environment level of the Magic
Authorization System are:

• User ID repository

• User Group repository

• Secret Name repository

• Logon dialog
Reference Guide 1050

User ID Repository
The User ID repository is where each individual user is assigned a password,
and, optionally, group membership. The supervisor, who has exclusive access
to the User ID repository, can edit the repository by selecting Settings/User
IDs. The supervisor can add or delete User IDs anytime, during development
or runtime. The User ID repository can store 9,999 user passwords and group
associations.

The user supervisor, however, cannot see the passwords of all users.
Passwords are displayed as a string of asterisks (*) if not empty. The user
supervisor can alter passwords of users, but cannot see existing passwords. To
change a password, it is necessary to zoom into a password box, and to enter
the password twice. The password is not displayed while it is being entered. A
non-supervisor user can enter the User ID repository and modify his or her
own password. Changing a password is the only change to the User ID
repository allowed to a non-supervisor user.

Description of the User ID Repository

User ID

An alphanumeric string that will be compared at Logon time to the string the
user enters the User ID property of the Logon dialog. If the Input Password
field in the Environment dialog is set to No, the Logon window will not be
automatically displayed. The User ID property can be queried in programs by
the USER (0) function.

Name

The name of the user. This property is not checked during the logon procedure.
It identifies the user to the supervisor, and it can be queried in programs by
the USER (1) function.

Password

An alphanumeric string that will be compared at Logon time to the string the
user enters the Password property of the Logon dialog. If the Input Password
Reference Guide 1051

property in the Environment dialog is set to No, the Logon window will not be
automatically displayed.

Rights

The Rights column displays a count of the rights keys allocated to the user,
and provides a zoom point to the user’s Rights repository. Because a Rights
key can correspond to more than one right, the count shown may be less than
the user’s total number of individual rights.

The supervisor can zoom from the Rights property to the user’s Rights
repository to select additional rights for assignment to the user at anytime
during development and runtime. This process is described in the next section,
Filling in the User’s Rights Repository.

A user need not have any individual rights assigned.

Groups

The Groups property displays a count of groups to which the user belongs. To
define membership in a group, the supervisor zooms from the Groups property
into the User Groups repository to select a group for the user. A user can
belong to more than one group. The User Groups repository is described
below.

When the User ID repository is displayed, the supervisor can enter additional
free text about the user in a memo property that is accessed by pressing the
Properties button located on the lower right-hand side of the screen.
Information entered in this memo property can be queried in programs by the
USER (2) function.

When the user logs on, Magic compares the User ID and the Password strings
of the Logon screen with those of the User ID repository. Even though a given
user has a unique User ID and Password at the environment level, each
application can apply a different security scheme to that user. Provided there is
at least one entry in the User ID repository, whenever a user tries to access
data or programs, Magic performs the security check. If the user does not
have rights to perform the attempted activity, a message to that effect is
displayed on the message line.
Reference Guide 1052

The Rights Assignment dialogs control access to the application itself during
development, while using the toolkit (development). For programs, end-user
runtime access can also be controlled. For finer control of runtime security
within programs, you can use the Rights() and USER() functions. By using
these functions you can create a custom security system that includes
controlled access to elements within the task, while also controlling access at
the program level. Refer to the Rights and USER functions in the chapter for
more information.

User Group Repository
The User Group repository lists the name and rights of each user group.

Description of the User Group Repository

The repository has the following properties:

Name

Name is a description of a user group.

Rights

The Rights property displays a count of the rights keys allocated to the group,
and provides a zoom point to the group’s Right repository. Because a Rights
key can correspond to more than one right, the count shown may be less than
the group’s total number of rights.

The supervisor can zoom from the Rights property to open the group’s Rights
list and examine the rights owned by a particular group.

The set of keys owned by a given group is constant, regardless of the
application. The rights associated with these keys, however, can vary from
application to application. The list of rights Magic presents for view, when the
supervisor first zooms from the User Groups repository Rights property, is the
group’s set of rights pertaining to the first application that appears in the
Application list. The application’s name appears at the top of the Rights of
Reference Guide 1053

repository. The supervisor can view the group’s rights in a different application
by clicking on the Application button that appears in the lower right-hand
corner of the screen when the Rights of repository is displayed.

The Supervisor Group

The supervisor can assign or add users to the Supervisor Group. All users in
the Supervisor Group will automatically inherit all of the rights of the
supervisor.

The Secret Name Repository
Secret names are intended for use where there is a need to hide information
pertaining to the Authorization System’s implementation from unauthorized
users. For example, Secret Names should be used for Application File Access
keys and Data table Access keys.

The Secret Name repository is identical to the Logical Name repository,
except:

1. Access to the Secret Name repository is allowed only to the supervisor.

2. Secret Names are stored in the security file that is specified as an
Environment property. This security file is encrypted.

A Secret Name can be used wherever a Logical Name can be used, using the
same syntax. Refer to Chapter 2, Settings for an explanation of Logical
Names. Magic will attempt to resolve a logical name through the Secret Name
repository first, before looking for it in the Logical Name repository.

Data Security

Restricting Access to Application Data Tables

Magic provides the means to restrict access to data tables by an access key.
Magic also allows encryption of the data table using the Access key as an
Reference Guide 1054

encryption seed. SQL databases do not provide this feature. These features
are available only when the underlying database provides it. To implement
data table security for an application data table, select Workspace/Tables,
highlight the Table entry in the Table repository, and select Edit/Properties.
Two properties in the Table Properties dialog control file security: Access key
and Encrypt File.

Access Key

The Access key specified in this property will be required for every access to
the data table, by any application, either Magic or external. If the application
does not provide the access key specified in this property, access to the data
will be barred. For Magic applications, an appropriate message will be
displayed.

Note: Always make a table’s Access key a Secret Name. Using a Secret Name
makes access to the table installation-specific, and the Access Key translation
visible only to the system’s supervisor. A different Secret Name translation can
be used for different installations.

Encrypt File

If the Encrypt File property is set to Yes, the file will be encrypted, using the
Access key as the encryption seed. Encryption may affect system
performance. When a file is encrypted, it cannot be deciphered by an external
access that is not aware of both the encryption method and the encryption
seed.

Warning: If encryption or Access keys are used, the user must be sure to keep
the Access key in a safe place. There is no way to access the file without the
Access key.

Restricting Access to the Application File Itself

The Access key specified in this property will be required for every write access
to the application file, by any user, either Magic or external. If the application
does not provide the Access key specified in this property, write access to the
application will be barred. If an access key is specified, Magic will instruct the
Reference Guide 1055

underlying database that holds the application file to encrypt the file using the
Access key as encryption seed. The application file will remain accessible for
read-only purposes by any Magic system. External applications trying to
access the Magic application file will fail. Application file encryption will prevent
analysis by external programs. There is no need to supply an application’s
access key when deploying the application. The application’s access key must
always be specified when further development is required.

Whenever an access key is added or removed, Magic will prompt for
confirmation of Encryption or Removal or File access restrictions. The prompt
appears when leaving the Applications Repository editing session. Whenever
you leave an Applications Repository editing session, Magic scans all the
application entries for changes in access key values. Application file encryption
may require some processing time to complete.

A final reminder: be sure to specify the Application Access key as a Secret
Name. An application’s access key is stored in the MACIG.INI file, which is an
unsecured file, and using a Secret Name hides the value of the Access key.

HTTP Authentication
A string that represents an HTTP address that lets you activate and post
information. When an eDeveloper client accesses a web server that requires a
user name and password, the URL can be defined as
HTTP://User:Password@[URL].

You can use secret names, for example:
HTTP://%user_secretname%:%pass_secretname%@[URL]

HTTP Authentication can be used for the HTTPGet function, HTTPPost function,
and WSDL Assist.
Reference Guide 1056

Components 14
ou can use eDeveloper to define objects for a variety of different
component types. The interoperability and reusability of distributed
objects lets developers build systems in different programming

environments by sharing the same components.

In this chapter:

• Component Frameworks

• Component Repository

• Component Runtime Behavior

• Components and the Main Program

• Web Service Interface Builder

• Enterprise JavaBean Interface Builder

Y

Reference Guide 1057

Component Frameworks
You can define application objects as components. Exporting components lets
you share resources among eDeveloper applications and also facilitates the
distribution of application revisions as shown below.

Components are listed in the Component repository. The interface displays
the application objects that can be shared with other applications. The objects
that can be shared are:

• Models

• Tables

• Programs

• Helps

• Rights

Figure 14-1 The Component Framework Architecture
Reference Guide 1058

• Events

• Environment settings

The loaded component is integrated into another application and appears in
the Component repository. The component objects can be selected from their
respective repositories.

Component Repository
The Component repository lists the objects defined as components in an
eDeveloper application. This repository has the following columns:

• Entry # - The row number

• Name - The component name, as listed in the eDeveloper Component
Interface file (MCI)

• Description - Additional component information provided in the MCI file

• Folder - The folder where the component entry is stored

From the Component repository, you can:

• Reload a component interface or load a new component by selecting
Load/Reload in the Options menu

• Delete a component by pressing F3

Figure 14-2 Component Repository
Reference Guide 1059

• Display the properties for a selected component by pressing CTRL+P

• Show the component interface by zooming from the Name column

• Assign rights to a component

Loading a New Component

When you zoom on an empty component row, eDeveloper opens a dialog box
that lets you select the component type. Once the component type is selected,
you must select the Magic Component Interface (MCI) file using the Load/
Reload option in the Options menu. eDeveloper loads the component
interface and corresponding application file.

Deleting a Component

When you delete a component, the component interface is removed from the
application file. but the references to the component in the application are not
removed. If you try to access a deleted component, eDeveloper displays an
unknown reference indicator, two question marks (??).

Figure 14-3 Component Interface File Open Dialog Box
Reference Guide 1060

Magic Component Properties

Press CTRL+P to open the Component Properties dialog box from the
Component repository. The Component properties are displayed in two
categories, General and Settings.

The General properties let you enter information about storing, loading and
accessing the MCI file, as shown below in Figure 14-4.

These properties are:

• Revision - The revision number assigned to a loaded component. This
property cannot be modified.

• Application File - The path name used for the source application. The
default location is where the Magic Component Interface (MCI) file is
stored. The application file name is written in the MCI file. The application
file value can be modified.

• Application Prefix - The two-letter code used as the application identifier.

Figure 14-4 Component Properties - General
Reference Guide 1061

• Application Database -The database where the component data is stored.
The value is set from the Magic Component Interface Builder, but can be
modified.

• Access Key - You can enter the component’s access key. The component’s
access key must match the application’s access key.

• Flat MCF - You can determine if the application file is saved as a Magic Flat
File.

• Load Immediate - You can select this check box to load the components
together with the application load. The default value is read from the MCI
file and can be modified.

The Setting properties let you define the help information for the MCI file, as
shown in Figure 14-5.

Figure 14-5 Component Properties - Settings
Reference Guide 1062

These properties are:

• Help File - You can enter the path name to the help file. The default
location is in the same directory as the MCI file. The help file name is
written in the MCI file.

• Help Key - You can define keywords to access the help file for a component
entry.

Objects Connected to the Magic Component Interface

To access the Component Items repository, zoom (F5) from the Name
column in the Component repository.

The component interface is based on the objects that are included in the
component and is organized by tabs. Each tab represents a component object
type, such as Models, Tables, Programs, Helps, Rights, and Events. The
individual component objects are listed under the required component
object type.

Component Runtime Behavior
The environment settings selected for a component are accessed for any
component object that the end user opens in the application. The environment
settings for a component appear in the Environment screen, which is accessed
by pressing the Environment button in the Component Items repository.

All environment variables not specified for a component are inherited from the
environment settings of the application. The environment variables that can be
associated with a component are:

• Century Start

• Batch Event Interval

• Allow Create in Modify Mode

• Allow Update in Query Mode
Reference Guide 1063

• ISAM Transactions

• Keyboard Idle Seconds

• Center Screen in Online

• Reposition after Modify

• Date Mode

The following property settings add new lines to the Magic.ini file when the
component is loaded to the new application:

• Database properties

• DBMS properties

• Server properties

• Services properties

• Logical Names

Comments appear before these additional lines to identify the properties that
are associated with the component.

After the component is loaded to the new application, the properties
associated with the component are available to all application objects.

Deleting a component does not remove the component properties that are
listed in the Magic.ini file.

INIPut Function Behavior

The INIPut function behavior can differ depending on the context in which the
end user accesses the component. If the end user accesses a task from a
component and uses the INIPut function, the following behavior can occur:

• If the force write parameter is True, the Magic.ini file is updated and the
change affects all active contexts.

• If the force write parameter is False and an environment setting is
associated with a task from the component, the change affects all the
Reference Guide 1064

programs in the current context only. If the end user enters the
component task, the environment variable must receive the environment
value again from the settings associated with the component.

• If the force write parameter is False and the environment variable was not
specified in the component, the environment variable is updated only for
the current task.

Components and the Main Program
The Main Program cannot be exported as part of a component because this
program cannot be executed by a Call operation.

When an object from another component is used (a program, a table, or an
event) it must first be preceded by the execution of the Main Program of that
object’s application. This means that the first time an object from another
component is used, the Task Prefix of its Main Program is executed and its
variables are initialized.

An exception to this rule is for components that are used immediately, which
means that the component is loaded when the application is opened, and not
when the component is actually used. For these components, the Main
Program of the component is executed as soon as they are loaded.

The Task Execution Stack should not be affected by the component’s Main
Program execution. The program of the component is called by a parent
program, and not its Main Program. The Component’s Main Program is inserted
in the Task Execution Stack just after the application’s Main Program and
before all other programs.

When an application is terminated before the Task Suffix of the Main Program
is executed, the Task Suffix is executed in the order opposite to the Task Prefix
execution.
Reference Guide 1065

Component Interface Builder Repository
The Component Interface Builder repository lets you build an MCI file.
Click the Magic Interface command on the Components menu to open the
Component Interface Builder repository, as shown in Figure 14-6.

To create a Magic component, fill in the columns as explained below:

• Component Name - The component name is mandatory and cannot be
longer than 30 characters.

• Application Name - eDeveloper automatically displays the name of the
current application. The application name cannot be changed.

The item types that can be assigned in an MCI file are:

• Models

• Tables

• Programs

• Helps

• Rights

Figure 14-6 Magic Component Builder Repository
Reference Guide 1066

• Events

• Environment

Zoom from an item column to assign a specified item type. Each item column
automatically displays the number of assigned items for that item type.

Magic Component Builder Properties

You can specify the following properties:

• Description - You can enter the MCI file description

• Revision - You can enter the MCI file revision number

• MFF - You can specify that the component is a Magic Flat File application.
Note that when this application type is specified, the Application Database
is disabled.

• Application File Name - You can specify the current application file.

• Application Database - You can specify the database of the MCF file.

• Help File Name - You can specify The help file path and name.

• Help Key - You can specify the key combination that opens the component
help file.

Item Type Repository

The Item Type repository displays the items assigned to the selected type.
The columns of this repository are described below:

• Name - eDeveloper automatically sets the specified item according to the
name selected from the list of items. Click the Add Items button to
display the items that can be selected. Items are only displayed for
programs that have a specified public name. The item name cannot be
changed.

• Public Name - eDeveloper Automatically displays the public name of the
selected program.
Reference Guide 1067

• Remarks - You can add reference information about the item.

• Help Key - You can enter a number that can be set to open a help page
from the help file specified in the Component properties. The help key
cannot be more than 30 characters.

Environment Repository

In the Environment repository, choose from the following categories to see
the list of items you can add to an MCI file:

• Environment Settings

• Servers

• Services

• Databases

• Logical Names

Click the Add Items button to select the environment options for the specified
category.

Adding an Item

To add an item:

1. From the Magic Component Builder repository, specify the
component name.

2. Zoom from the required item columns (for example, Models, Tables,
Programs) to enter the Item Type repository.

3. Click the Add Items button to open that Item list box.

4. From the Item list box, select the required item. The item appears in
the Item Type repository. The number of items is updated in the
item column of the selected type.
Note: Items are displayed on the selection list only when the Magic
item has a public name. The public name creates a connection
Reference Guide 1068

between the called item and the host application. In the case of
duplicate public names for the same item, the engine accesses the
first name encountered.

 Generating the Magic Component Interface File

After specifying your MCI items and properties, click the Build Interface File
option from the Options menu or press CTRL+I. The Generate MCI File
dialog box appears with the file name, as shown in Figure 14-7.

If the directory for the MCI file does not exist, the Magic Component Builder
creates it.

If the MCI file name already exists in the defined path, eDeveloper displays the
following message:

The Component Interface already exists. Overwrite/Cancel

Click Yes to overwrite the existing file. Click No to define a new name for the
MCI file.

Sample MCI File

This section displays an example of the keyword parameters in an MCI file.

//

COMPID = 76050384676477

NAME = "Comp1"

Figure 14-7 Generating an MCI File
Reference Guide 1069

DESC = "Description of Component file"

IMMED = Y

APPLFILE = "d:\magic\newmci\newmci.mcf"

APPLDB = "Default Database"

FLATCTL = N

VRSN = REV5

HLPFILE = "d:\magic\newmci\mgcomp1.hlp"

APPREFIX = mc

MODEL=PUBLIC="MODEL1" RMK=" "HELPKEY="HLPK1"

MODEL=PUBLIC="MODEL5" RMK=" "HELPKEY="HLPK5"

File=PUBLIC="File101" RMK=" "HELPKEY="HLPK101"

File=PUBLIC="File104" RMK=" "HELPKEY="HLPK104"

EVNT=PUBLIC="EVNT502" RMK="gdfxgcvgvfdgdf" HELPKEY=HLPK502

//
Reference Guide 1070

Web Service Interface Builder
Web Services Description Language (WSDL) is an XML-based language used to
describe published web services and their parameters.

Click the Web Service Interface command from the Components menu to
create a WSDL file. The Web Service repository opens, as shown in Figure
14-8.

The Web Service Builder columns are described below:

• Component Name - The component name is mandatory and cannot be
longer than 30 characters.

• Application Name - eDeveloper automatically displays the name of the
current application. The application name cannot be changed.

• Programs - Automatically displays the number of programs assigned to the
WSDL file.

Figure 14-8 Web Service Builder
Reference Guide 1071

Web Service Programs Repository

The Web Service Programs columns are described below:

• Program Name - Automatically sets the specified program by the program
name selected. Click the Select Programs button to display the list of
programs. A program must be a batch task type and have a public name.
The program name cannot be changed.

• Public Name - eDeveloper automatically displays the public name of the
selected program.

• Arguments and Returned Values - eDeveloper Displays the total number of
arguments. Zoom from this column to modify an argument name, XSD
type, and direction.

You can expose the Web service in a document style by setting only one
Alpha or BLOB parameter for the program, as shown in Figure 14-9.

Figure 14-9 Arguments for Public Programs
Reference Guide 1072

From the Web Service Arguments dialog box, click Schemas to specify
the location of the XSD file, as shown in Figure 14-10.

Specify the location and XSD file, and click the button. The Namespace
and Element parameters are filled out automatically.

• Remarks - You can add reference information about the program.

Click the Verify Structure button to start the checker. If there are no errors in
the program parameters or structure, eDeveloper confirms that the structure
is okay. If errors are found, eDeveloper displays a warning.

WSDL File Settings

The WSDL file settings are:

• Description - You can enter the WSDL file description.

• Revision - You can enter the WSDL file revision number.

• WSDL File - You can specify the WSDL file path and name.

• Service End Point - You can specify the URL address where the Web service
is deployed.

• WSDL Name Space - You can specify the WSDL Name Space identifier.

Figure 14-10 Input and Output Schemas
Reference Guide 1073

• Header Information - You can select the check box when you want to
receive the user name and password in the SOAP header.

Generating a WSDL File

After specifying the WSDL file programs and settings, click the Build WSDL
File option from the Options menu or press CTRL+I. The Generate WSDL
File dialog box appears with the file name.

If the directory for the WSDL file does not exist, the WSDL Interface Builder
will create it.

If the same WSDL file name already exists in the defined path, eDeveloper
displays the following message:

The WSDL already exists. Overwrite/Cancel

Click Yes to overwrite the existing file. Click No to define a new name for the
WSDL file.

The Created WSDL File

eDeveloper creates the WSDL file with all its method definitions and
automatically adds a variable for the SOAP header, user name, and password.
When a calling request contains a user and password, eDeveloper will log in
the user and obtain the user’s rights. This feature is not mandatory and is used
to restrict access to the exposed methods of the WSDL file.
Reference Guide 1074

Enterprise JavaBean Interface Builder
The EJB Interface Builder enables an eDeveloper application to be exposed as
an EJB (Enterprise JavaBean) in a J2EE enterprise server.

Click the EJB Interface command from the Components menu to create a
Jar file. The EJB repository opens, as shown in Figure 14-11.

The EJB Interface Builder columns are described below:

• Component Name - The component name is mandatory and cannot be
longer than 30 characters.

• Application Name - eDeveloper automatically displays the name of the
current application. You cannot change the application name.

• Methods - eDeveloper Automatically displays the number of programs
assigned to the EJB interface file.

Figure 14-11 The EJB Repository
Reference Guide 1075

EJB Programs Repository

The EJB Program columns are described below:

• Program Name - eDeveloper automatically sets the specified task
according to the program name selected from the Program list. Click the
Select Programs button to display the programs that can be selected. A
program must be a batch task and have a public name. The program name
cannot be changed.

• Public Name - eDeveloper automatically displays the public name of the
selected program. The public name cannot be changed.

• Arguments and Returned Values - eDeveloper displays the total number of
arguments. Zoom from this column to modify the argument name and
Java type from the Arguments for Public Program dialog box.

• Remarks - You can add reference information about the program.

Click the Verify Structure button to start the checker. If there are no errors in
the program structure, eDeveloper displays a confirmation message that the
structure is okay. If there are errors, eDeveloper displays a warning.

EJB Settings

From the Options menu, click Settings to select from the following J2EE
enterprise servers:

• BEA WebLogic Version 5 or 6

• Sun Reference Version 1.3

• JBOSS

• Oracle Enterprise Server Version 9i

• Sun ONE Enterprise Server Version 7

• Fujitsu Interstage Enterprise Server Version 5

• WebSphere
Reference Guide 1076

EJB Environment Variable Path Settings

The path settings for the following EJB environment variables are described
below:

• MG_J2EE_HOME should point to the J2EE Server directory.

• MG_JAVA_HOME should point to the JDK directory.

• MG_CLASSPATH should point to directory of where the mgejbgnrc.jar file is
stored.

Generating an EJB Component File

After specifying your EJB programs and settings, click Build Jar File from the
Options menu or press CTRL+I. The Generate Jar File dialog box appears
with the file name.

If the directory for the EJB file does not exist, the EJB Interface Builder will
create it.

If the Jar file name already exists in the defined path, eDeveloper displays the
following message:

[file path][file name].jar already exists!

Click Yes to overwrite the existing file. Click No to define a name.

eDeveloper displays a screen indicating whether the Jar file has been
generated successfully. If eDeveloper fails to generate the Jar file, the error
details are entered in the error log.

Additional Generated Jar Files

Additional files are created, depending on the selected J2EE enterprise server.
One of these files is called ClientTest. ClientTest is a small Java application that
provides an easy way for you to check the connection between the Java
application and the eDeveloper application.
Reference Guide 1077

Java Generator
The Java Component Generator creates a component with programs that call
Java class or EJB functions. For more information, see Chapter 16, Java
Integration.

XML Generator
The XML Component Generator (XCG) creates all the required eDeveloper
objects to integrate with a specific XML type, as determined by the XML
schema. For more information, see Chapter 17, XML Component Generator.
Reference Guide 1078

COM Object Support 15
Developer lets you handle any registered COM object in your Magic
application by using an ActiveX control in the GUI Display form or an
OLE object that implements OLE automation.

A COM object is handled through a Select operation of a variable defined by its
attribute and other properties to be an ActiveX or an OLE object. Any activity
related to the COM object will be done in relation to the Select operation
defined for the object.

In this chapter:

• OLE and ActiveX

• Defining COM Object Fields

• Calling a COM Object

• Handling ActiveX Events

• Runtime Behavior

• Placing an ActiveX Control on a Form

• OLE Variables and BLOB Variables as
OLE Content

• COM Interface Builder

e

Reference Guide 1079

OLE and ActiveX
A COM object variable can be defined as either OLE or ActiveX.

An ActiveX object refers to a group of COM objects that provide an embedded
user interface and can be placed on a GUI Display form.

Runtime manipulation of an ActiveX object can be done through its GUI
representation and through OLE automation commands.

OLE object refers to all registered COM objects, including ActiveX objects. OLE
objects cannot be placed on the form and their runtime manipulation can be
done only through OLE automation commands.

Defining COM Object Fields
You can define a COM object field either directly as a variable in a task, as a
column in a table, or as a field model in the Models repository.

Attribute

The main setting of the COM object field is the attribute property.

The attribute of the field determines if it is a displayed object (ActiveX) or a
general COM object (OLE).

Object Name and Type Library Settings

The COM object field must be set with a specific object definition. The Object
name property is essential and mandatory for the complete definition of the
COM object.

For OLE objects you should first define the type library of the object.

Zoom in from the Type library property to view and scroll through all the COM
objects that are registered on the current machine.
Reference Guide 1080

Once you located the object's type library entry you should select it and then
zoom in from the Object name property to select the actual object.

For ActiveX objects, you should zoom directly from the Object name property
to select the ActiveX method you wish to use. After you confirm the Object
name. Magic automatically sets the appropriate value in the Type library
property.

When these two properties are set and the field definition is confirmed, the
Object name cannot be modified. The type library can be modified only to a
different version of the already selected type library.

Calling a COM Object
You can handle a COM object defined in a task using the COM option of a Call
operation.

You can use the Call COM operation to call a method of the COM object, set a
property of the COM object, or get the value of a COM object property.

All the required settings of the Call COM operation are available from the main
dialog of the operation. Zoom to the Call COM Object dialog from the third
column of the Call COM operation.

The Call COM object fields are:

Figure 15-1 Call COM Object
Reference Guide 1081

• Object field - Define the object on which you wish to perform the
operation. Set the object variable letter code or zoom to variable selection
list to select an OLE or an ActiveX variable.

• Option - Choose the type of operation you wish to perform from the Option
combo box. The available options are Call method, Set property and Get
property.

• Method/Property - This field varies according to the selected option.

For a Call Method option this field enables you to select the method to be
called.

Zoom in from this field to browse through the supported methods of the
selected object.

For Set Property and Get Property operations this field enables you to
select the property to be handled.

Zoom in from this field to browse through the available properties of the
selected object, as shown in Figure 15-2.

The Arguments dialog displays the name of the expected arguments, the
expected internal type, that is the Magic attribute, the external type of the
argument, and whether the argument is optional.

Figure 15-2 Call COM Arguments
Reference Guide 1082

Enumerated arguments are arguments that are set by a collection of val-
ues represented by strings. Click the Value button to display the supported
enumeration, as shown in Figure 15-3.

This list displays the enumeration names and values. You may select a
value that adds an expression with the selected value as the passed argu-
ment.

• Return Value or Argument Value - This field varies according to the
selected option.

For a Call Method option of the method that has a return value, this field
enables you to select a variable that will be updated with the return value
of the method after the method is completed. Zoom in from this field to
see the details of the returned value and to assign a variable to accept the
returned value.

For the Get Property operation, this field enables you to select a variable
that will be updated with the return value of the property. Zoom in from
this field to see the details of the returned value and to assign a variable to
accept the returned value.

For the Set Property operation, this field enables you to select a value by
which the property will be set. Zoom in from this field to see the details of
the expected value and to assign a value to by which to set the property.

Figure 15-3 COM Enumeration Selection
Reference Guide 1083

• Return Code - The return code of the operation for indication of success or
failure.

Handling ActiveX Events
At runtime, Active-X objects can trigger events. The Magic event handlers can
handle these events. To handle an Active-X event create a handler, and set its
type to be Active-X, as shown in Figure 15-4.

Zoom from the Event field to select the object for which the handler is set,
as shown in Figure 15-5.

You may select the object by zooming from the first object field to select an
ActiveX variable. This will make the handler a specific handler for the selected
variable. You may also select the object by zooming from the second field to
select the object name. This will make the handler a general handler for this
object for any instance of the object in the task or the runtime task tree.

Figure 15-4 Selecting an ActiveX event

Figure 15-5 Defining an ActiveX event
Reference Guide 1084

When you have selected the object, you may zoom from the Event field to
view the supported events and to select the event you wish to handle.

When you select the event to be handled, Magic checks if the object passes an
argument. If an argument is passed, Magic offers to automatically create
Select virtual operations according to the passed arguments of the event.

Figure 15-6 COM Automation Selection

Figure 15-7 Confirmation
Reference Guide 1085

If you accept, Magic creates the corresponding Select virtual operations in the
handler.

Runtime Behavior
When a task with defined OLE or ActiveX variables is opened, Magic
automatically instantiates the defined objects.

Any Call COM operation is executed for the instantiated object.

When an ActiveX object triggers an event that is handled by the Magic
application, the appropriate handle defined for the triggered event will be
executed.

When the task that instantiated the object is closed, the object is
automatically released.

Passing Objects as Arguments

You can pass an object as an argument to another task, usually to have the
other task continue and manipulate the created object.

For this purpose, you need to create a Select operation in the called task that
will enable you in development time to handle the object using the Call COM
operation and the event handler. This Select operation should be a select
parameter operation, so the calling task can pass its already instantiated
object.

i Only ActiveX controls support event-based interaction, OLE objects do not
support event-based interaction.
Reference Guide 1086

Manual Object Instantiation

The default setting of an OLE or an ActiveX variable is set to be instantiated
automatically by the Magic engine when opening the task in which the COM
object variable is defined. The object is released when the task is closed.

If you wish to manually instantiate and release an object, you can do so by
setting the Instantiation property of the field definition to None, and create
and release the object by using the COMObjCreate and COMObjRelease
functions.

For more information about these functions, refer to Chapter 8, Expression
Rules.

Referring to an Already Created Object

Every COM object is identified by an internal number, also known as a handle.

You may manually instantiate an object in one task, keep its handle, and have
another task refer to the created object by using its handle.

This is done by using the COMHandleGet and COMHandleSet functions.

For more information about these functions, refer to Chapter 8, Expression
Rules.

Retrieving COM Related Error

Use the COMError function to retrieve information regarding the last COM-
related error. For more information about this function, refer to Chapter 8,
Expression Rules.

Placing an ActiveX Control on a Form
Variables of ActiveX objects can be placed on a GUI Display form.
Reference Guide 1087

You can place the ActiveX control on the form only by dragging and dropping
the variable of the object. You cannot place an ActiveX control from the
Controls palette.

OLE Variable and BLOB Variable of OLE Content
There is a great distinction between an OLE attribute field and a BLOB
attribute field set as an OLE display style.

A BLOB field set as an OLE control appears as an embedded OLE object on the
form and to let the OLE application handle its display, content, and
manipulation. Magic simply displays the object, enables the end-user to
modify it by activating the underlying application and store its binary content.

An OLE field is used for OLE automation capabilities. An OLE field cannot be
placed on the form and cannot be displayed by the Magic application.

COM Interface Builder
The Component Object Model (COM) defines an application programming
interface (API) that lets you create components for use in integrating custom
applications and allows diverse components to interact. The components must
adhere to a binary structure specified by Microsoft, which allows components
written in different languages to interact.

The Magic COM Builder lets you build a Magic COM Interface (MCI) file that can
be integrated in a framework of reusable components supported by Microsoft.
Reference Guide 1088

COM Interface Builder Repository

You can create a COM object from the COM Objects repository, as shown in
Figure 15-8.

The COM Interface Builder columns are described below:

• Object Name - The object name is the same as the current application. The
object name can be modified. When there is no application name, Magic
provides a default name, COMObjectXX, where XX represents the
identification number assigned.

• Engine Type - Select either Local or Remote engine. A local engine object
type requires a local engine loaded on the same machine as the COM object
host. A remote engine object type executes Magic application programs as
requested by a remote Magic server using a known Magic broker.

• Application Name - Magic automatically displays the name of the current
application. This field cannot be parked on or modified.

• Methods - The number of methods included in the COM interface file. Zoom
from the Methods column to display the Methods repository.

Figure 15-8 COM Interface Builder
Reference Guide 1089

• Properties - Displays the number of predefined properties of the object
according to its type. Zoom from the Properties column to display the
Properties repository.

Methods Repository

The Methods repository lists all the methods defined for the object. These
methods are mostly selected public programs of the current application that
are available as methods by using the COM interface. For a local engine type,
the COM builder creates two predefined methods.

Add or remove the methods by clicking Select Programs to display the list of
available public programs. Select or clear the check box of each public
program to select or remove it from the Methods repository.

The Methods Repository columns are described below:

• Method Name - This is the method name as specified in the COM interface.
The method name can be changed, but it cannot contain illegal characters
nor can the name have digits as the prefix.

• Public Name - Automatically displays the public name of the selected
program. This field cannot be modified.

• Arguments and Returned Values - Displays the total number of arguments.
Zoom from this column to handle the arguments of the public program and
its returned value.

• Help Key - You can enter a number that can be set to open a help page.
The help key cannot be more than four digits.

• Help String - You can enter a help message up to 512 characters.

Click Verify Structure to start the checker. If there are no errors in the method
structure, Magic confirms that the structure is okay. When errors are found,
Magic issues a warning.
Reference Guide 1090

Predefined Local Methods

When you select the Local engine, Magic automatically displays the predefined
methods, MagicEngineLoad and MagicEngineUnload, in the Methods
repository. These methods cannot be modified except for the help key and help
string.

Properties Repository

Zooming from the Properties column lets you display the supported properties
for the object.

The list of properties is predetermined according to the object type. You
cannot add or remove a property.

For each property you can set a default value if a default value is applicable,
and also the help key and the help string.

Local and Remote Engine Properties

The local engine properties are:

• ApplicationName - This property specifies the name of the application to be
opened in runtime and which public programs will be executed.

• WindowHandle - This property is used to retrieve the handle of the Magic
window after it is loaded. This property cannot be assigned with a default
value.

• CommandLineParams - A series of environment parameters that can be
used when loading a Magic engine.

• MagicEnginePath - The engine path name. The Magic engine loaded at
runtime is specified from the path defined in this property. If this property
is not set, Magic will load the Magic engine from the file path specified in
the registry of the Magic installation.

• EngineLoadTimeout - The timeout value after which the MagicEngineLoad
method will fail if the application cannot load and connect to a local Magic
engine.
Reference Guide 1091

The remote engine properties are:

• ApplicationName - This property specifies the name of the
application to be opened in runtime and which public programs
will be executed.

• MessagingServer - Magic broker host name and port number.

• BrokerTimeout - The timeout value for the Magic broker.

• RequesterTimeout - The timeout value for the Magic requester.

• Priority - The priority number of the requests that are generated
for the method calls.

• UserName - The user name for the Magic Remote engine.

• Password - The password for the Magic Remote engine.

• AltMessagingServer - An alternate Magic broker.

• RetryMainTime - The timeout value for the COM object to retry
connecting to the main broker.

Object Settings

The Object Settings dialog provides additional settings for the COM
object:

• General Settings

• Help Settings

• Class ID

• Information

General Settings

The General settings are:

• Version - You can enter a version number for the COM object. The default
value is 1.0.

• Program ID - Displays the COM program identifier by which the object is
registered. The Program ID is read-only and is automatically generated by
the builder according to the object name.

• Type Library Name - Displays the type library name by which the object is
registered. The Type Library Name is read-only and is automatically
generated by the builder according to the object name and version.

Help Settings

Methods that were set with a help key will look for the help key in this help file.

• Library Help File - Defines the help file for the library.

• Library Help Key - Defines the help key in the help file that provides a
description of the library.

• Library Help String - Defines the help string that provides primary
information about the library.

• Object Help - Defines the help file for the Com object.

• Object Help Key - Defines the help key for the Com object.

Class ID

If you wish to generate an object using a preset collection of IDs, you may
click Set CLSID to open the Class ID modification dialog, as shown in Figure
15-9. It is best to let the builder set the CLS ID collection automatically and
not to set it manually.
Reference Guide 1093

Either all class identification fields are blank or they all must have a value.

Information

You can enter additional reference information about the COM object. This
information is not part of the generated object but is kept solely in the builder
for future reference.

Generating a COM Object

After specifying your COM object settings, methods, and properties, click
Generate Object from the COM Builder menu or press CTRL+I. The Generate
COM File dialog appears with the file name, as shown in Figure 15-10.

Figure 15-9 Class ID Modification

Figure 15-10 Generating a COM file
Reference Guide 1094

If the directory for the COM object does not exist, the COM Interface Builder
creates it.

Note: The COM Interface Builder does not support BLOB, OLE, Active-X, or
Vector data attributes.

Registering the Object

After the object is created, you should register the COM object on the machine
intended for its use.

Local COM Object Runtime Behavior

The Magic engine is not automatically loaded when the local Magic OCX object
is loaded. The user must instruct the COM object to load and connect to a
Magic engine by using the MagicEngineLoad method described below.

MyObject.MagicEngineLoad Method

When an object is instructed to load an engine, it executes the Mgrntw.exe
located in a path defined by the MagicEnginePath property.

If the property is not set, the object will try to load the Magic runtime engine
from the installation directory that is set in the registry by the Magic product
installation.

When the engine is loaded, the COM object connects to it and the Magic engine
is available to handle the method calls.

Activating Methods for Public Programs

When the connection to a Magic COM engine is established, the container can
activate the methods of the COM object that runs the corresponding programs.

For example: MyObject.AddCustomer('John','Smith')

If the corresponding program is found, it will be executed. When the program
has been completed, the method returns the program return value.
Reference Guide 1095

The execution of the public programs is synchronic, which means that the call
method will be completed only after the called public program completed its
execution.

Properties

The properties for a Remote COM object are:

• ApplicationName - This property keeps the name of the application by
which all methods should be handled.

Each public program that corresponds to a Method call is expected to be
found in the application defined by this property. At any stage this prop-
erty can be set or retrieved. Any modification of the application name
affects the next method call.

• WindowHandle - This property keeps the window handle value of the
loaded Magic engine. The window handle can be retrieved by this property
and cannot be set manually.

For example: MyObject.WindowHandle can return a numeric value.

When no Magic engine is loaded for the object or when the loaded engine
is in background mode, the property returns zero.

• CommandLineParams - A series of added environment parameters to be
used when loading a Magic engine. Any modification to this property can
take effect only when the property is set prior to a MagicEngineLoad
method call.

For example, MyObject.CommandLineParams="/ApplicationStartup=B"
loads the engine in background mode.

• MagicEnginePath - This property sets the path of the Magic runtime engine.
Any modification to this property can take effect only when the property is
set prior to a MagicEngineLoad method call.

If no engine path is set, the Magic runtime engine is loaded from the
installation directory of the Magic product as defined in the registry.

• EngineLoadTimeout - The timeout after which the MagicEngineLoad
method will fail if it could not load and connect to a Magic runtime engine.
Reference Guide 1096

The Timeout value is defined in seconds. A zero value means zero seconds,
which results in an immediate failure of the MagicEngineLoad method.

Remote COM Object Runtime Behavior

A COM object set for a Remote Magic engine enables you to activate public
programs on a Magic enterprise server in the form of remote requests. Every
method call is executed as a Magic remote request. The COM object in this
case serves as a requester and can be set with various properties that affect
its activation.

To enable a COM object for a remote engine to execute properly, the correct
configuration of a Magic enterprise server should be constructed and
accessible to the COM object.

For more information about setting the Magic server and distributed
application architecture, refer to Chapter 19, Distributed Application
Architecture.

Messaging layer

The Remote COM object, serving as a requester, requires the Messaging layer
to be available to the application that hosts the remote COM object.

You should make the messaging layer dynamic library file, Mgrqgnrc94.dll,
available for the application that hosts the remote COM object by either
placing the dynamic library file in the working directory of the host application,
or set the PATH environment setting of the computer to include the directory in
which the dynamic library file resides.

Activating Methods of Public Programs

For every method call to a Magic public program, the COM object issues a
synchronous request to a Magic enterprise server by using a Magic broker.

The following COM object settings, which are required for any remote
requester, must be correctly set:
Reference Guide 1097

• The messaging server, which is the Magic broker, should be active and
available. The MessagingServer property of the COM object should be set
with the Magic broker location.

• A Magic engine should be connected to the Magic broker.

• The application specified in the ApplicationName property of the COM
object must be defined in the application list of the Magic enterprise
server.

Properties

The properties for a local COM object are described below. Any modification of
these properties will affect the next method call.

• ApplicationName - This property keeps the name of the application by
which all methods should be handled.

Each public program that corresponds to a Method call is expected to be
found in the application defined by this property. At any stage this prop-
erty can be set or retrieved.

• MessagingServer - The address of the Magic broker that receives the
requests. The address is specified in a host and port number syntax, such
as mymachine/3300.

• BrokerTimeout - The maximum time in seconds that the COM object waits
for an available engine to be returned by the Magic broker. If the Magic
broker cannot provide an available engine within the specified time, the
method call fails.

• RequesterTimeout - The maximum time in seconds that the COM object
waits for the called public program to be completed. If the value is 0, the
COM object waits indefinitely.

• Priority - The priority of the requests generated by the method call. The
priority is determined by a number from 0 to 9, where 9 has the highest
priority.

• UserName - The user name used by the Magic enterprise server for the
execution of the call method.
Reference Guide 1098

• Password - The password used by the Magic enterprise server for the
execution of the call method.

• AltMessagingServer - You can define an address of an alternate Magic
broker. The COM object will refer to this address when the connection to
the main messaging server fails.

The following properties can be set only prior to the first method call. After the
first method is called, the values of the properties below cannot be changed.

• RetryMainTime - When the COM object connects to the alternate Magic
broker, as specified in the AltMessagingServer property, the Magic engine
will try to reconnect to the main Magic broker in the time interval
specified. The time interval is the number of minutes the COM object waits
before trying to reconnect to the main broker, as set in the
MessagingServer property. The default value is 5. The minimum value is 1.

COM Object Errors and Troubleshooting

Error values are returned in the form of a result handle, a 32-bit number, also
known as HRESULT.

Local Magic Engine

The list below describes the HRESULTS that may be returned by the COM
object of a local Magic engine.

HRESULT Description Troubleshooting

0x803307D2 Magic engine not
loaded

This error is usually encountered when a
method is called and no Magic engine is
available.
You should load the Magic engine using the
MagicEngineLoad method prior to all other
method calls.
Reference Guide 1099

0x803307D3 Failed to load
Magic engine

The MagicEngineLoad property failed to
load the Magic runtime engine. This error
can be encountered when:

• The Magic runtime engine could not be
found in the path defined by the
MagicEnginePath property.

• The MagicEnginePath property is
blank, and the Magic runtime engine
could not be found in the path defined
by the registry key of the product that
specifies the installation directory.

• The Magic engine cannot be loaded
due to erroneous environment
settings, such as using a wrong
license. Make sure that the Magic
runtime engine is properly installed
and that it can be loaded properly with
the environment settings defined for
it.

HRESULT Description Troubleshooting
Reference Guide 1100

0x803307D4 Failed to load
Magic engine -
Bad registry path

The MagicEngineLoad method failed to
load the Magic runtime engine through the
install directory specified in the registry
because the expected registry key could
not be found. This error is encountered
when:

• The Magic product of the expected
version is not installed.

• The registry key was manually
modified.

• The Magic product was not properly
installed resulting in improper registry
key settings.

You should make sure that the Magic
product is properly installed or set the
MagicEnginePath property to the Magic
runtime engine directory.

0x803307D5 Failed to unload
Magic engine

The MagicEngineUnload method failed to
unload the Magic engine. This error is
encountered when:

• The Magic engine was terminated
prematurely.

• The Magic engine is busy due to
activation external to the COM object.

0x803307D6 Failed to load
Magic engine -
Timeout occurred
while trying to
synchronize with
engine

The timeout defined by the
EngineLoadTimeout property passed
before a Magic engine was loaded. You
should make sure that the
EngineLoadTimeout property is properly
set to provide sufficient time for the Magic
engine to load.

HRESULT Description Troubleshooting
Reference Guide 1101

Remote Magic Engine

The COM object of the remote Magic engine executes the methods as remote
requests.

The errors that may be encountered are request-related errors. The request
error number is delivered as part of the HRESULT, which is a DWORD
hexadecimal number. The low word of the HRESULT represents the positive
value of the actual error number.

For example, the request error of Messaging server not found has an error
code of -102, the low word of the HRESULT should be 0066, representing the
decimal value of 102. For this error, the complete HRESULT is 0x80330066.

0x803307D7 Failed to load
Magic engine - No
HTTP connection
with engine

The MagicEngineLoad method fails to
establish an HTTP connection with the
Magic engine. This error is encountered
when:

• No TCP/IP layer is installed.

• The Magic engine was set to serve
remote requests.
You should make sure that the TCP/IP
layer is installed and that the Magic
engine is not set to be activated as a
request server.

0x803307D1 General error An unmapped error.

HRESULT Description Troubleshooting

Java Integration 16
ava Integration lets Magic interface with a Java class or Enterprise
JavaBeans (EJB) by using pseudo-references that represent instances of
Java classes or EJB files. For Java classes, you can access static methods

and variables without the pseudo-reference. Instances, static methods and
variables are invoked by Java and EJB Functions. The Java Component
Generator is a wizard that generates a component containing programs that
call Java class or EJB functions.

In this chapter:

• Java Terminology

• Java and EJB Functions

• Code Pages

• Type Signatures

• Runtime Engine Behavior

• Java Component Generator

J

Reference Guide 1103

Java Terminology
 The terms below describe the various Java class elements.

Java Class A Java class is a template definition
of the methods and variables in a
particular kind of object. An object
can be a specific instance of a class
and can contain real values instead of
variables.

Class Instance A specific implementation of the Java
class.

Static Class
Method

A class method that can be called
without instantiating the class.

Static Class
Variable

A class variable that can be accessed
without instantiating the class.

Constructor
Method

A function that is automatically
initiated when a new class object is
instantiated.

Pseudo-
Reference

A Magic BLOB variable that
represents a class instance. Any
method that creates a new class
instance returns a pseudo-reference
to the newly created object. At a
later time, programs that want to
operate with the object must use
the identifier.

Java Native
Interface

Lets non-Java programs interact with
Java programs.

Java Virtual
Machine

Interprets the bytecode into code
that runs on actual computer
hardware.
Reference Guide 1104

Java and EJB Functions
eDeveloper can create an instance of a Java class that lets you activate a
method, or query and update variables using a pseudo-reference. The pseudo-
reference is a BLOB variable that represents the Java class instance. When a
method is invoked, the BLOB variable returns values to the eDeveloper
program as function return codes.

Class static methods and variables can also be accessed without having an
instance of the Java class by using the class name and the method or variable
name.

The eDeveloper functions below are used to simulate the calling methods in
Java. Each context of the engine internally maps between the pseudo-
reference and the actual reference.

For example, an eDeveloper program can call the JCreate function to create a
pseudo-reference as Virtual Variable A. The actual reference to the instance is
then internally associated with Virtual Variable A. Any eDeveloper program in
the context is able to access the methods and variables of the object by using
JCall(A,...).

Java Name
Directory
Interface

Enables Java platform-based
applications to access multiple
naming and directory services.

J2EE Enterprise
Server

A Java platform enterprise server
that creates standardized, reusable
modular components.

Enterprise
JavaBeans

An architecture for defining Java
program components that run on a
client/server network.

Java
Development Kit

A program development environment
for writing Java applets and
applications.
Reference Guide 1105

The Java functions below can be called by an eDeveloper program to:

• Create a new instance of a Java class

• Call a method directly from the Java class or from an instance

• Report and return exceptions

• Query and update variable values

The Magic Java functions are:

JCreate Obtains a new instance of a Java class.

JCall Lets a Magic program call the method of an
instance of a Java class.

CodePage Sets a code page that can be used when
converting Java characters and strings to a
Magic Alpha type and converting from a Magic
Alpha type to Java characters.

JCallStatic Lets a Magic program call a method from a
Java class.

JException Returns a pseudo-reference to the last
exception of the current context.

JExceptionOccurred Returns a True value when the last J* or EJB*
function throws an exception.

JExceptionText Returns the description of the last exception
and an optional backtrace of the stack. This
function refers to the last exception thrown
during the last j* or ejb* function.

JExplore Describes a Java class.

JGet Queries a value from an instance variable.

JGetStatic Queries a value from a class variable.

JInstanceOf Simulates the Java's instanceof operator.
Reference Guide 1106

The EJB functions below enable Magic to explore and invoke Enterprise
JavaBeans.

For more information about Java and EJB functions, see Chapter 8, Expression
Rules.

Code Pages
The Code page identifiers below can be used with the CodePage function to
specify a set of language characters, used when converting Java strings to the
Magic Alpha data type and back.

JSet Updates an instance variable.

JSetStatic Updates a class variable.

EJBCreate Creates an instance of the EJB and returns a
pseudo-reference from which any of the other
related Java functions can be activated.

EJBExplore Provides a description of the EJB instance.

Identifier Language

037 EBCDIC

437 MS-DOS United States

500 EBCDIC 500V1

708 Arabic (ASMO 708)

709 Arabic (ASMO 449+, BCON V4)

710 Arabic (Transparent Arabic)

720 Arabic (Transparent ASMO)

737 Greek (formerly 437G)

775 Baltic

850 MS-DOS Multilingual (Latin I)
Reference Guide 1107

852 MS-DOS Slavic (Latin II)

855 IBM Cyrillic (primarily Russian)

857 IBM Turkish

860 MS-DOS Portuguese

861 MS-DOS Icelandic

862 Hebrew

863 MS-DOS Canadian-French

864 Arabic

865 MS-DOS Nordic

866 MS-DOS Russian

869 IBM Modern Greek

874 Thai

875 EBCDIC

932 Japanese

936 Chinese (PRC, Singapore)

949 Korean

950 Chinese (Taiwan; Hong Kong SAR,
PRC)

1026 EBCDIC

1200 Unicode (BMP of ISO 10646)

1250 Windows 3.1 Eastern European

1251 Windows 3.1 Cyrillic

1252 Windows 3.1 US (ANSI)

1253 Windows 3.1 Greek

1254 Windows 3.1 Turkish

1255 Hebrew

1256 Arabic

Identifier Language
Reference Guide 1108

Type Signatures
The Java Native Interface uses the Java Virtual Machine’s definition of type
signatures, as shown in the table below.

1257 Baltic

1361 Korean (Johab)

10000 Macintosh Roman

10001 Macintosh Japanese

10006 Macintosh Greek I

10007 Macintosh Cyrillic

10029 Macintosh Latin 2

10079 Macintosh Icelandic

10081 Macintosh Turkish

Type Signature Java Type

Z boolean

B byte

C char

S short

I int

J long

F float

D double

L fully qualified class

[type type[]

(arg-types) ret-type method type

Identifier Language
Reference Guide 1109

For example, the Java method, long f (int n, String s, int[] arr) has the
type signature, (ILjava/lang/String;[I)J

where:

• int n - I

• String s - Ljava/lang/String;

• int[] arr - [I

• long f - J

The command line entry, javap -s <class name>, analyzes a class and lists
the signatures of its methods and variables.

Runtime Engine Behavior
This section describes the runtime behavior of programs that call Java
functions. For the Java functions to work at runtime, the Java Development Kit
or the Java Runtime Environment must be installed, and the called Java
classes must be in the environment class path.

Life Cycle

All pseudo-references obtained by an engine from a Java or EJB function are
released to the Java Virtual Machine when the context is terminated.

Multi-Threading

Each engine context has its own pseudo-references. Pseudo-references of one
engine context has no influence over pseudo-references of another engine
context, even if these pseudo-references represent the same Java class.
Access to static class methods or variables need to be synchronized on the
Java side by using the synchronized keyword in the method.
Reference Guide 1110

Browser-Based Programs

Magic can create a pseudo-reference from the JCreate function at any time
during the engine context's life cycle and use the pseudo-reference during
subsequent events of the engine context.

Conversion Tables

The table below describes the automatic conversions by the signature of
outgoing values for JCreate, JCall, JSet, JCallStatic, and JSetStatic functions
and the return values for JCall, JGet, JCallStatic, and JGetStatic functions.

The table below displays the default mapping for the return value types.

Magic Types Java Type

Primitive Type Object Type

Alpha, Memo,
BLOB

char, byte, char[], byte[] String,
StringBuffer,
Character, Byte,
Byte [],
Character []

Logical boolean Boolean

Numeric, Date,
Time

byte, short, int, long, float,
double

Byte, Short,
Integer, Long,
Float, Double

Java Types Java Type Magic Types

Primitive Type Object Type

char, char[] String, StringBuffer,
Character

Alpha (up to
32K)
BLOB (above
32K)

byte[] BLOB
Reference Guide 1111

Returning Pseudo-Reference Values

You can disable the automatic conversion described in the previous section by
using: signature*p

For an automatic conversion:

JCall(A, ‘increment2’, ‘()Ljava/lang/Long;’) -The function returns the numeric
value of the Long object

For disabling an automatic conversion:

JCall(A, ‘increment2’, ‘()Ljava/lang/Long;*p’) -The function returns a pseudo-
reference (BLOB variable) of the Long object.

Errors and Exception Handling

Magic Java functions can fail to load a class, locate a requested constructor by
a specified type signature, or catch an exception.

External Errors for a Method

When an exception is thrown by a method of the Java class, JCreate, JCall, and
JCallStatic functions return a Null value.

You need to call either the JException or the JExceptionText function to receive
a pseudo-reference to the exception or the exception text description.

Magic can call the JException or the JExceptionText functions repeatedly until
another function is called.

boolean Boolean Logical

byte, short, int,
long, float, double

Byte, Short, Integer, Long,
Float, Double

Numeric

Java Types Java Type Magic Types

Primitive Type Object Type
Reference Guide 1112

The JExceptionOccurred function provides an easy way of knowing that an
exception occurred.

Internal Errors for a Java Class

Internal errors are returned to you as Null or False.

The JExceptionText returns one of the following messages:

• JVM could not be loaded

• Class not found

• Method not found

• Failure to convert parameters to JNI

• Failure to convert return value from JNI

The JException function creates a reference to a Java exception object that has
occurred.

Garbage Collection Mechanism

When closing a task, after applying modifications to updated parameters or
return values, Magic automatically releases pseudo-reference values that are
not assigned to a variable in the task tree containing the task. This action
releases the unnecessary resources.

Environment

Magic can load and activate Java classes without setting the operating
system's environment variables. All required environment variables for the
Java settings are entered in the [MAGIC_JAVA] section of the Magic.ini file.
The Magic-Java section can contain the following settings:

JAVA_HOME - This setting overrides the JAVA_HOME set in the operating
system.
Reference Guide 1113

CLASSPATH - This setting is used for locating additional classes and is added at
the beginning of the operating system’s class path string. Semicolons are used
as a delimiter to specify several directories. For example, if the operating
system has C:\; C:\temp as class paths and D:\ is specified in the
CLASSPATH setting under the MAGIC_JAVA section in the Magic.ini file, in
runtime the operating system’s class path will appear as D:\;C:\; C:\temp.

JVM_ARGS - Additional parameters that can be sent to the Java Virtual
Machine, such as JVM_ARGS=Djms.properties=F:\j2ee\config\jms_client.
properties

Java Component Generator
The Java Component Generator is a wizard that lets Magic automatically
access Java classes or EJB files by creating a component that eliminates the
need for you to specify JNI signatures.

The Java Component Generator lets you specify the Java component by
defining the:

• Java type

• Java class

• Java interface objects
Reference Guide 1114

The Java Class or Enterprise JavaBeans Type

Click Java from the Components menu to start the Java Component Generator.
The Java Class and EJB screen opens, as shown in Figure 16-1.

From the Java Class and EJB screen, you can determine the type of Java
component, Java Class or EJB, that will be generated,

If you select the EJB, the following fields are enabled:

• EJB Name - Specify the EJB name as it is displayed in the Java Name
Directory Interface (JNDI).

• JNDI Property String - Specify the JNDI property string when needed, such
as java.naming.factory.initial=com.sun.jndi.cosnaming.
CNCtxFactory,java. The comma is used as a separator.

When the EJB type is selected, the EJBExplore function is automatically called
to retrieve the EJB definition.

Figure 16-1 Select a Java Class or EJB Type
Reference Guide 1115

The Java Object Browser

You can select a Java class from the tree or specify the Java class name in the
Class Name field, as shown in Figure 16-2.

After the Next button is pressed, the JExplore function is automatically called
by the wizard. If the function fails, Magic displays the following message:

Failed to find the Java class. Please check that the class is
available.

Figure 16-2 Select a Java Class Object
Reference Guide 1116

Java Class Structure

You can select the objects to create a component interface, as shown in
Figure 16-3.

Under each Java class, the following interface objects are displayed:

• Constructors

• Member variables

• Methods

• Static member variables

• Static methods

Only a Java class with content is displayed in the Class Structure screen. For
example, when there are no static members, the static member object is not
displayed in the tree. Methods are presented with their parameters.

The Java Component Generator creates programs to call the object from the
node that you are positioned on and to all of the node’s child elements.

Figure 16-3 Select a Java Class Object
Reference Guide 1117

The Generated Java Component

When the Java component has been generated, the Java Component
Generator displays the Java Component Completion screen, as shown in Figure
16-4.

The created programs are described in the table below.

Figure 16-4 The Java Component Completion Screen

ID Object Type eDeveloper Object

1 Java Class or EJB if the
constructor was
selected

The following programs are created:

A program with JCreate or EJBCreate
functions that return the pseudo-reference
BLOB variable. Each constructor has its own
program.

2 Method A program with the JCall function that
defines and receives all required parameters
and returns the function value.
Reference Guide 1118

Created Files

The Java Component Generator crates the files listed below in a specified
directory:

• Magic Flat File (MFF) - An MFF application ready to be deployed.

• Magic Component Interface (MCI) - An MCI file that exposes all of the
required objects in the generated component.

• Magic Export File (EXP) - An export file of the generated component.

3 Member Variables For each member, the following programs
are created:

A program with the JSet function that sets
the variable. The program returns True if the
function succeeds or False if the function
fails.

A program with the JGet function that
returns the queried value.

4 Static Member Variables For each static member, the following
programs are created:

A program with the JSetStatic function.

A program with the JGetStatic function.

5 Static Methods A program with the JCallStatic function that
defines and receives all of the required
parameters and returns the value of the
function.

ID Object Type eDeveloper Object
Reference Guide 1119

XML Component
Generator 17

n XML schema describes a particular dataview hierarchy that can be
used to transfer data between applications. The XML Component
Generator (XCG) simplifies the integration of an application with an XML

schema by generating a component that lets you access an XML document’s
data from within an application. The XCG uses an XML Schema Definition
(XSD) file to create the component.

In this chapter:

• XCG Wizard

• XCG Programs

• Generating the Component

• Namespace Support

A

Reference Guide 1120

XCG Wizard
You can access the XCG wizard from the Components menu. Click
Components and then click XML to open the wizard. The XCG wizard can also
be opened from the New Application dialog.

This wizard lets you:

• Add or delete a new component according to a schema definition

• View and modify existing schema compound details

• Generate XML components as export and MCI files

When the Wizard is loaded, the XCG Wizard Welcome screen appears, as
shown below in Figure 17-1.

Figure 17-1 XML Wizard Welcome Screen
Reference Guide 1121

XCG Main Options

The XCG Main Options screen lets you create, modify, or delete an XML
component in the application, as shown below in Figure 17-2.

The options available are:

• Create - You can create a new component for the XML schema.

• Modify - You can modify an existing component definition.

• Delete - You can delete an existing component definition.

Modifying a Component

You can modify or delete a component definition. Changing the definition does
not affect the actual component.

Figure 17-2 Main Options
Reference Guide 1122

The XML Schema screen displays a list of all XML applications that are created
using the Wizard, as shown below in Figure 17-3.

When you select a row, you can see the location of the XML schema. If no
component is specified, the component items are deleted. The XCG Wizard
automatically moves to the next screen.

You can click Next to make changes to the selected definition or Delete to
remove the XML schema definition.

Figure 17-3 Modify or Delete a Component
Reference Guide 1123

XML Schema Details

The XML Schema Details screen is activated when you create, modify, or
delete a component option, as shown below in Figure 17-4. Use the screen to
define various details about the component.

The options are:

Component Name - You can enter a name for the component. The name
cannot have embedded spaces.

Description - You can enter a description of the component, up to 256
characters long.

Path - The schema file location. You can zoom from the field to browse for the
xsd file.

View/Modify Data Types - Select the check box to make changes to the
global XCG data types. For more information, see the Data Type Management
section in this chapter.

Reload Schema Details - Select the check box to reload the XML schema,
which is necessary if you decide to make changes to the global XCG data types
or for changes made to the eDeveloper definitions. For more information, see
the XML Schema Interface Details section in this chapter.

Figure 17-4 XML Schema Details
Reference Guide 1124

You can access (expose) all Read, Write, and Model XML component interface
types. The XCG creates these programs but will expose the interface
depending on how the Read Program, Write Program, or Model fields are set,
as described below.

• Expose Read Program - This program reads the XML file and enters the
data into the relevant tables in the component.

• Expose Write Program - This program writes an XML file that is based on
the XSD structure and the data from the component tables.

The program public names are Read_schema_name and
Write_schema_name, where the schema_name is the actual name of
the XML schema.

• Expose Models - This option defines whether the component models will
be exposed to other applications.

View XSD

You can view the XML hierarchy in the Schema Interface Details window by
clicking the View XSD button, as shown in Figure 17-5.

Figure 17-5 Viewing an XSD File
Reference Guide 1125

You cannot modify the XSD file by clicking the View XSD button. This screen
appears for viewing purposes only.

XML Schema Interface Details

The Schema Interface Details window displays the Component Compound
tree in the left pane. You can park on an entry to view details in the Simple
Element Details table and component compound options, as shown in Figure
17-6.

The Simple Element Details table lists the data types with their
corresponding Magic attribute and attribute format. The Simple Element
Details table represents an eDeveloper table. The table initially displays the
XSD default values, but you can make changes to these definitions. For
example, the XSD default value for a string is Alpha 30. However, you can
decide that the string should be Alpha 100.

The settings for the Simple Element Details table are:

Figure 17-6 XML Schema Interface Details

Important: If the XML Component Generator cannot fetch the element data type, it
returns the default mapping of the string element data type.
Reference Guide 1126

Table - When you select the check box, the table is exposed and added to the
MCI file, becoming available to other applications.

Public Name - You can change the table public name.

Get program - This program retrieves data from the compound table
according to the parent and table identifier. The compound element is named
Get compound_name, where compound_name represents the actual
name of the compound.

Put program - This program manipulates data in the compound table
according to the parent and table identifier. The compound element is named
Put compound_name, where compound_name represents the actual
name of the compound.

Search program - This program retrieves the parent and table identifier
according to the available data in the table. The compound element is named
Search compound_name, where compound_name represents the actual
name of the compound.

Count program - This program counts the number of occurrences of a
selected compound element. The compound element is named Count
compound_name, where compound_name represents the actual name of
the compound.

Note: When the Expose, Get, Put, Search, and Count Program check boxes
are not selected, the program is generated but without the public name. The
program will not be available for another application.

Data Types

You can specify different data types, complying with XSD standards, to be the
default data types of the generated component. Select the View/Modify
Data Types check box from the XML Schema Details screen to display the
Data Type Translations Default, as shown in Figure 17-7.
Reference Guide 1127

You can add new entries by pressing F4. You can also change the Magic
attributes and modify the attribute formats. The default data types are read
from the Default.txt file that is created in the XCG directory when the XCG
repository is invoked.

Figure 17-7 Data Type Translation Defaults
Reference Guide 1128

Component Details

You can define where the component export file is placed by using the
Component Path screen, as shown in Figure 17-8.

The options for the component path are:

• File Name - Specifies where the component export file is saved. If the
component export file already exists, the Wizard prompts you with the
following message: The component export file already exists. Do you
want to overwrite? Click Yes to overwrite.

• Import Component - Determines whether the component will be imported
into the current application. If the XCG is executed from the New
Application dialog, this option does not appear because the component is
automatically imported.

Figure 17-8 Component Path
Reference Guide 1129

If the directory specified in the File Name field does not exist, the following
message is displayed:

XCG Programs
The XCG creates an eDeveloper component which is comprised of memory
tables that represent the XML data structure hierarchy. The developer can
select a different database for the data.

When you generate your new component, the XCG creates several types of
programs, as described below. Each program is created in an eDeveloper
folder for that program type. The different programs receive arguments and
return the appropriate values. The programs are defined in the created MCI
file.

Count Program

The Count program receives the parent ID and returns the number of
occurrences of the compound element.

DbDel Program

The DbDel program erases all the data in a specific table before executing the
Read program to read a given XML file. This program can be used to clear the
table before creating data for a new XML output file.

Figure 17-9 Directory Does Not Exist
Reference Guide 1130

Get Program

The Get program receives the parent and table IDs and retrieves the record
data.

Put Program

The Put program receives the parent ID, the table ID, and all the simple
elements. The program updates an existing record or creates a new record if
no record is found.

Read Program

The Read program receives a file name or a BLOB argument as an input. The
program first clears the internal tables of existing data to ensure the
consistency of the read. The program then reads the XML data into the tables.
When reading the compound elements, the program assigns a parent ID to
each element in the list, and then assigns identifiers to the compound
elements.

Read programs are nested. The main Read program imports the root data and
then calls the root’s direct compound program. Each compound program calls
its child with the parent ID.

Search Program

The Search program lets you locate specific data in the corresponding table.
Each table represents a compound object. The Search program can retrieve
the unique identifier of a specific record according to a given value.

The Search program receives all the simple elements of the table as an
argument, none of which are mandatory, and returns the parent and table IDs
of the located record. If the parent ID is known, the ID can also be sent as an
argument, but this is not mandatory. If the search is called without a parent
ID, the search returns the index of the first record matching the search
criteria. The Search program returns the parent and record IDs.
Reference Guide 1131

Write Program

The Write program executes a task tree program that uses eDeveloper HTML
Merge forms to create the XML data file. The program returns the XML data as
a BLOB.

Write programs are nested. The first Write program runs initially on the root
table and then calls all the sub-programs.

Generating the Component
From the Completing the XCG Wizard screen, shown in Figure 17-10, you
can click Finish to generate the component as an export file representing your
component interface selection.

The file is saved in the path defined in the Component Path field.

Text in red indicates an error in one or more of your settings. An example of an
error could be two components with the same name or a file-name path that
includes a non-existent directory. The component cannot be generated when
there are errors.

Figure 17-10 Completing the XML Wizard
Reference Guide 1132

After you generate the component, the following message appears.

When you click Yes to create another XML component, you are returned to the
Main Options screen. If you are importing a component, as specified in the
Component Path screen, the Wizard returns you to the Toolkit mode without
the option of creating another XML component.

Notes:

The MgSchemaParser.dll file is used to parse the XML schema and insert data
into the XML Component Generator tables.

The XML Component Generator is not available for an application set for team
development.

Output Files

When you generate your component, eDeveloper creates a new folder in the
XCG folder. The folder name is made up of the component name and ID. For
example:

address1

where address is the component name, and 1 is the component ID.

The files below are created in the directory:

• MCI File: This file exposes all the objects that you specified to be exposed
when creating the component in the XCG Wizard.

• TPL File: A template file to be used by the component when writing the
XML file. You must copy the TPL file to your deployment environment, into
the same folder where the component will be saved.

Figure 17-11 Create Another XML Component
Reference Guide 1133

Changing the XCG Directory

By default, the XCG folder is under Magic\Components\XCG. You can change
the location of the XCG directory by entering an entry to the Magic.ini file. Add
the [Interface_Builders] section to the Magic.ini file. If the folder does not
exist, enter the following environment setting:

XCG_Data=[file path name]

This environment setting lets you determine where you want the XCG data to
be saved.

Namespace Support
eDeveloper supports schemas that incorporate namespaces. For more
information, see Namespaces on page 519 in Chapter 8, Expression Rules.

The XML Component Generator also supports an XSD containing namespaces,
as listed below:

• The Main Program will have an alpha variable for each namespace defined
in the XSD file. These alpha variables contain the URI of the namespace.

• The Main Program will have a logical variable called UseNamespaces that
determines whether the XML file, which is read or written, will use
namespaces.

• The main write and read programs will have a logical parameter called
UseNamespaces that determines whether the write or read XML file will
use namespaces. The default value is True.

Important: If an XSD file contains namespaces and the export file is imported into an
existing application, the host application’s Main Program is overwritten.
Reference Guide 1134

Connecting Magic to
External Applications 18

agic can receive data from other applications through the following
processes: OLE Automation, and Call Operations for a DLL or a 3rd
Generation Language.

In this chapter:

• Dynamic Data Exchange

• Magic and OLE Automation

• Call to a DLL

• Call to a 3rd Generation Language

M

Reference Guide 1135

Dynamic Data Exchange
DDE implementation in Magic uses the DDEML.DLL that is supplied with
Windows 95, Windows 98, Windows 2000, and Windows NT. It will not work
with earlier versions of Windows. The DDEML.DLL must be stored in the
Windows System directory.

Magic’s DDE implementation is done through Magic functions. Every function
initiates a complete DDE conversation, and terminates the conversation before
it returns. This means that the DDE exchange is a “cold” exchange that is
always initiated by Magic. Magic does not monitor the changes made by other
external applications of the data that Magic receives from the DDE exchange.

The DDE server application must be online for Magic to communicate with it.
Accessing a DDE server from Magic without the server online prevents the
server from loading.

The DDE server application appears in the background when accessed by a
client application. If the Magic DDE functions cause an error in the server
application, the server application will respond by issuing an error message,
this message is also not in focus and may not be noticed. Often the Magic DDE
operation fails simply because the time-out limit has been exceeded.

The Magic DDE functions are synchronous. This means that Magic will wait to
receive the result of the DDE operation before it continues processing.

The DDE functions are not portable. They can be used only under Windows. If
you attempt to execute DDE functions under a different operating system, the
following occurs:

• DDEGet returns an empty strings

• DDEPoke and DDExec return “False”

• DDERR displays return code ‘15’. This return code is displayed only when a
DDE function was executed on an operating system other than Windows.
Reference Guide 1136

Functions

DDEBegin DDE Begin
Creates a session.

Syntax: DDEBegin (service,topic)

Parameters: service: Provides the main identifier of the DDE service.
Usually this is an application name such as WinWord, for MS
Word for Windows, or Excel, for MS Excel.

topic: String, depending on the service.

Return Value: TRUE if the DDE server is already connected or a new
connection has been established, or
FALSE for failure initializing the DDE or connecting to the
DDE.

Example: DDEBegin(‘Excel’,’c:\docs\budget.xls’)
Initiates a DDE session control by the User, independent of
the DDE process. The DDE session remains open until the
user selects the DDEEnd function.

See also: DDEEnd, DDEGet, DDEPoke, DDERR, DDExec

DDEEnd DDE End
Terminates a session.

Syntax: DDEND (service, topic)

Parameters: service: Provides the main identifier of the DDE service.
Usually this is an application name such as WinWord, for MS
Word for Windows, or Excel, for MS Excel.

topic: String, depending on the service.

Return Value: TRUE for successful completion, or
FALSE for failure if the service and topic were not started by
the DDEBegin function.

Example: DDEEnd(‘Excel’,’c:\docs\budget.xls’)

See also: DDEBegin, DDEGet, DDEPoke, DDERR, DDExec
Reference Guide 1137

DDEGet DDE Get
Get a string of characters from a DDE server.

DDEGet returns a string value of size length from the specified DDE server.
Each DDE server application provides access to its services via a
combination of the three identifiers: service, topic, and item. Taken
together, the three identifiers provide a unique identification of the
service.

Syntax: DDEGet (service,topic,item,len)

Parameters: service. The main identifier of the DDE service. Usually this
is an application name such as WinWord for MS Word for
Windows, or Excel for MS Excel.

topic. The area within the server application with which you
want to exchange information. A topic may be a document
name in MS Word for Windows or a spreadsheet in MS Excel.
Server applications usually provide a system topic as
standard practice. The system topic provides information
about the application and topics that may be accessed by
DDE. The system topic services can be requested through
the item parameter. For example, the MS Excel system topic
has a system item that returns the items that are available
in the system topic. The format of the information returned
by the system topic depends on the server application.

item. Further defines the exact data item for the exchange.
Together with service and topic it points to a unique item.
For example, a paragraph in a Word for Windows document
may be read by DDE if the topic specifies the document
name, and the item points to a bookmark in that document
that marks the required paragraph.

len. The maximum length of the information that will be
returned by the function. If the information returned is less
than the maximum length, its trailer will be padded with
blanks.

Returns: A character string of size length. If the DDEGet failed, the
string will be empty. The string returned is provided by the
DDE server application according to the service, topic, and
item parameters of the function.
Reference Guide 1138

Examples: DDEGet(‘WinWord’, ‘c:\docs\ddetest.doc’, ‘toMagic’,2000)
reads a paragraph from an MS Word for Windows document
that is marked with a bookmark in Word
where ‘c:\docs\ddetest.doc’ is the document name;
‘toMagic’ is the bookmark name, and
2000 is the maximum size in bytes of the paragraph that
will be returned by the function.
Note that the single quotes are required on the first three
columns, all string columns.

DDEGet(‘Excel’,’c:\docs\budget.xls’,’R19C1:R22C7’, 2000)
reads a range of cells from an MS Excel spreadsheet where:
‘c:\docs\budget.doc’ is the spreadsheet name,
‘R19C1:R22C7’ is the cell range, and
2000 is the maximum size in bytes that will be returned by
the function.

Magic requires the single quotes shown in these examples
to identify columns as strings.

See also: DDEBegin, DDEEnd, DDEPoke, DDERR, DDExec

DDEPoke DDE Poke
DDEPoke transfers a string from Magic to the DDE server specified by the
function’s parameters. Each DDE server application provides access to its
services via a combination of three identifiers: service, topic, and item.
Taken together, the three identifiers provide a unique identification of the
service. The string transferred by Magic will be inserted to the server
application at the location identified by service, topic, and item.

Syntax: DDEPoke (service,topic,item,data)

Parameters: service: Provides the main identifier of the DDE service.
Usually this is an application name such as WinWord for MS
Word for Windows, or Excel for MS Excel.

topic: Provides a definition of the area within the server
application with which you wish to exchange information. A
topic may be a document name in MS Word for Windows or
a spreadsheet in MS Excel.

item: Further defines the exact data item for the exchange.
Together with service and topic it points to a unique item.
Reference Guide 1139

For example, a paragraph in a Word for Windows document
may be inserted by DDE if the topic specifies the document
name, and the item points to an empty bookmark in that
document that marks the required paragraph.

data: The data string that will be passed by the function to
the server application.

Return Value: TRUE for successful completion, or
FALSE for failure to poke the data to the server application.

NOTE: The information transferred to the server application may have to
follow some formatting rules dictated by the server application. Refer to
the server application documentation for details.

Examples: DDEPoke (‘WinWord’, ‘c:\docs\ddetest.doc’, ‘fromMagic’,
‘This paragraph was planted by Magic using DDE’)

Will write a paragraph to an MS Word for Windows
document, where the paragraph has been marked with a
bookmark in Word, and where
‘c:\docs\ddetest.doc’ is the document name,
‘fromMagic’ is the bookmark name, and
‘This paragraph was planted by Magic using DDE’ is the data
that will be transferred by the function to the server
application.

DDEPoke (‘Excel’, ‘c:\docs\budget.xls’, ‘R1C1’, ‘100’)

Will write the number 100 into an MS Excel spreadsheet cell,
where: ‘c:\docs\budget.doc’ is the spreadsheet name, and
‘R1C1’ is the first cell of the spreadsheet that will receive the
information passed by the function.

Magic requires the single quotes shown in this example, to
identify columns as strings.

See also: DDEBegin, DDEEnd, DDEGet, DDERR, DDExec

DDERR DDE Error

DDERR retrieves the last error that occurred during a Magic DDE
conversation. A subsequent call to DDERR clears the previously reported
error code and resets the return value. This function retrieves useful
information for debugging purposes.
Reference Guide 1140

Syntax: . DDERR ()

Parameters: None

Return Value: A numeric value ranging between 0 and 15, with the
following meanings:

See also: DDEBegin, DDEEnd, DDEGet, DDExec, DDEPoke

DDExec DDE Execute

DDExec transfers a command string from Magic to the DDE server
specified by the function’s parameters. Each DDE server application
provides access to its services via a combination of three identifiers:
service, topic, and item. Taken together, the three identifiers provide a
unique identification of the service. The command string transferred by
Magic will be transferred to the server application, which in turn will try to

0 No error in the last DDE operation, or a reset return
value if this is the second consecutive call to the
function

1 Failure to initialize the DDEML system

2 Failure to connect to the server (could be a wrong or
missing service parameter in the preceding DDE call)

3 Server was busy during the DDE call and could not
service the call

4 Server did not process the DDE service required
(could be a wrong parameter, an invalid combination
of parameters, or an invalid required service
combination)

5 The last DDEGet failed (server could not provide the
required item)

6 No item was specified on a GET or POKE request

7 No command was specified on an EXEC request

14 Unknown type of error

15 Attempt to execute a DDE function on an operating
system other than Windows
Reference Guide 1141

execute it. The command string must follow strict DDE format rules. The
command contents must be a valid server application’s command. If the
command contents are not a valid server application command, the server
application will fail.

Syntax: DDExec (service,topic,item,command)

Parameters: service: Provides the main identifier of the DDE service.
Usually this is an application name such as WinWord, for MS
Word for Windows, or Excel, for MS Excel.

topic: when used with DDExec, the topic will usually be
‘System’, as the server application, represented by the
System topic, rather than a data object within the server
application, is responsible for the exchange.

item: Further defines the exact data item for the exchange.
When used with DDExec, it will usually remain empty.

command: The command string that will be passed by the
function to the server application that will then execute it.
DDE commands must be contained within square brackets [
].

Several commands may be included within one command
string, each in its own brackets, separated by blanks.
For example:
[command1]
[command2(parameter1)]
[command3(parameter1, parameter2, parameter3)]
[command1] [command3(parameter1, parameter2,
parameter3)]

The command string must contain a valid server application
command. Refer to the server application documentation for
details about command syntax.

Return Value: TRUE for successful completion, or
FALSE for failure to execute the command at the server
application.

Examples: DDExec (‘WinWord’, ‘System’, ‘’,
‘[FileOpen “c:\docs\ddetest.doc”]’)
Opens an MS Word for Windows document where:
‘[FileOpen “c:\docs\ddetest.doc”]’
Reference Guide 1142

is the command transferred by the function to the server
application for execution.

DDExec (‘Excel’, ‘System’, ‘’,
[run(“MACROS.XLM!FormatCells”)])
Executes the MS Excel macro (FormatCells).

DDExec (‘Excel’,’System’,’’,
[Open(“c:\docs\test.xls”)]
Executes the MS Excel system.

Magic requires the single quotes shown in these examples,
to identify columns as strings.
MS Excel requires the double quotes shown in these
examples.

See also: DDEBegin, DDEEnd, DDEGet, DDEPoke, DDERR

Magic & OLE Automation
OLE Automation is the process by which Magic controls documents or other
objects supported by a target application. OLE Automation in Magic is
implemented as a set of functions. Automation calls can be made to new
objects and objects contained in an OLE control. The OLE Automation
mechanism is implemented by mg_ocx.dll.
Reference Guide 1143

Implementing OLE Automation

Follow these steps to implement OLE automation:

1. Define an OLE object in your Magic application by placing an OLE
control on a GUI form. (Optional)

2. Establish a reference to the object by defining a Call UDP operation
that invokes the ObjectLoad function. Zoom on the Prm setting to
define the parameters of the function. If you have placed an OLE
control, refer to the control name. Otherwise, establish the reference
by specifying the object’s class name.

3. Specify the properties and methods of the object by defining Call UDP
operations to the PropSet, PropGet, and MethodCall functions. Zoom
on the Prm setting to define the parameters of the functions.

4. Release the object and any child objects it may have by calling the
ObjectRelease function.

Parameter Type String

When you call an OLE Automation function that sends or receives parameters,
you define a Parameter Type string that describes the parameters that will be
passed to the automation object. This string precedes the required
parameters, specifying their type and whether or not they exist. The string is
made up of a character for each parameter in the relevant method or property.

The characters are:

1 - Char

2 - Short

4 - Long

F - Float

8 - Double

D - Pointer to Double
Reference Guide 1144

E - Pointer to Float

L - Pointer to Long

A - Pointer to a Null terminated string

0 - (zero) Void (return value only)

I - Image passed as HBITMAP

M - Missing optional parameter

O - Object reference. A numeric Long containing the object reference returned
by the ObjectLoad function or returned as a property or parameter to a called
method.

o - Object reference passed by reference. A pointer to Long.

Do not confuse the Parameter Type string with the Argument Type string
passed as the first parameter in the Call UDP operation using a common DLL.

An Argument Type string has the following syntax:

[parametertype][parametertype][parametertype]

where you enter the number of arguments relevant for the specific Call UDP
operation.

OLE Automation Functions

ObjectLoad The ObjectLoad function establishes a reference to an OLE object.

Syntax: A Call UDP operation with the following expression:
`@mg_ocx.objectLoad’

Parameters: Argument Type: `AAL4’ (required for calling a common DLL)

Control Name: The name of the OLE control defined in your
Magic application. (If no OLE BLOB field and control are
used, a blank string should be specified.)

Class Name: If you have not defined an OLE control, load a
new OLE object by specifying the class name of the new OLE
object. For example, to load a new Excel object, define the
Reference Guide 1145

Class Name to be `Excel.Sheet.8’

Object Instance: A 10 digit numeric variable that will receive
the object instance number. Return Code: A numeric
variable that will receive the function’s return code. For
more details, refer to the section on Return Codes.

Returns. A reference to the OLE object as the Object Instance
variable and the Return Code.

ObjectRelease The ObjectRelease function releases a loaded OLE object.

Syntax: A Call UDP operation with the following expression:
`@mg_ocx.objectRelease’

Parameters: Argument Type: `L4’ (required for the calling a common
DLL)

Object Instance: A numeric variable or expression
containing the object instance number.

Return Code: A numeric variable that will receive the
function’s return code. For more details, refer to the section
on Return Codes.

Returns: The function’s Return Code.

Note: After the OLE object is released, the Object Instance
variable is set to zero.

PropGet The PropGet function gets a value from a property in an OLE object, which
can be placed in a specified Magic variable.

Syntax: A Call UDP operation with the expression
`@mg_ocx.PropGet’

Parameters: Argument Type: ‘4AA[parmtype][parmtype][parmtype]4’
(required for calling a common DLL).

Object Instance: A numeric variable or expression
containing the object instance number.

Property Name: A variable or expression containing the
property name.

Parameter Types: A variable or an expression containing a
Reference Guide 1146

string describing the property’s parameters. Optional
parameters, which are not passed, are represented by the
`M’ character.

Parameters: The parameters that are sent to and received
from the property.

Return Code: A numeric variable that will receive the
function’s return code. For more details, refer to the section
on Return Codes.

Returns: The function’s Return Code.

Example 1: To receive the instance of a worksheet from an Excel OLE instance,

1. Load the OLE object and receive its instance as described in the
‘objectLoad’ section.

2. Define a Call UDP operation invoking PropGet.

3. Zoom to the Parameter list and define the following parameters:

Argument Type string – `4AAL4’
Instance of the OLE - as previously obtained. (4)
Property Name – `ActiveSheet’ (A)
Parameter Type string – `o’ where `o’ is the returned object (A)
Parameter: the variable to receive the cell range instance. (L)
Return Code: the return code variable. (4)

The result of this operation will be the instance of the active sheet of the Excel
application that can be used to refer to its data.

Example 2: To receive the instance of a cell or a collection of cells in an Excel
Worksheet,

1. Load the OLE object and receive its instance as described in the
‘objectLoad’ section.

2. Get the instance of the active sheet in the OLE Instance as described
in Example 1.

3. Define a Call UDP operation invoking PropGet.

4. Zoom to the Parameter list and define the following parameters.:
Reference Guide 1147

Argument Type string – `4AALA4’
Instance of the worksheet - as previously obtained. (4)
Property Name – `Range’ (A)
Parameter Type string – `oA’ where `o’ is the returned object and A is
the string describing the range of the cells. (A)
Parameter1: the variable to receive the cells range instance. (L)
Parameter2: the variable or the expression describing the range of
cells (i.e.‘A1:A5’) (A)
Return Code: return code variable. (4)

5. The result of this operation will be the instance of the range of cells
that can be used to refer to its properties and methods.

Note: After obtaining an instance of a child object, such as a worksheet or cell,
release it using the OBJECTRELEASE function.

PropSet The PropSet function sets the value of a known property of a selected OLE
object.

Syntax: A Call UDP operation with the following expression:
`@mg_ocx.PropSet’

Parameters: ArgumentType:‘4AA[parmtype][parmtype][parmtype]4’
(required for calling a common DLL)

Object Instance: A numeric variable or expression
containing the object instance number.

Property Name: A variable or expression containing the
property name.

Parameter Types: A variable or an expression containing a
string describing the property’s parameters. Optional
parameters, which are not passed, are represented by the
`M’ character.

Parameters: The parameters that are to be set.

Return Code: A numeric variable that will receive the
function’s return code. For more details, refer to the section
on Return Codes.

Returns: The function’s Return Code.

Example: To set the value of a cell or a collection of cells in an Excel
Reference Guide 1148

Worksheet,

1. Load the OLE object and receive its instance as described
in the ‘objectLoad’ section.

2. Get the instance of the active sheet in the OLE Instance,
as described inExample 1 of the PropGet function.

3. Get the instance of the range of cells in that worksheet,
as described in Example 2 of the PropGet function.

4. Define a Call UDP operation invoking PropSet.

5. Zoom to the Parameter list and define the following
parameters:
Argument Type string – `4AA44’
Instance of the range - as previously obtained.
Property Name – `Value’
Parameter Type string – the single character `4’ for the
given value.
Parameter - The variable or expression containing the value
to be set.
Return Code - return code variable.

MethodCall The MethodCall function invokes a method in an OLE Object.
The first parameter described in the Parameter Type string is a variable
that receives the return value of the method as either void or a pointer. If
the return value is void, no variable should be specified in the Parameter
Type string. The remainder of the parameters of the method follow as
described in the Parameter Type string. Optional parameters can be
omitted by indicating the letter ‘M’ in the relevant position of the string.

Syntax: A Call UDP operation with the following expression:
`@mg_ocx.PropGet’

Parameters: Argument Type: ‘4A[parmtype][parmtype][parmtype]4’
(required for calling a common DLL) Object Instance: A
numeric variable or expression containing the object
instance number.

Property Name: A variable or expression containing the
property name.

Parameter Types: A variable or an expression containing a
Reference Guide 1149

string describing the property’s parameters. Optional
parameters, which are not passed, are represented by the
`M’ character.

Parameters: The required parameters to be received and
sent.

Return Code: A numeric variable that will receive the
function’s return code. For more details, refer to the section
on Return Codes.

Returns: The function’s Return Code.

Example: To print out the second page of the worksheet,

1. Load the OLE object and receive its instance as described
in the ‘objectLoad’ section.

2. Get the instance of the active sheet in the OLE Instance
as described in Example 1 of the PropGet function.

3. Define a Call UDP operation invoking the MethodCall
function.

4. Zoom to the Parameter list and define the following
parameters:

Argument Type string – `4AA2224’
Instance of the worksheet - (previously obtained).
Method name – `PrintOut’
Parameter Type string – `0222MMMM’ made up of 8
characters where:
`0’ – void for no returned value from the function,
`222’ for three numeric values to pass (from page, to page,
and number of copies)

`MMMM’ for the following four missing optional parameters.

Parameter1 - A variable or expression containing the
number of the first page to be printed.
Parameter2 - A variable or expression containing the
number of the last page to be printed.
Parameter3 - A variable or expression containing the
number of the copies to be printed.

Return Code:
The Return Code variable.
Reference Guide 1150

Each procedure of the mg_ocx.dll may return different error
codes depending on the success or failure of its execution.

The following table interprets the codes:

Code Symbol Description

0 Ok Success

1 E_BADPARAMCOUNT Wrong number of
parameters

3 E_INTERNAL_ERROR

4 E_MEMBERNOTFOUND Either the property or
the method does not
exist for the given
object.

5 E_OVERFLOW

6 E_TYPEMISMATCH The wrong type of data
was sent.

8 E_PARAMNOTOPTIONA
L

A required parameter
was missing

9 E_INTERNAL_ERROR

10 E_NOOBJECT No instance of an
acquired object was
given.

11 E_CTRLNOTFOUND The control name given
in the objectLoad
function was not found.

12 E_BADPARAM Neither a control name
nor a class name was
given in the objectLoad
function.
Reference Guide 1151

Call to a DLL
The CallDLL, CallDLLF, and CallDLLS functions let you call a DLL from an
external application. You can also call a program or function from an DLL of an
external application.The CallDLL function enables a dynamic and direct call to
a DLL from an external application within in eDeveloper. The CallDLLF function
calls to an external Fastcall function. The CallDLLS function calls to an external
Stdcall function. The syntax parameters of these functions are described
below.

• modulename.functionname - the module and function names from the
DLL.

• argument type string - a string in which each character represents the type
of argument. The last character represents the type of the return value of
the function. The Argument types are:

1 - Char
2 - Short
4 - Long
F - Float
8 - Double
D - Double pointer
E - Float pointer
L - Long pointer
A - Null terminated string pointer
V - Void pointer
0 - Void

• Arg1,Arg2,... - The function arguments from the DLL.

Call to a 3rd Generation Language
You can call a UDP to invoke the execution of a 3rd generation language
program and to also pass parameters by using the UDF, UDFF, and UDFS
functions. Magic uses the C language calling convention when calling this
program. The call is done in memory as if the user procedure is an internal
subroutine of Magic, using the simplest call or jump instruction of the machine.
Reference Guide 1152

You can call a UDP for the following uses:

• Implementation of Magic extensions: user-supplied routines that perform
specific tasks or functions not supported internally in Magic.

• Utilization within Magic of existing code written outside of Magic.

• Implementation of specialized calculations that have been optimized for
speed in the external procedure.

Call UDP Operation Parameters
Only the parameters which are specific to the Call UDP operation appear
below. All the other parameters that are common to all the Call types are
explained in Chapter 7, Operations.

Call Category

The words UDP must be specified in place of the word Task. Click on the combo
box to see the five Call categories and select UDP.

Identification Number of the UDP Expression

The Identification Number of the UDP Expression is required. It is the number
of the expression in the Expression Rules repository that at Runtime returns a
string with the name of the called program.

Name

After you have selected the expression, the first part of its text appears in the
Name parameter for display only.
Reference Guide 1153

UDP Functions

The UDP functions are described below.

• UDF - User functions written in the third generation programming
languages, like C or Pascal, can be called as functions within Magic
expressions (cdecel).

• UDFF - User functions written in third generation programming languages,
like C or Pascal, can be called as functions by the fastcall convention.

• UDFS - User functions written in third generation programming languages
(like C or Pascal) can be called as functions by the stdcall convention.
Reference Guide 1154

Distributed Application
Architecture 19

Developer achieves a high level of interoperability among different
computing environments. Interoperability means the ability of
eDeveloper applications to operate in multi-database, multi-platform,

and multi-network data processing contexts. Using the simple interface
common to all eDeveloper applications, every user, from any workstation, can
access any type of local or remote database, execute queries, and update the
data.

In an environment where multiple computers are connected by Local Area
Network (LAN) or Wide Area Network (WAN), eDeveloper’s distributed
application architectures designate a specific form of distributed processing.

In this chapter:

• Enterprise Server General Scheme

• Enterprise Server Setup

• Supported Middleware

• Internet Requesters

• Browser Client Applications

• Application Partitioning

e

Reference Guide 1155

The Enterprise Server General Scheme
The Enterprise Server General Scheme, as described in Figure 19-1, allows
any supported client to communicate with the eDeveloper enterprise server.

The following figure shows the basic elements required for the communication
between the client and the enterprise server.

The following are the components of the enterprise server configuration:

• eDeveloper enterprise server – An eDeveloper multi-threaded runtime
engine connected to a supported middleware module may act as an
enterprise server for any type of supported requester.

Figure 19-1 Communication Between the Client and the Enterprise Server
Reference Guide 1156

• Requester – A client may issue a request to an enterprise server only
through a supported requester. Each client has its own requester.
There are three major requester types:

• eDeveloper requester – The eDeveloper engine has a requester
module as an integral part of the engine.

• Internet requester – eDeveloper provides three types of Internet
requesters – CGI, ISAPI and NSAPI.

• Command line requester – eDeveloper provides a command line
requester that can be executed from an OS Shell.

• Middleware – Software modules can be used to direct a request from a
requester to an eDeveloper server and back. eDeveloper supports the
following middleware:

• Magic Request Broker – eDeveloper provides a proprietary
middleware module.

Uses of Distributed Application Architecture

Application Partitioning

The term application partitioning is used to describe the process of developing
applications that distribute the application logic among two or more computers
in a network. In the simplest case, the application can run on a single PC, as a
client, and send task requests for execution to a server. In more advanced
cases, the application logic can be distributed among several servers.
eDeveloper also allows the following network configurations:

• eDeveloper to eDeveloper – the eDeveloper client can pass requests to an
eDeveloper enterprise server using any of the middleware types listed
above.

• eDeveloper to third party applications – the eDeveloper client can pass
requests to a third party application.
Reference Guide 1157

Internet/Intranet Applications

eDeveloper provides various ways to create a browser-based application.
Using the Internet requester that resides on a Web server, eDeveloper can
accept a request from a remote browser, process this request, and return an
HTML-based result. eDeveloper can produce needed HTML based content in
the following ways:

• A browser task that creates a full browser-based task where the
HTML content is enhanced to provide the runtime logic needed to maintain
HTML controls with their associated data, such as event trapping and
handling.

• A batch task that outputs an HTML form or a frame set interface type.

• A batch task that outputs data merged into an HTML template.

• A batch task that outputs data merged into an HTML template enhanced
with Web Online features.

Enterprise Server Setup

Runtime Engine Behavior

The eDeveloper Runtime Engine executes requests for remote services. The
runtime engine is an instance of the same eDeveloper Runtime executable that
is used for running an application locally. The eDeveloper Request Gateway is
a software layer that enables the runtime engine to communicate with the
eDeveloper Request Broker and the Requester Client.

The eDeveloper Runtime Engine can handle a request from only one
middleware agent. The requester client, however, can communicate with many
middleware agents, and the request server can communicate with many
runtime engines.

The runtime engine’s broker address is stored in the Magic. ini file. When the
runtime engine starts up, it notifies its request broker that it is available. The
message also includes the list of applications that the runtime engine
Reference Guide 1158

supports. The runtime engine then proceeds to listen on a known port, which
is also specified in its Magic.ini file. When a request is received and the
runtime engine is idle, the runtime engine will open the requested application.

The runtime engine enters the user name and password, specified in the
request, into the request log. It will then run the requested program, and send
the execution results to the caller.

During the execution of the request, the runtime engine sends “I’m Alive”
messages to either the request broker or the requester client, at intervals of
ServerTimeout seconds. A ServerTimeout second is a value that the Request
Client sends along with the request.

If the request is not valid, or if the runtime engine is busy, an appropriate
message is sent to the request source.

The eDeveloper enterprise server is constructed in the same way regardless of
the type of client. The only difference in the enterprise server for each
constellation is the middleware module.

Loading a Middleware Gateway

The following settings are needed to connect the eDeveloper engine to the
middleware gateway as the middleware gateway is loaded to an enterprise
server.

1. Load the required middleware gateway.
You should unmark the required gateway in the
[MAGIC_MESSAGING_GATEWAYS] section in the MGREQ.INI file
located in the working directory of your eDeveloper engine.

Magic Request Broker – The eDeveloper engine can always be
connected to the Magic Request Broker. No specific settings need to
be made to the MGREQ.INI

Note that although several gateways can be loaded, a single engine
can be connected as a server to only one middleware module.

2. Define the server settings in the server table.
Reference Guide 1159

Refer to the relevant middleware section for exact details.

3. Assign the server setting to be the messaging server for this engine
(Settings/Environment/Enterprise Server).

4. Define the engine to load as an enterprise server by selecting Yes for
the Environment setting: Activate as Enterpise Server.

5. Activate the middleware agent.

6. Activate the eDeveloper executable to run as a full functioning
enterprise server.

For more information, refer to the relevant middleware and client sections in
this chapter.

Supported Middleware
The following middleware gateways are supported by eDeveloper:

• Magic Request Broker (MRB)

Magic Request Broker - MRB

The Magic Request Broker component receives and processes requests from
the network. Requests are calls for remote program execution that include
Reference Guide 1160

parameters and options. A request is eventually sent to an eDeveloper engine
for execution. A diagram of the MRB process is shown in Figure 19-2 .

The main functions of the Magic Request Broker are:
• Queuing client requests

• Allocating available runtime engines for requests

• Logging all operations

• Maintaining and distributing status of all submitted requests

• Activating programs in NOWAIT mode

Prerequisites

The MRB requires a WINSOCK compatible TCP/IP stack installed under the
Windows operating system.

Figure 19-2 The Magic Request Broker Process
Reference Guide 1161

Installation and Configuration

All the Magic Request Broker files should reside in the same directory:

• MGRQMRB.EXE is the broker executable. The MRB can run under Windows
95/98 or Windows NT/2000. On Windows NT/2000, the broker can be run
as service.

Run MGRQMRB.EXE from the command line or a shortcut to start the MRB
operation. An icon on the Windows task bar indicates that the MRB is run-
ning. If the MRB is started as a service, the task bar icon does not appear.

• MGRQGNRC.DLL is the generic messaging layer that contains the support
libraries.

• MGRB.INI is the initialization and settings file. The MGRB.INI file is read
during the MRB initialization. Note that the MGRB.INI is not necessary for
the successful installation and configuration of the Magic Request Broker.
If the MGRB.INI is not found, the MRB will use the defaults for each
initialization setting.

The following parameters should be defined in the initialization file:

Keyword Explanation

BrokerPort The ports that the MRB listens to and waits for requests
from.
Syntax: BrokerPort = port number:
(default number =3001)
Note that the MRB will hold a total of 5 consecutive ports
starting with the given port.

EnginesPriority A list of up to 9 computer names that are used to
provide server engines. This list controls the order in
which the MRB chooses engines to serve client requests.
The Engines Priority list operates sequentially so that the
engine for the first computer executes the client
command, if available, before the engine of the second
computer, and so on.
Reference Guide 1162

Server Timeout The interval, in seconds, within which the broker
instructs the engines to send an I-AM-ALIVE message
during the execution of asynchronous calls.

If the value is 0, then the engine will not send the I-AM-
ALIVE message to the MRB.

If the engine crashes or is terminated in an abnormal
way during task execution, it is understood by the MRB
as a no response from the engine.

Syntax: ServerTimeout = n

PasswordSuper
visor

An optional value that restricts the user’s access to the
MRB. If specified, security checks will occur during the
following broker operations:

Clearing or prioritizing any command request in the
queue (a user can modify a command request based on
the user name and password used when the request was
submitted).

Terminating the MRB.

Loading new executables.

If PasswordSupervisor is not specified, security
validations for user name and password are inactive.

Keyword Explanation
Reference Guide 1163

PasswordQuery An optional value that can be used to restrict access to
the MRB. If specified, a password is checked before
allowing a user to query a request of another user. Any
user can access the Query Queue and Log to view their
own requests, based on the user name and password
entered or in effect when the request was submitted,
without any security restrictions. The MRB accepts the
user name and password of the service, the user name
and logon password to the eDeveloper application, or the
user name and password stored in the MGREQ.ini file
(for cmdl/internet only).

If PasswordQuery is not specified, security validations for
user name and password are inactive.

AutoLoad This setting is used to let the MRB load additional
enterprise server engines when incoming requests
cannot find an available enterprise server.

If set, the MRB will load an additional enterprise server
engine as specified to serve a new request that had no
available enterprise server engines (either because all
are busy or none are registered in the MRB).

Syntax: AutoLoad=[Executable name], [Number]

Example: AutoLoad = Background,2

Executable name: A name of a define executable, in
either the [MRB EXECUTABLES LIST] section or in the
[MRB REMOTE EXECUTABLES LIST] section.

Number: The total number of engines to be loaded for
the specified executable name.

Reload When this setting is set to Yes, the MRB reloads any
instance of an eDeveloper enterprise server that was not
terminated by the MRB.

Example: Reload=Y

Keyword Explanation
Reference Guide 1164

Log A reference to a file that logs high level MRB activities
such as initialization, receiving requests, locating
enterprise servers, passing enterprise server information
to the requester, and so on. This log can be used to
check if a certain request was accepted by the MRB and
how it was handled.

Syntax: LOG=([Log File Path and Name] [Sync]
[Level])

Example: LOG=C:/temp/mrb.log Y C

Log File Path and Name: Any valid name that does not
include spaces.

Sync:

Y - The log file opens and closes for each line. This allows
for the deletion of the file while the components are still
loaded in memory. It also allows the log file to be shared
among several modules.

N - The log file opens and closes only during the
component initialization and termination operations.

F - Each line designated to be printed is sent to the Log
file. The Log file only opens and closes during the
component initialization and termination operations.

Level:

C - Customer level. The lowest log status.

S - Support level. An intermediate log status.

R - R&D level. The highest log status.

To let the MRB log low level activities(such as connect,
send, receive, and so on), you can define the log in the
MGREQ.INI file located in the MRB directory.

Keyword Explanation
Reference Guide 1165

ActivityLog The ActivityLog setting lets you specify the Magic
Request Broker log file name and path,

Example of the ActivityLog setting is:

• ActivityLog=logs\broker.log

If the Activity log is not set it is created by default as
mrb_event.log.

[MRB
EXECUTABLES
LIST]

Optional section containing a list of command line
executables or shell commands that can be activated
from a remote requester, or upon MRB initialization.
Syntax:
EXE_ENTRY_NAME=<command>[<work
dir>],[<username>], [<password>],[<number of times
to perform upon broker initialization>]

[MRB REMOTE
EXECUTABLES
LIST]

Optional section for setting up a multi-computer
environment with engines running on computers
independent of the MRB.
An instance of the MRB, functioning as a loader, must be
active for each computer with engines running on that
broker. The local MRB automatically connects to the
remote MRB, specified in the exe entry of this section,
instructs it to load an executable from its list of
executables. The PasswordAdmin must be used if the
remote broker has its own password (if not specified,
use the password for the local MRB).

Keyword Explanation
Reference Guide 1166

[MRB ENGINE
CLIENTS MAP]

The purpose of the MRB Engine Clients Map is to let you
control the engine that receives the request. For
example, when several developers are working on the
same MCF file, a developer can check out an object and
command the MRB to assign its own engine.
Note: During the Remote Call execution (when the
engine is mapped to this section), the Request Gateway
utilizes the logon name and password that are sent with
the request. If a user is not logged in to the engine, it is
necessary to specify the user name and password from
either the Mgreq.ini file for Internet and Command Line
requesters, or in the Service repository for the
eDeveloper 9 client to view the version of the MCF
related to that logon.

Filters You can use this field to specify how threads are
allocated for requests of different filter types.

The example below shows you how an enterprise server
with a license of 20 thread can be designated to service
different types of requests:

• HTTP End Users - 2 threads

• SOAP_BT - 6 threads

• COM Primary - 4 threads

• Requests without filter - 8 threads

The filter string entered for the above example
would be:
HTTP_endusers:10%|SOAP_BT:30%|COM_primary:20%

If the accumulated percentage is greater than 100%, the
last filter entry that exceeds the accumulated
percentage of 100% will be adjusted to be equal to
100% and all subsequent filters will be discarded.

Keyword Explanation
Reference Guide 1167

Magic Request Broker Behavior

The Magic Request Broker Queue

The Magic Request Broker (MRB) manages the request queue, which is based
on priorities from 0 to 9, where 0 is the lowest priority. Each item in the queue
contains the following information:

• Request ID

• Priority

• Execution status

• Application name

• Original request packet

• Error codes

The MRB manages a list of associated Runtime engines containing the
following information for each Runtime engine:

• Address

• Status

• Current application

• Available applications

AllowReserve When the accumulated percentage of designated filters
is less than 100%, you can specify Yes (default) to
reserve the remaining percentage for other filters.

When AllowReserve = No, only requests without a filter
can use the remaining percentage.

Keyword Explanation
Reference Guide 1168

Automatic Reload

Following an abnormal termination, the Magic Request Broker automatically
reloads through an administrative process that monitors the MRB.

Automatic Termination of the Enterprise Server

If the Magic Request Broker terminates and restarts, normally or abnormally,
the enterprise server connected to the broker session will terminate after 60
seconds or less. This applies only to an enterprise server running in the
background mode.

Load Balancing Enhancements

The Magic Request Broker load balancing mechanism ensures that requests
are directed to the engines that have the highest priority, the best
performance, and the least number of active contexts.

Broker Error Messages

This information below is used to understand the reasons behind broker error
messages and suggestions on how the error can be resolved.

102 ERR_CNCT_REFUSED_MRB The connection to the broker was refused.

Verify that the broker is listening to the
port on the specified machine. Refer to its
Mgrb.ini file.

103 ERR_APP_NOT_FOUND The required application does not appear in
the list of applications registered to the
selected broker. Use the Monitor
Application utility to view the list of
applications.
Reference Guide 1169

104 ERR_APP_IN_USE All enterprise servers supporting the
application are busy. This error also can
appear as a result of the broker timeout.
Check the Timeout value in the Mgreq.ini
file.

Use the Monitor Application utility to view
the status of the enterprise servers.

105 ERR_MRB_NOT_RSPND The broker did not return an
acknowledgement message or any
response to the requester.

For remote calls, increase the
CommTimeout value in the Mgreq.ini file
(the default is 10 seconds). For query and
administrative requests, you can increase
the Broker timeout value.

106 ERR_RT_NOT_RSPND The requester was not able to send a
request to an enterprise server. You can
increase the CommTimeout value in the
Mgreq.ini file.

107 ERR_CNCT_RESET This message appears when:

• The enterprise server was aborted
during the execution of a request.

• The connection was reset due to
network connection problems.

109 ERR_CNCT_REFUSED_RT This message appears when there are
connection problems between the client
requester and the enterprise server.

You can view the monitor for the list of
enterprise servers. Ping the host name and
IP address of the assigned enterprise
server.
Reference Guide 1170

110 ERR_REQUEST_TIMEOUT The execution of the task was not
completed during the Request Timeout
interval.

130 ERR_BAD_MCF The application cannot be opened.

131 ERR_BAD_PRG The enterprise server could not find the
requested program. Check the program's
public name.

132 ERR_BAD_ARGS Invalid arguments were passed to the
program, for example, an incoming SOAP
envelope containing an invalid element.
You can use a tracer to locate and fix the
invalid elements.

133 ERR_ACCESS_DENIED Access is denied to the application. This
error can occur when:

• An invalid user or password was
passed to the enterprise server.

• The user had no rights to execute the
program.

137 ERR_REQ_REJECTED The enterprise server cannot execute the
request because of a timing problem. This
error is usually related to switching
between Runtime and Toolkit modes.

138 ERR_RT_ERROR_MSQ During the execution of a program in an
enterprise server, the program was not
processed properly, for example, a verify
error that aborted execution of the
program or any other abort condition.

139 ERR_THREAD_ABORTED During the execution of a program, the
program terminated abnormally.
Reference Guide 1171

146 ERR_BIND_HOST_NOT_FOUND The Local Host entry in the Mgreql.ini file
or /LocalHost in the TCP/IP parameters in
the Magic.ini file (for example, TCP/IP =
2,30,1500-2000 /LocalHost=myserver)
specifies an invalid host name.

147 ERR_CNCT_HOST_NOT_FOUND Unknown host. This error is similar to ERR-
BIND_HOST_NOT_FOUND.

A requester cannot connect to an unknown
broker or enterprise server. You should
check the MessagingServer keyword in the
Mgreq.ini file.

The broker address must contain the
Internet address, such as 88.0.184/2001.

148 ERR_CNCT_CLOSED A connection was unexpectedly closed.

150 ERR_REFUSED_MRB An application server could not connect to
the broker.

Check if the broker has started and that
the host name of the broker,
MessagingServer keyword in the Magic.ini
file, belongs to the correct IP address (ping
<mrbhost>).

You can reproduce the problem by setting
the Log parameter to Enabled in the
Mgreq.ini file (for example, log = reg.log Y
R) in the enterprise server directory.
Reference Guide 1172

eDeveloper Requesters
Various types of clients can use the services of the eDeveloper enterprise
server. Each supported client needs to use the required requester module.

The requester module is specified for each type of client as described below.

Requester Settings

Supported clients that use one of the supplied eDeveloper requester interfaces
(such as eDeveloper client, Command line, Browser) can be set in the
MGREQ.INI file. This file must reside in the working directory of the requester
module.

During the requester initialization, the MGREQ.INI file is read. The sub-
directory with the MGREQ.INI file is located in the directory of the General
Messaging module (mgrqgnrc94.dll).

151 ERR_CNCT_RESET_BY_REQ During the execution of a request, the
connection between the requester and the
enterprise server was reset. As a result, no
output was returned from the enterprise
server to the requester.

Check the requester in the client machine
and the enterprise server. If possible,
reproduce the problem by setting the Log
parameter to Enabled in the Mgreq.ini file
(for example, log = req log Y R) in the
requester and enterprise server
directories.
Reference Guide 1173

The following information is defined in the initialization file:

Keyword Explanation

Gateway Describes the middleware that is used by a
requester. Gateway = 1 means use The MRB.

Syntax: Gateway = number

MessagingServer, The address of the Middleware agent that
receives the requests.

Syntax: MessagingServer = node name/port
number

AltMessagingServer You may define an additional address of another
middleware of the same type. The requester will
refer to this address if the connection to the
main Messaging server fails.

Syntax: MessagingServer = node name/port
number

BrokerTimeout The maximum time, in seconds, that the
request waits for an available engine to be
returned by the middleware. If the middleware
agent cannot provide an available engine within
this time, the requester returns one of the
following two error codes:

 APP-NOT-FOUND - the application is not listed
in the MRB’s internal database.

APP-IN-USE - the application is listed but the
supporting engine is busy.

If the value is 0, the eDeveloper engine does
not execute the request for the MRB.

Syntax: BrokerTimeout = n
Reference Guide 1174

KeepAlive Uses the mgrqgnrc94.dll to set a requester
option for each connection opened, and to use
OS level settings to control the keep-alive
intervals.

KeepAlive is only enabled when OS settings are
used. System managers must set the OS setting
intervals.

 KeepAlive = Y or N [default=Y].

RequesterTimeout The maximum time, in seconds, that the
requester waits for the completion of a task.

If the value is 0, the completed task execution
time is unlimited.

Syntax: RequesterTimeout = n

Priority Optional. The default priority for requests that
were not assigned a specific queue priority, 0 to
9 with 9 as the highest priority.

The priority is used by the MRB only, to assign
free engines to un-prioritized requests.

Syntax: Priority = n

Keyword Explanation
Reference Guide 1175

CloseWaitTimeout You can use this keyword to define a
mechanism for closing semi-closed connections,
i.e. connections that were closed by a peer. You
can use the keyword as follows:

If you have previously-connected brokers or
engines that were shut down and then
restarted at the same address, though the
module initiating the connection was not
shut down, semi-closed connections will
exist. You can use the CloseWaitTimeout
keyword and define whether the
connections are either automatically closed
when the next request is received or after a
certain defined period of time.

Note: This keyword is recommended if you
normally your broker and engines are shut
down but the Web server is not shut down.

You can use these values with the keyword:

• The duration, in minutes, between
periodical closing of all semi-closed
connections. For example, if you enter 5,
the engine will close any semi-closed
connections every five minutes. In addition,
each semi-closed connection is closed when
encountered by the requester.

• -1: If you enter -1 for this keyword, there is
no periodical closing and semi-closed
connections are only closed as
encountered.

• You can enter 0 to determine that semi-
closed connections are never closed, either
periodically or as they are encountered.

Note: The default value for this keyword is -1.

Keyword Explanation
Reference Guide 1176

Username, Password Optional. The default user name and password
that is submitted with unidentified requests.

Syntax:
Username = string
Password = string

DefPath, DefName Optional. A directory and filename default for a
requests specified without a filename.

Syntax:
DefPath =
DefName =

DefHtml For Internet requesters:

A filename that can be queried by an Internet
requester that can be display if the called
program does not return an HTML result.

Http Vars For Internet requesters:

A list of variables that are sent from the web
server to the activated task, using different
requesters: NSAPI, ISAPI, or CGI.

Syntax: httpVars=VarName1, VarName2,...

Appl Allowed application names separated by a
comma. When not specified all applications are
allowed.

Syntax: Appl=applic 1, test 2, abc,...

Keyword Explanation
Reference Guide 1177

AutoLookBack Y or N (default = Y)

Informs the broker to use the local host IP
address, 127.0.0.1, instead of resolving the
host name, which is useful when the broker and
the application server are on the same
computer.

Keyword Explanation
Reference Guide 1178

Log A reference to a file that logs low level requester
activities

Syntax: LOG = ([log file path and name] [Sync]
 [Level])

Example: LOG = REQ.log Y S

log file path and name:

Any valid name that does not include spaces.

Sync:

Y - The log file opens and closes for each line.
This allows for the deletion of the file while the
components are still loaded in memory.

And to share the log file with several modules.

N - The log file opens and closes only during the
component initialization and termination
operations.

F - Each line to be printed will be sent to the log
file.

The log file only opens and closes during the
component initialization and termination
operations.

Level:

C – Customer level – The lowest level of
logging.

S – Support level – An intermediate level of
logging.

R – R&D level – The highest level of logging.

Keyword Explanation
Reference Guide 1179

[MAGIC_MESSAGING_G
ATEWAYS]

Specify the gateway of the required module to
be loaded.

Each requester can work with only a single
middleware type. Unmark the middleware
gateway entry to load the required middleware
module.

Syntax: MGSRVR##=DLL,N,log file name,
LogSyncFlush, middleware parameters

Example:
MGSRVR06=MGRQSOAP.dll,N,mg.log,Y

- The number of middleware type:

DLL - The name of the required gateway dll file.
06 - SOAP Gateway - MGRQSOAP.dll

log file name - The name of the log file.

LogSyncFlush
Y - The log file opens and closes for each line.
This allows for the deletion of the file while the
components are still loaded in memory, and to
share the log file with several modules.
N - The log file opens and closes only during the
component initialization and termination
operations.

F - Each line to be printed is sent to the log file.
The log file only opens and closes during the
component initialization and termination
operations.

Middleware parameters - Any required
parameter to be passed to the middleware. If
you are using the Magic Request Broker, there is
no need to set anything in this section.

Keyword Explanation
Reference Guide 1180

UPLOAD LIMIT The MaxUploadKB setting detemines the
maximum size of a file upload:
MaxUploadKB=nnnn. The size is defined by
kilobytes.

If a file larger than the limit is submitted, the
Magic requester does not process the request,
and returns the following error message to the
client:

File upload failed: file size exceeds maximum
size limitation.

The Error code is: -260

If the MaxUploadKB parameter is not defined,
set to zero, or to a negative value, eDeveloper
will upload any file, regardless of size.

Uploading large files can create a congestion on
the enterprise server.

Handles Specifies the maximum number of sockets that
can be opened by the broker, enterprise server,
or requester, depending on the location of the
Mgreq.ini file

Default = 500

RetryMainTime Specifies the number of minutes a requester
waits before retrying its primary broker. This
setting applies only to persistent requesters,
such as ISAPI and APACHE.

Default = 5
Minimum value = 1

Keyword Explanation
Reference Guide 1181

Internet Requester
An Internet requester lets the eDeveloper enterprise server respond to
requests from a browser client through a web server. A requested eDeveloper
program usually produces an HTML-based output that is returned to the
browser.

HttpSigVars Setting requests for execution within a defined
context without any client identification means
that any user can create a user-defined request
with the same context identifier. To avoid this,
the browser context requires some or all of the
following client-side identification:

• Client-side IP, such as REMOTE_ADDR

• Client-side host name, such as
REMOTE_HOST

• Client-side user name, such as
REMOTE_USER

• SSL related information, such as HTTPS,
SSL_CLIENT_KEY_SIZE

• User-defined cookie variables

Filter You can use this keyword for the requester to
send a filter with each request by entering:

[REQUESTER_ENV]
Filter = <key name>

For requests that did not originate from the
runtime engine, such as command line or ISAPI,
the <key name> from the Mgreq.ini file is sent
to the broker with each request.

Refer to the MRB Filter on page 1167 for a
complete explanation about filters.

Keyword Explanation
Reference Guide 1182

A browser connects to an eDeveloper application by activating the Magic
Internet Requester that resides on the web server.

Upon activating the Internet requester, the request is passed to an available
runtime engine for processing. The result of the enterprise server task is then
returned to the requester and is displayed on the browser client.

How You Can Use eDeveloper on the Internet

You can use eDeveloper to develop your browser-based applications without
any prior HTML or Java programming knowledge. eDeveloper lets you design
and develop an application for the Internet and Intranets by using five major
approaches:

• HTML and Java-based interfaces

• Plain HTML

• Frame Set

• Merge

• XML

These approaches can be employed separately or in combination.

You can use eDeveloper as a tool for creating, editing, and testing your web
applications. eDeveloper shows you how these elements will appear on your
web browser, and lets you debug as you go along.

Application Development Concepts

Major Components

The major components of an eDeveloper Internet application are:

• Enterprise server

• Web server and related requester

• Web browser
Reference Guide 1183

• Middleware agent supported by eDeveloper

Software Requirements

• Supported Middleware

You need to load and run a middleware module that is supported by the
eDeveloper enterprise server. For more information, see the Supported
Middleware section.

• Web Servers

You must have at least one working web server installed before you can
develop any eDeveloper applications for the Internet. An Internet
Requester module must be installed on the web server. During a typical
eDeveloper installation, the installation program automatically detects the
installed web server, and defines and sets the required Internet Requester
module.

Setting Up an Internet Requester

eDeveloper provides various Internet requesters for the various types of web
servers.

• MGRQISPI.DLL – The Magic Internet Requester that can be used in
Microsoft web servers.

• MGRQCGI.EXE – The Magic Internet Requester that can be used to work
within any web server. Since this CGI-based requester is common to all
web servers, it is slower in performance than the specific requesters
mentioned above.

• The Magic Internet requester module requires additional files:

• MGRQGNRC.DLL – The Generic Messaging layer.

• MGRQHTTP.DLL – The HTTP services layer.

• MGREQ.INI – The initialization file.
Reference Guide 1184

Microsoft Web Server

If you are working with a Microsoft web server, do the following:

1. Place the MGRQISPI.DLL, MGRQGNRC.DLL, MGRQHTTP.DLL,
MGREQ.INI files in the web server Scripts directory.

2. Set the Scripts directory to be Executable and Readable.

3. Under the Enterprise Server tab in the Environment dialog set the
Http Requester environment setting to the following format:

http://your server address/scripts/MGRQISPI.DLL

Substitute your actual server address after //.

4. Restart your web server.

Note: You can define your own directory with a different web alias, set the
directory to Executable and Readable, and place your files there.The
eDeveloper installation process simply creates an alias to the eDeveloper
working directory where the required requester files reside.

Other Web Servers

If you are working with a web server other than the Microsoft web server, do
the following.

Place MGRQCGI.EXE, MGRQGNRC.DLL, MGRQHTTP.DLL, MGREQ.INI in the web
server executables directory (e.g. CGI-BIN).

Set this directory to Executable and Readable.

Under the Enterprise Server tab in the Environment repository, enter the
following format in the Http Requester setting:

http://your server address/CGI-BIN/MGRQCGI.EXE

Substitute your actual server address after //.

Restart your web server.
Reference Guide 1185

You can define your own directory with a different web alias, set it to
Executable and Readable, and place your files in that directory.

Internet Application Paradigms

The eDeveloper Toolkit provides two major paradigms to construct an Internet
application:

• Online oriented paradigm (or Browser Client Application)– the application is
defined as a Browser task type, and provides an HTML-based output
integrated with a proprietary .NET-based client-side runtime engine.
eDeveloper also supports a Java-based, client-side, runtime engine.

• Batch oriented paradigm – the application is defined as a Batch task type.
Each program name receives arguments from the browser (including the
program to execute) and produces an HTML output with the required
interface and data.

SOAP Server Requests
In the MGREQ.ini file, remove the semicolon from the MGSRVR06 line to load
the mgrqsoap.dll file. The mgrqsoap.dll file lets you send and receive Soap
server messages from eDeveloper.

Browser Client Applications
eDeveloper Version 9 provides a comprehensive solution for a browser-based
application by letting the browser connect to only one interaction at a time.
Real life applications are based on numerous interactions. The client displays
each interaction as a new page.

Constructing the online interface of an application for a browser demands
specific requirements from the client and server. These requirements are
explained below.
Reference Guide 1186

Creating a Browser Task

You can create a browser client task with full transparent runtime functionality
by defining a task as a Browser task type in the Task property sheet.

Creating a Browser Client Program with the Automatic
Program Generator (APG)

The Automatic Program Generator (APG) can generate a basic browser client
program.

Executing the APG with the Browser Client option produces a fully online
browser-based task.

Writing the Logic for the Browser Task

The logic required for optimizing a browser task is created by using the
eDeveloper operations and functions.

The operations can be located in all handlers except for the Record Main.

The Record Main is used solely for creating the dataview (that is, Select and
Link operations).

The following list of operations and functions shows those that are supported
by the browser task.

Browser Operations

Operations supported by the browser task:

• Server operations:

• Call

• Input

• Output

• Browse
Reference Guide 1187

• Exist

• Client operations:

• Verify

• Raise Event

• Server and Client operations

• Block

• Evaluate

• Update

Browser Functions

Server-side functions are

ANSI2OEM
Blb2File
CallDLL
CallDLLF
CallDLLS
CallProg
ClrCache
CndRange
Counter
CtxKill
CtxLstUse
CtxNum
CtxProg
CtxSize
CtxStat
CurrPosition

ErrDbmsMessage
ErrMagicName
ErrPosition
ErrTableName
EuroCnv
EuroDel
EuroGet
EuroSet
EuroUpd
EvalStr
ExpCalc
File2Blb
File2OLE

Line
LMChkIn
LMChkOut
LMUVStr
Lock
Logical
MailBoxSet
MailDisconnect
MailError
MailFileSave
MailLastRC
MailMsgBCC
MailMsgCC
MailMsgDate
MailMsgDel
MailMsgFile

PPD
Pref
Prog
ProgIdx
RightAdd
Rights
Rollback
RqRtCtxs
RqExe
RqLoad
RqQueDel
RqQueLst
RqQuePri
RqReqInf
RqReqLst
RqRtApp
Reference Guide 1188

Client-side functions are:

DbCache
DbCopy
DbDel
DbDiscnt
DbERR
DbExist
DbName
DbRecs
DbReload
DbSize
DDEBegin
DDEEnd
DDEGet
DDEPoke
DDERR
DDExec
Delay
DiscSrvr
EOF
EOP
ErrDatabaseName
ErrDbmsCode

FlwMtr
GetLang
GetParam
GroupAdd
HTTPGet
HTTPPost
INIGet
INIGetLn
INIPut
InTrans
IOCopy
IOCurr
IODel
IOExist
IORen
IOSize
KbGet
KbPut
LIKE

MailMsgFiles
MailMsgFrom
MailMsgHeader
MailMsgIdMailMsgReplyTo
MailMsgSubj
MailMsgText
MailMsgTo
MailSend
MDate
MlsTrans
OEM2ANSI
RqCtxInf
RqCtxTrm
RqRtCtxs
Owner
Page

RqRtApps
RqRtInf
RqRts
RqRtTrm
RqStat
RunMode
SetLang
SetParam
Sys
Term
Text
TransMode
UDF
UnLock
User
UserAdd
VarPic
Visual
XMLCnt
XMLExist
XMLFind
XMLGet

CallJS
CallOBJ
CHeight
CLeft
ClickCX
ClickCY
ClickWX

ClipAdd
ClipRead
ClipWrite
CtrlGoto
CurRow
EditGet
EditSet

ClickWY
HandledCtrl
LastPark
MAXMagic
MINMagic
SetCrsr
WINBox
Reference Guide 1189

Both Client-side and Server-side functions are:

 BLOB Support

The browser client supports BLOB fields as part of the browser task dataview.
browser client behavior of BLOB fields is described below:

• BLOB fields cannot be displayed using an HTML element.

+
-
*
/
MOD
^
&
=
<>
<
<=
>
>=
OR
AND
NOT
ABS
ACOS
AddDate
AddTime
ASC
ASIN
ATAN
BOM
BOY
CASE

CHR
CMonth
COS
CRC
CTop
CtrlName
CWidth
Date
Day
DbRound
Del
DOW
DStr
DVal
EOM
EOY
EXP
Fill
Fix
Flip
Flow
Hour
HStr
HVal
Idle
IF

ISDefault
ISNULL
Left
Len
Level
LOG
Lower
LTrim
MAX
MID
MIN
MnuName
Minute
Month
MStr
MVal
NDOW
NMonth
NULL
RAND
Range
Rep
RepStr
Right
Round
RTrim

SoundX
Stat
Str
StrToken
StrTokenCnt
StrTokenIdx
TAN
TDepth
THIS
Time
Trim
TStr
TVal
Upprt
VAL
VarAttr
VarCurr
VarCurrN
VarIndex
VarInp
VarMod
VarName
VarPrev
VarSet
ViewMod
Year

CDOW
ChkDgt

Ins
INStr

Second
SIN
Reference Guide 1190

• BLOB fields with RTF content can be handled locally on the client, using the
string manipulation functions.

• You can improve client browser performance by nullifying BLOB fields that
are no longer required.

• BLOB variables are supported by the following string manipulation
functions:

Explicit Handling for a Browser Task

You can define handlers as System or Internal event handlers.

System event handlers – You can define your own handlers for the various key
combinations. However if the Browser has its own functionality for the key
combination, this functionality cannot be overridden, even if your handler calls
for no propagation.

Del OEM2ANSI

Flip Rep

INS RepStr

INStr Right

LEFT RTrim

LEN StrToken

LOWER TRIM

LTrim UPPER

MID
Reference Guide 1191

Internal event handlers – Only the following Internal events are supported by
the browser client:

Help Action Support

The Help Action behavior is described below:

• The eDeveloper Help event can be raised implicitly upon activating the Help
action from the browser by pressing F1, CTRL+F1, or by accessing Help
from the Help Menu.

• When the Help event is raised, a new Help window that displays the URL of
the defined Help screen opens. The browser’s Help window is not
displayed.

• When you request Help from an HTML control, eDeveloper displays the
Help screen assigned to the HTML control. If no Help screen is assigned to
the HTML control, eDeveloper displays the Help screen for the form. If no
Help screen is assigned to the form, eDeveloper displays the browser’s
internal Help screen.

Begin Field

Begin Form

Begin Line

Begin Page

Begin Row

Begin Screen

Begin Table

Click

DblClick

Delete Line

End Row

End Table

Help

Modify Records

Mouse Out

Mouse Over

Next Field

Next Page

Next Row

Next Field

Next Page

Next Row

Next Screen

Previous Field

Previous Page

Previous Row

Previous Screen

Previous Tab

Query Records

View Refresh
Reference Guide 1192

Creating the Browser Task Interface

The interface of a browser task is an HTML based interface. The interface of
the browser task is based on an actual HTML file.

The actual editing of the interface is done through an independent HTML
authoring tool of your choice.

You can edit this page outside of the eDeveloper Toolkit. Alternatively, you can
edit the HTML page by zooming to the browser interface of your browser task.
By zooming, eDeveloper opens the defined HTML file using your preferred
HTML authoring tool. For more information, See the Web Authoring Tool
environment setting description in Chapter 2, Settings.

Enhanced Preset Tool Images and Buttons

Preset tool images and buttons provide essential and frequently used actions
that are embedded in a browser task.

The preset tool images available are:

• MG_VCR - Divides an image into six parts, where clicking on a part invokes
the following eDeveloper internal event:

• Begin Table

• Previous Page

• Previous Record

• Next Record

• Next Page

• End Page

• MG_EDIT - Divides an image into three parts, where clicking on a part
invokes the following eDeveloper internal:

• New Line

• Cancel

• Delete
Reference Guide 1193

• MG_CANCEL - A single image that invokes the Cancel internal event when
clicked.

• MG_EXIT - A single image that invokes the Exit internal event when
clicked.

Managing the Interface

The interface consists of HTML elements, defined externally to the eDeveloper
Toolkit. Nevertheless, eDeveloper allows you to handle these elements by
using the HTML Control table.

The HTML Control table opens when you zoom into the interface entry of the
browser task.

In this table you can see the list of participating HTML elements. For each
element you may assign data variables or expressions, and define dynamic
values for the various properties that are supported by the element.

Initial or fixed values of the common properties of the HTML elements need to
be defined through the HTM authoring tool.

Optimized Server/Client Handling

When in the browser task, eDeveloper displays the handling mode of each
handler, operation, and function. A character appears on the left side of the
line number column representing the handling modes below:

• C - Client-side handling

• S - Server-side handling

• M - Mixed mode handling

If a character does not appear, the entry can be executed on either the client
or server.

The handling mode can be disabled by unselecting the Show Handling Info
option under the Options menu.

The Show Handling Info state is kept in the machin registry and has the
following registry key:
Reference Guide 1194

HKEY_LOCAL_MACHINE\SOFTWARE|MSE|Magic V9.3\9.30\Browser
Information\ShowHandlingInfo

When the Show Handling Info menu entry is disabled, ShowHandlingInfo is
set to 0.

When the Show Handlilng Info menu entry is enabled,ShowHandlingInfo is set
to 1.

if ShowHandlingInfo has another value assigned or no value, it is considered
enabled.

Client Side

The output produced by eDeveloper and run on the client is enhanced by a
.NET-based, client-side modules. These modules provide the following
capabilities Java Applet and Java script modules. These Java modules provide
the following capabilities:

• Trap events that occur on the page and handle them.

• Re-compute and refresh data and the appearance of the interface
elements.

• Execute any eDeveloper function that can be run locally. For example, all
number, string, date, and time manipulation functions.

• Update the dataview.

• Support any field level validation definition.

• Maintain a local cache of data greater than what the browser client can
display. This cache lets you scroll through new data locally, which
decreases the number of interactions necessary between the client and
server.

• Client-side operations are:

• Verify

• Raise Event
Reference Guide 1195

Server Side

The sever side is the most significant component of the browser-based
application. The server provides the following capabilities:

• Identify each remote client. The server keeps the context of the task for
each client that opens a defined logical task.

• Establish the context, which is an internal description of the exact location
of the client in the task and the manipulated data within the task’s
transaction.

• Translate the data manipulations delivered from the client and passes it to
the required databases.

• Re-link a record on the client to retrieve the new linked record.

• Execute any other function that cannot be run locally on the client.

Client/Server Communication

On the initial load, a special message is sent to the server. The message
provides the Context ID and the session counter. The session counter is set to
0.

On every consecutive request from the client the session counter is increased.
When the server receives a session counter, with a value greater than 0, but
lower than the value expected by the server, it returns the following message:
Context is already in use.Client/Server behavior is as follows:

• When the page is unloaded but the task has not been closed properly
(forward and backward, or closing the browser) the client sends to the
server the changes in its dataview. The server issues a pending status. The
client waits for an answer and then continues with the unload operations.

• The returned Context ID and Session counter must be the same as in the
client message. A different value generates the following error:
Invalid context ID or Session counter.

• The context can stay in a pending status on the server for a timeout
specified by the eDeveloper developer. For more information, see the Post
Context Unload Timeout setting.
Reference Guide 1196

Browser/Client Events

Client Events

The Client module traps any browser event that may trigger an implicit or
explicit eDeveloper handler. For each control in the HTML that is attached to a
dataview field, the following browser events can be handled:

• Prefix

• Suffix

• Verification

• Click

• Dblclick

• Mouseover

• Mouseout

A method identifies the implicit or explicit eDeveloper event and executes a
required handler. The implicit eDeveloper events are handled first and then the
explicit ones.

Server Events

Each eDeveloper event handler is assigned to a list of commands. The client
calls to the enterprise server for each of the following operations:

• An expression of the operation, which contains a function that the client
cannot evaluate.

• The operation is not one of the following: Update, Call, Block, End Block,
Evaluate, or Verify.

• The operation is Update and the target field is part of a link.

Implicit Events

 Implicit events are those that are not defined in the Event Handlers table:

• Init task – assigning values to the form controls and to their properties.
Reference Guide 1197

• Pre-record Prefix – get the record, compute the init and properties
expressions, and display the record.

• Previous/Next Record – if the record is in the client cache, retrieve and
display it. Otherwise, retrieve a chunk from the server and display the
record.

• Previous/Next Page – if the page is in the client cache, retrieve and display
it. Otherwise, retrieve a chunk from the server and display the page.

Calling Programs and Tasks

A program or a task can be called from within an event handler. An event
handler that contains a call is executed by the server and returns an HTML
string that is displayed in a separate browser window.

A browser task cannot call an online task.

A browser task may call another browser task only by a direct call (that is, it
cannot be done through an intermediate batch task). A browser task can call
to a batch task that produces regular HTML output.

Closing an Overlaid Browser Task

When a browser task calls a child task (Task B) to replace a previously called
child task (Task A), the following sequence of operations occur:

• Task B is opened. The Task Prefix and First Record Prefix are executed, and
the result HTML page is returned to the browser client.

• Task A is closed completely. The Record Suffix and Task Suffix are
executed. The Exit URL is ignored.

• Task B is displayed instead of Task A.

• If Task A fails to close properly (for example, Verify/Error in the Record
Suffix of Task A), Task B will close completely. Any operation executed in
Task B that is reflected on the client (for example, calling a browser task
and a Verify operation) is ignored. In this case, you cannot prevent Task B
from closing.
Reference Guide 1198

Top Window Overlay

You can replace the content of the topmost window (the window that displays
the root task) without closing the context by:

1. Raising an asynchronous event (WAIT=NO), which is handled by the
Main Program. The Main Program’s handler contains a Call Program
operation, whose frame name is _top.
In this case:

• The new task’s prefix is executed.

• All the prior tasks are completely closed.

• The new task appears on the screen.

2. If eDeveloper cannot close the prior tasks (a verify or data error with
error Mode = Recover), the new task will be closed by executing its
Task Suffix operations.

3. Raise an asynchronous event (WAIT=NO) in the Task Suffix of the
root task, which is handled by the Main Program. The Main Program’s
handler contains a Call Program operation. It does not matter what
the destination frame is, since when the handler is executed, all
browser programs are closed. The called program becomes the new
task.

The First Record Prefix

The first Record Prefix handler of the first record, which is executed at the
beginning of the task, used to be executed on the server side just after the
Task Prefix handler. Other Record Prefixes were executed on the client side.
The first Record Prefix is now executed on the client side when the page is
displayed and becomes active. In this way the execution for all Record Prefix
handlers is the same.

Calling An External Event

The MGExternalEvent function provided by the Browser Client JS module
enables eDeveloper to invoke the eDeveloper External Event from an external
JS module that is executed from a Browser Client page. When the
Reference Guide 1199

MGExternalEvent function is executed, the External Event is added to the
eDeveloper event queue and is recognized as a regular eDeveloper event.

MGExternalEvent function

Syntax: MGExternalEvent(parameter 1, parameter 2)

Parameters: parameter: A string value passed as a parameter. The
passed values are received by the Handler’s virtual variables
according to their order. There is no limit to the number of
parameters allowed.

Returns: The function returns a True value if the Browser Client is
loaded or returns a False value if the Browser Client cannot
be loaded.

Calling a Batch Task

The browser task supports calling batch tasks that send output to the I/O
requester, selected from the I/O repository’s Media column. When you call and
send a batch task that produces an HTML form or an HTML Merge form to an I/
O requester, the batch output is displayed in a browser window as defined in
the Call program, Call Task, or Call Exp operation destination property.

Any destination frame defined in subsequent Call operations to other batch
tasks are disregarded. Only the destination frame defined in the Call operation
to the browser task’s batch task is used.

Batch Within the Current Context

The batch task that is invoked by a Call Program, Call Task, or Call Exp
operation is run within the active context of the calling task. This means that
all the context resources, such as variables, task tree, global parameters,
memory tables, and transaction, are available to the called batch task. Any
modification made to the context resources will be kept in the context when
the batch task is completed.

Modeless Window

The window of the batch task's result output cannot be a modal window, which
does not let the user select another window without first closing the selected
Reference Guide 1200

window. It is always opened as a modeless window, which lets the user select
another window without having to close the selected window.

Result Window Out of Context

The result page that opens when the batch task ends is from the
originating context.

Output from Nested Batch Tasks

The output to the requester can be produced by the immediate batch task that
is called from the browser task, and also by a batch task that is a descendant
of the first batch task called. The output is returned to the client only when the
immediate batch task is completed.

No Output, No Window

If you run a batch program that does not produce output to the requester, a
page does not open.

Recompute

Recompute is an implicit event that occurs with the change of a field value. For
each field value change, the following recompute items are checked:

• Other field Init expressions

• Other control properties

• Event handlers triggered by an expression

If the value changes require a recompute event and the list indicates that the
server should do the recompute, the client sends a command to the server and
the server returns the computed values.

Field Level Validation

The client validates the end-user input by checking the picture, mask and
range of the fields. The checked types are:

• Numeric
Reference Guide 1201

• Alpha

• Memo

• Date

• Time

• Logical

The mask is used to build and evaluate the field of the end-user’s input.

An end-user can insert any string in the field. The field is only validated when
it loses focus. The following conditions apply when the end-user enters a value
into a field:

• The initial control value is the mask combined with the value of the field.

• The end-user can insert any character into the Alpha or Memo fields. If an
Alpha or Memo field has a picture that consists only of upper or lower case
characters, or only of numbers, the validation can be done on the fly. The
same can be done with Numeric fields that consist of number slots (‘#’)
only.

• The end-user can insert any character into Numeric, Date, or Time fields.
After exiting from the field, the string is evaluated and validated by
comparing it to the field picture and type.

• If the end-user input does not comply to the field mask, the previous value
is returned.

• If the data received after evaluation cannot be correctly interpreted for the
given field, it returns the previous value.

• If the picture has a range, the user’s input is accepted only if the range is
distinguishable. Otherwise, it returns the previous value.
Reference Guide 1202

• After the evaluation and validation of the data, the string appears in the
input field. If the previous value is returned, a message appears on the
status bar and the focus is returned to the corrected field.

Creating a Batch-Based HTML Program

Conventional Internet Application Flow

Conventional internet applications, do not maintain a non-stop connection with
the eDeveloper enterprise server. Internet applications more closely resemble
batch processes, as when an HTML page is generated by the eDeveloper
server in the background. When the page generation is completed, including
images, dynamic SQL data, static texts, and so on, the

HTML page is sent to the client browser. At this point, the eDeveloper task
ends. The HTML page becomes an independent entity on the client browser,
having no connection to the eDeveloper enterprise server and the eDeveloper
Request Broker.

Internet applications usually operate in page mode technology. A request to
retrieve an HTML page is issued from a browser either by a hyperlink or a URL
address.

A specific web server reads the request with embedded parameters. That web
server then sends an HTML file back to the browser, which in turn can send
information back to the web server.

Upon receiving the request containing the client parameters from a browser,
the eDeveloper enterprise server generates and sends an HTML file directly to
the client browser through the Internet requester in use.

i For more information, refer to How To...Working with Magic,
Building a Browser-Based Task.
Reference Guide 1203

The eDeveloper HTML Form Editor

The eDeveloper HTML form editor lets you construct HTML pages; by editing,
browsing, manipulating hyperlinks, designing tables and frames, and using
tags. The eDeveloper HTML form editor supports many controls including

• Text

• Rich Text

• Push Button

• Image

• Combo List Box

• Check Box

• Radio Button

• Table Control

eDeveloper provides the means to generate HTML pages with embedded
application data at deployment, letting you integrate static text with dynamic
SQL data and graphical objects.

A Java applet control included in the HTML form palette allows external Java
applets to be easily integrated at deployment. In this way, client functionality
and interfaces can be distributed across the Internet while application logic
remains secure and isolated. The eDeveloper Form Editor control palette also
includes an ActiveX control that enables ActiveX objects to be easily integrated
within eDeveloper. You can therefore take advantage of the growing number of
available ActiveX components. The eDeveloper HTML form editor frees you
from dealing with HTML tags and storing HTML files.

The eDeveloper Enterprise Server and Other HTML Editors

Seamless integration with external HTML editors provides merge processing
between the eDeveloper HTML form and the external HTML authoring tool.

Where necessary, you can continue to develop or support existing HTML files
with the HTML tool of their choice while gaining the benefits of eDeveloper
development and deployment environments.
Reference Guide 1204

The eDeveloper Frame Set Editor

The eDeveloper Frame Set editor lets you divide a browser window into two or
more windows, each displaying a different document. Note that each
document can be the result of a combination of different HTML editors.

Frame sets in an HTML document can cause a web page to appear to be
divided into multiple scrollable regions. For each frame within a frame set, the
eDeveloper Frame Set editor can assign an eDeveloper Internet application, a
name, a border, scrolling, and so on.

The eDeveloper Frame Set editor frees the developer from tasks such as
writing HTML tags and storing HTML files. Application Partitioning

The Benefits of Application Partitioning

Partitioning an application has several potential benefits:

• Environment Independence

Application partitioning provides users a distribution of application services
through a network of servers. Partitioning allows for the support of multi-
ple hardware platforms, operating systems, networks, GUIs, Internet, and
database management systems. Other advantages include:

• Utilization of an optimized server

• Reduced network traffic

• Improved resource allocation and load balancing

• Parallel execution of tasks

• Increased maintainability

Application partitioning provides increased application functionality by pro-
viding application access to many remote users. This functionality lets you
reuse the same services for multiple applications. Other advantages
include:

• Centralized code management

• Deploying multiple application configurations
Reference Guide 1205

• Utilizing existing software and legacy systems without a need to
port or rewrite.

• Enhanced Reliability

Application partitioning provides for application component fail over, and
automated version consistency.

The Call Remote Command

The Call Remote command lets you call to a remote service from an
eDeveloper program. The return status of the Call Remote command can be
used to receive the Request ID sent to the Magic Request Broker, or for an
error message in case of an error. The calling program can pass parameters to
the remote service and can receive values from it. The Call Remote command
can be executed in a synchronous mode (Wait) or asynchronous mode (No
wait).

Note that in the special case in which the remote service runs on the same
system as the calling application, the Call Remote command allows requests
among eDeveloper applications.

The Call Remote operation defines the service, program, arguments, and
parameters that can be executed. Zoom from the Call Remote line to access
the Call Remote dialog, and define the parameters required for the remote
execution.

The Call Remote dialog contains the following parameters:

Parameter Meaning

Service The name of the Service from the
Service repository. You can select
a Service from the Services list.

Program
Name

The public name of the program to
be run.
Reference Guide 1206

Result File Zoom from the Result File field to
the Windows Open dialog to
specify the file name for the return
results. All result data is written to
that result file.

Return Code Zoom from this field to the
Variable list to select the name of
the numeric return code variable.
If positive, the value returns as
the request identification of the
request.

Reason Code Zoom from this field to the
Variable list to select the name of
the Reason Code variable. If
positive, the value returns a
reason string for the returned
request.

Message ID Zoom from this field to the
Variable list to select the name of
the message ID Code variable. If
positive, the value returns a
message identification of the
request.

Zoom from the string field to the
Expression Rules repository to set
an expression for the return value
of the Message ID.

Priority Exp Zoom from this field to the
Expression Rules repository to
select the expression that
determines the conditions of the
Call Remote execution.

Parameter Meaning
Reference Guide 1207

The Call Remote operation line includes a Yes/No expression for the Wait field
that appears in place of the Form field, to specify whether the client is required
to wait until the program execution ends before continuing.

The program arguments are passed in the same way as is with the Call
Program operation.

Synchronous Execution vs. Asynchronous Execution

The flow of messages among the Requester Client, the Magic Request Broker
and the eDeveloper Runtime engine depend on whether the request is
synchronous (Wait) or asynchronous (No Wait).

When a synchronous (Wait) request is received from a client, the Magic
Request Broker issues a Request ID for that request. The MRB then assigns a
free eDeveloper Runtime engine to execute the request, and sends both the
Request ID and the Runtime Engine address to the client. Communication is
then passed directly between the Requester Client and the eDeveloper
Runtime engine. When the request is completed, the eDeveloper Runtime
engine sends the request results directly to the Requester Client, and notifies
the Magic Request Broker that it has become available. During this request
process, the client must wait for the runtime engine to return the request
results.

When an asynchronous (No Wait) request is received from a requester client,
the Magic Request Broker issues a Request ID. The Requester Client does not
wait for the request results before resuming the operation. The MRB does not
return a runtime engine address to the client, nor do the client and runtime
engine communicate directly. The Requester Client must query the Magic
Request Broker for the request results through the use of its Request ID.

Processing Synchronous Requests

When the Magic Request Broker receives a synchronous request from a
request client, it responds as follows:

• Assigns a Request ID to the request client
Reference Guide 1208

• Finds a free eDeveloper Runtime Engine and sends the Request ID and
runtime engine address to the request client

When the Magic Request Broker returns the Request ID and runtime engine
address, communication continues directly between the request client and the
runtime engine without any additional MRB intervention. Once the request is
completed, the runtime engine will notify the Magic Request Broker that it is
available to process the next client request.

Processing Asynchronous Requests

When the Magic Request Broker receives an asynchronous request from a
request client, it responds as follows:

• Assigns a Request ID to the request client

• Finds a free runtime engine, and sends the client’s request to it

• The Magic Request Broker receives notification when the request execution
is completed, and reassigns the runtime engine to the next client request

The Requester Client must queue the Magic Request Broker to receive the
request results.

Dynamic Assignment of Partitions

eDeveloper Version 9 provides for a dynamic assignment of partitions by
dragging and dropping arrow connections from a server to a service.

The Visual Connection screen displays services on the right of the screen
assigned to a list of servers shown on the left of the screen. Servers and
Services entered in the Server and Service repositories always appear.

Reassign a service to another server by clicking a service icon and dragging to
a new server.
Reference Guide 1209

Setting Up an eDeveloper Partitioned Application

Choosing What to Partition

The first step in creating a partitioned application is choosing which
components of the application run on the server system or systems. The
criteria for making the choice are the components that would most benefit in
performance and maintainability, if they were to run on the server. Note that
the decision whether a program or task runs in the Requester Client or in the
system need not necessarily be made when the application is designed, but
the design must take this into consideration. Only background-mode tasks are
applicants for partitioning.

Runtime Behavior

When a Call Remote command is encountered during runtime, the runtime
engine checks for a valid server, and then passes the requested command to
the eDeveloper Runtime requester. If the operation’s Wait field is set to No or
evaluates to No, eDeveloper will continue. If the Wait field is set to Yes or
evaluates to Yes, eDeveloper waits for the completion of the request or until a
time-out failure occurs. After the request has been completed, the variables
that were sent are recomputed, and the flow of the program continues.

The following table defines the error codes and messages that can be
returned:

Code Error Mnemonic Error
Message

Meaning

4 NO-RESULT The requested task did not
return output to the
requester output media (IO).

101 BAD-ARGS Remote Call
Error -
Invalid
Remote Call

Application or program
names were not entered for
the remote call.
Reference Guide 1210

102 CNCT-MRB-REFUSED Remote Call
Error -
Connection to
Broker
Refused

Wrong host name or port for
the Broker. Verify that the
broker is connected to the
port on the specified
machine.

103 APP-NOT-FOUND Remote Call
Error -
Application
Not Found

The engine does not support
the Application; or the
Appl=entry in MGREQ.ini file
was specified and the
required application did not
appear in the list (not
relevant to the eDeveloper 9
Client).

104 APP-IN-USE Remote Call
Error -
Application in
Use

All the engines that support
the application are busy
serving other requests; or
the engine does not support
the application. The Broker
Timeout value may have
expired. For the eDeveloper
Client, the timeout value is in
the Server repository. From
the MGREQ.ini file, the time
out value is in the Timeout
parameter.

106 RT-NOT-RESPOND Remote Call
Error -
Runtime Not
Responding

The Server Timeout
parameter in the Magic.ini
file or the MGREQ.ini file has
expired. The server engine
did not send an I-AM-ALIVE
message during the specified
time interval.

Code Error Mnemonic Error
Message

Meaning
Reference Guide 1211

107 Connection
reset by the
enterprise
server

This eDeveloper partitioning
message is given when one
or the following situations
occur: (1) The enterprise
server was aborted
abnormally during the
execution of a request, or (2)
The connection was reset due
to a network connection
failure.

110 REQUEST-TimeOUT Remote Call
Error -
Request
Timed-out

The Request Timeout entry
has expired in the Magic.ini
or the MGREQ.ini file. The
requested task was not
completed in the specified
time interval.

130 APP-OPEN-FAIL Remote Call
Error - Failed
To Open
Application

The server engine could not
open the application control
file.

131 PRG-NOT-FOUND Remote Call
Error -
Program Not
Found

Cannot find the public name
of the program specified in
the application.

133 ACCESS-DENIED Remote Call
Error -
Access
Denied

Invalid user name. No rights
assigned to the user. No right
to execute program.

Code Error Mnemonic Error
Message

Meaning
Reference Guide 1212

135 LIMITED-LICENSE-
HTTP

Remote Call
Error -
License
Limited to
Internet
Requests

Server engine is licenses to
execute requests from
internet requesters only.

136 LIMITED-LICENSE-
CS

Remote Call
Error -
License
Limited by
Requests
Count

Server engine is licensed to
execute a limited number of
requests.

137 REQUEST-REJECT Remote Call
Error -
Request
Rejected

Server engine cannot
execute the request due to a
timing problem of switching
from Runtime to toolkit
modes.

Code Error Mnemonic Error
Message

Meaning
Reference Guide 1213

138 RT-ERROR-MSG During execution of a
request, the executed
program, or subprograms,
displayed error messages
such as SQL or locking
errors.
If the executed program
failed to complete, these
error messages were trapped
by the enterprise server &
sent back to the requester.
If the executed program was
executed successfully,
despite the error messages,
the program’s output is
returned, overriding any
error messages.
When the requester is an
Internet requester, the error
messages are sent to the
remote browser.
When the requester is a
command line requester, the
error messages are displayed
in the console.
When the requester is an
eDeveloper 9 engine, this
error message is not
displayed.

146 BIND-HOST-NOT-
FOUND

Remote Call
Error - Bind
Failed -
Unknown
Host

The Local Host entry in the
MGREQ. ini file must specify
the local internet address.

Code Error Mnemonic Error
Message

Meaning
Reference Guide 1214

147 CNCT-HOST-NOT-
FOUND

Remote Call
Error -
Connection
Failed -
Unknown
Host

The Broker address must
explicitly contain the internet
address (i.e. 88.0.184/
3001).

150 CNCT-REFUSED-MRB An enterprise
server could
not connect
to the Broker

An enterprise server couldn’t
connect to the Broker.
Check if the Broker was
started, and that the host
name of the Broker, as
known in the computer of the
enterprise server (ping
<mrbhost>), belongs to the
correct IP address (as known
in the computer of the
Broker-ping <mrbhost>).
Reproduce the problem with
log “enabled” in mgreq.ini
(log = req.log Y R), in the
directory of the enterprise
server.

151 CNCT-RESET-BY-REQ During
execution of
a request,
the
connection
between the
requester &
the
enterprise
server was
reset

As a result, no output was
sent back from the enterprise
server to the requester.
Check the requester in the
client machine & the
enterprise server.
If possible, reproduce the
problem with log “enabled” in
mgreq.ini (log = req.log Y R)
in the directories of the
requester & of the enterprise
server.

Code Error Mnemonic Error
Message

Meaning
Reference Guide 1215

Command Line Requester

The Command Line Requester is a requester management program that allows
for:

• Executing remote eDeveloper services

• Managing the Magic Request Broker and the eDeveloper Runtime engines
(to start and stop the MRB or eDeveloper Runtime engines)

• Querying the Magic Request Broker regarding the status of specific
requests that were issued to eDeveloper Runtime Engines

• Querying the Magic Request Broker regarding the status of the eDeveloper
Runtime engines

The Command Line Requester is activated by selecting the mgrqcmdl.exe file.

200 RQ-FATAL Remote Call
Fatal Error

Misc. Errors.

201 TCP/IP
Not Initialized

Code
Partitioning
Error -

TCP/IP services were not
installed. Install TCP/IP.

202 ERR-OPEN-RESULT-
FILE

This is a two-part problem:
(1) The requester asked that
the output be written into a
file (either using a field in the
call remote dialog box in an
eDeveloper 9 client, or using
keywords in mgreq.ini or
mgrqcmdl -file=), and (2)
The combined file name
(directory and/or file name)
is illegal.

Code Error Mnemonic Error
Message

Meaning
Reference Guide 1216

The Command Line Interface

The Magic Request Broker can be queried by using the Command Line
requester, which is mentioned in the Command Line Requester section above
as one of three types of eDeveloper requesters. The Command Line requester
is the MGRQCMDL.EXE program, which can be run in a DOS-Prompt window.
Like other eDeveloper requesters, the Command Line requester uses the
MGREQ.ini file to determine the address of the Magic Request Broker to which
it communicates.

The full syntax tree for using the Command Line requester can be viewed by
using the MGRQCMDL command without parameters. Command line requests
are described below.

• To view the eDeveloper engines that are available for service to the MRB,
use the command:

mgrqcmdl -query=rt

• To view the eDeveloper applications that are available for service to the
MRB, use the command:

mgrqcmdl -query=app

 If the MRB is not running, an error message is issued:

Command Line Requester: Connection to broker refused (error -102)

If the MRB is up but the Travel Agency application is not available, the dis-
play is as above, but the Travel Agency application is not be shown.

• To load an additional eDeveloper engine, use the command:

mgrqcmdl -exe=RuntimeName

where RuntimeName is the name of an entry in the [MRB EXECUTABLES
LIST] section of the MGRB.INI file.

• To stop any eDeveloper engine, use the command:

mgrqcmdl - terminate=EngineId - timeout

where EngineId is the engine’s host and port number.

When the engine is instructed to terminate, it terminates gracefully with-
out any new contexts being opened in the terminating engine. Requests
Reference Guide 1217

for a new context are directed to other available engines. If another engine
cannot be found, the request is rejected. The terminating engine continues
to process existing contexts, and will terminate after the last context is
properly closed or after the set timeout has passed.

When the timeout value equals zero, the server engine waits indefinitely to
terminate. The timeout default value is zero.

The same command line interface can be used to query the MRB regarding its
queue of requests, and to change request priorities or remove them from the
queue.

Multi-Threading

For eDeveloper Version 9, background enterprise servers are multi-threaded.
Each thread accesses a different Runtime context, and does not interact with
other threads.

Shared Resident Tables

Resident tables are shared for all contexts, which improves the performance of
each context by eliminating the need to load and maintain separate copies of
resident tables for each context string.

Environment Settings

Maximum Number of Concurrent Requests

Under the Partitioning Web tab, from the Environment Settings dialog, the
Maximum Concurrent Requests setting is displayed. You can enter the number
of threads that the enterprise server is allowed to create. The user is only
limited by server capacity, and the type of user license. The Magic.ini and
Command Line name is MaxConcurrentRequests.

Closing an Application

The enterprise server allows a request to close the current application and
open another application only if there are no other requests.
Reference Guide 1218

INIPut and INIGet

Magic.ini is stored for each Runtime context in a separate memory area. The
INIPut function for a specific Runtime context is written to the Magic.ini file
only if it is specifically requested by using the following flag:

INIPut (<assignment>,<force write>) (default - N)

Security

The user can add or remove user rights to each thread through the use of the
Runtime (RT) functions. Runtime functions are described in the Runtime
Expressions section below.

TCP/IP Ports

Each enterprise server uses one TCP/IP port.

Broker and the Generic Messaging Layer

No interoperability between eDeveloper Version 9 and any previous Magic
versions is possible.

Main Programs

A separate copy of the Main Program is available for each Runtime context.

Transactions

Each thread acts as a separate process, independent of the other threads.

Database Files

Each thread acts as a separate process, independent of the other threads.

Locking

Each thread acts as a separate process. However, locking between threads is
shared in memory. Each enterprise server process use one terminal number.

Shared Resources

The following resources are shared by every Runtime thread:
Reference Guide 1219

• DBMS connections

• External devices

Runtime Functions

The following Runtime functions are available:

• RqExe - Requests a Magic Request Broker to load a new entry from a
predefined list of executables.

• RqRtTrm - Terminates an enterprise server.

• RqRtInf - Returns the current number of busy threads, the maximum
number of threads allowed by license, and the most frequently used
threads.

• DiscSrvr - Disconnects the current thread that is no longer required by
eDeveloper.

• DbReload - Reloads a resident table and replaces the copy of the resident
with the new copy for all contexts.

• DbDel - Clears the content of a resident table, but does not delete any of
the physical records from the table. The DEBDel function is applicable also
for enterprise servers.

Calling External Programs

• Call a DLL or a Userproc/UDF

External DLLs need to be compatible with a multi-thread environment before
they are called.

• enterprise server Termination

If a termination request is sent from a requester, while one or more requests
are still being processed, the termination request invokes a flag that
determines whether the request should wait. If the termination request does
not wait, the requester receives a warning message.

Syntax:
Reference Guide 1220

RqRtTrm(..., ‘T’log | ‘F’log)
mgrqcmdl -ter=server/port -wait

eDeveloper Monitor Application
The eDeveloper V9 installation includes an eDeveloper application for
monitoring the Magic Request Broker. In addition to being a useful monitoring
tool for the MRB, the application can be used as an example of the use of the
eDeveloper V9 Requester functions.

The Monitor application lets you select a service, and offers the following
functions:

• Display a list of server engines and their properties

• Display the list of applications supported by the server engines

Figure 19-3 The Monitor Application
Reference Guide 1221

• Display the request queue

• Display the list of pending requests

• Display statistics on the requests that were handled by the Magic Request
Broker since its startup

• Start a new server instance

• Shut down a server instance

Request-Related Functions

The following table provides a short description of the functions that support
application partitioning. For a full description of each Application Partitioning
function, refer to Chapter 8, Expression Rules.

Function Description

GetParam Gets global variables.

RqExe Requests a MRB to load a new entry
from a predefined list of executables on
the MRB local computer.

RqLoad Provides statistical information about
the load of one or all services of a single
broker.

RqQueDel Deletes an entry in the Service Queue.

RqQueLst List of pending requests in the queue.

RqQuePri Resets the priority for a pending
request in the queue.

RqReqInf Provides information about a request
through a list of values that are
generated from the Queue or from the
Broker’s history log. Executes only
when RqQueLst or RqReqLst is called
before.
Reference Guide 1222

RqReqLst Returns the number of request entries,
specified by a range of request
identifications from the broker’s log.

RqRtApp Returns information about one
application supported by one or more
Runtime engines registers to the broker.

RqRtApps Provides the number of applications
supported by one or all enterprise
servers associated with the broker.

RqRtInf Gives information about a specific
enterprise server associated with the
broker.

RqRts Gives the number of enterprise servers
associated with the broker.

RqRtTrm Terminates an enterprise server or all
the enterprise servers associated with a
requester.

RqStat Returns a simple, numeric value
indicating the status of a single request.

SetParam Sets global variables.

Function Description
Reference Guide 1223

Utilities 20
agic includes a variety of utilities designed to help you to develop,
modify, maintain, and move your eDeveloper applications.

In this chapter:

• Application Wizard

• Program Generator

• Check Syntax Utility

• Get Definition

• Cross Reference

• Export-Import

• Flow Monitor and Debugger

• Profiler

• OEM2Ansi Utility

• ODBC Check Driver

• MakeKey Utility

• Table Conversion Utility

• Magic Flat File

• Print Data Wizard

• Tools Infrastructure

• Documentation Template Facility

M

Reference Guide 1222

Application Wizard
The Application Wizard lets developers easily access the eDeveloper
development environment and quickly create a working application.

The Application Wizard lets you create data objects, interactive programs,
reports, and batch programs. Click Application Wizard on the Tools menu to
start creating an eDeveloper application.

Automatic Program Generator
eDeveloper’s Program Generator is designed to create programs automatically.
The Program Generator generates programs for:

• Online data entry and maintenance

• Exporting data from the database file to an operating system text file

• Importing data from a text file to a database file

• Printing reports

• Internet

• Browser clients
Reference Guide 1223

Program Generator Properties for Database Tables

APG Tab

Mode

The Program Generator operates in either of two modes: the execute mode or
the generate mode. The execute mode creates and runs a temporary program.
This program is not saved after running. The generate mode generates a
program, saves it, and appends it to the Program repository. The Generate
mode does not automatically run the generated program. Execute is the Mode
property default.

Note: The Mode parameter can only be accessed when a Table Repository row
is selected.

Option

The Option parameter states the program’s function. Six options are available:
Browse, Export, Import, and Print, Internet, Browser Client.

Figure 20-1 The Program Generator
Reference Guide 1224

The Browse option runs or generates programs designed for online data entry
and maintenance.

The Export option generates a program to export the data contained in each
selected database file. The data is exported to an operating system text file.

The Import option imports a program in Execute mode or generates a program
designed to import data in Generate mode contained in an operating system
text file. The data is imported to the database file. The structure of the
operating system text file is created by the Program Generator while using the
Export option. The Export and Import options are designed to generate a pair
of programs that export and import the same data.

The Print option prints an eDeveloper data file or generates a program
designed to print an eDeveloper data file.

The Internet option generates programs designed for Internet data entry and
maintenance. For eDeveloper Programs only. Not available for Execute mode in
the Table repository.

The Browser Client option generates a Browser-based program. You can apply
an independent template for the generated program.Not available for Execute
mode in the Table repository.

Column

The Column field displays the number of columns (for database rows) from the
selected entry. You can change the order of the columns by changing the third
column value. A zero (0) value omits the column altogether. You cannot
change the column order of a linked table.

Generate Forms

The Caption field defines how each program will be generated: Query, Output,
and Both for Internet option only.

Query - the APG generates a skeleton program containing the HTML form used
to query the repository. The generated program can be used to either edit the
query form in the HTML form editor, or to save the form to a file using the
Save as HTML command.
Reference Guide 1225

When generating for Query, you can also choose to automatically save the
form to an HTML file.

Output - the APG generates a program that, when called from the appropriate
HTML form using the Internet requester, produces an HTML report to the
requester. The HTML report contains all records of that form.

Both - the APG generates a program that contains both the Query form and
the HTML report form. When the generated program is called from the Query
form, the program produces an HTML report to the requester. The report
contains all records that fall into the range defined in the calling form.

Program Name

The name of the program as it appears in the Program repository.

HTML File Name

The name of the HTML file for the Browser client.

Template File Name

The Template file name that is associated with the HTML file of the Browser
client.

Text File

The name of the operating system text file to be exported or imported.

Links

The Link property displays the Foreign Key selection list. From this list, you can
define the Foreign Key for the generated program. For each selected Foreign
Key, a Link operation is added to the generated program. The Link Query
operation is generated when either the Main table or referenced table is
assigned to a default database. A Link Inner Join is generated when both the
main and referenced tables are assigned to a RDBMS database.

The Link property appears when you generate a program from a table with a
foreign key.
Reference Guide 1226

Style Tab

Display

You can choose the following options to display records on the screen, Line and
Screen.

• Line mode displays records as rows. Each row corresponds to a record.
Many rows are displayed per screen.

• Screen mode displays one record per screen.

Style

For Screen mode, you can display as:

• 3-D

• 2-D

• Original

Caption

You can determine if the program name is displayed on the form.

Use Model

You can assign an existing Form model to the generated program.

Form Size

The Form Size property lets you specify the display of the GUI form created by
the Automatic Program Generator when the mode is set to Execute and the
option to Browse. The Form Size property has the following options:

• As Model – The form width and height is defined as specified in the
attached model.

• As Content – The form width and height is according to the result content
on the screen. Note that in Line mode, the height of the form will be the
same As Model.
Reference Guide 1227

• As Content within MDI – The form width and height will be according to the
result content on the screen, however, each measurement will not be
greater than the MDI measurements.

Note: If the content width is greater than the MDI, the content width will
be the same as the MDI. If the content width is smaller than the MDI
width, the form width will be the same as the content width.

Internet Tab

Query Title

The Query Title property defines the title and heading of the HTML query form.

Query Wallpaper

The Task Query Wallpaper property contains an image that will be used as the
wallpaper image of the HTML query form. The rules regarding the location of
Internet Application images apply.

Output Title

The Output Title parameter defines the title and heading of the HTML output
form.

Output Wallpaper

The Task Ouput Wallpaper property defines an image to be used as the
wallpaper image of the HTML output form. The rules regarding the location of
Internet application images apply.

Save Query Form As

The Save Query form As property defines the file name of the query form to be
created. This is the same form that can be found in the generated program
when the APG generates for Query or Both. If the field is left empty, no file is
created.
Reference Guide 1228

Program Generator Properties for a Program Entry

Option

The Option property states the program’s function. Six Tasks are available:
Browse, Export, Import, Print, Internet, Browser client.

The Browse option generates programs designed for online data entry and
maintenance.

The Export option generates programs designed to export the data contained
in each selected database file. The data is exported to an operating system
text file.

The Import option generates a program designed to import data contained in
an operating system text file.

The Print option generates a program designed to print an eDeveloper data
file.

The Internet option generates programs designed for Internet data entry and
maintenance for eDeveloper Programs only.

The Browser Client option generates a Browser-based program. You can apply
an independent template for the generated program.

Main Table

The eDeveloper table from the Table repository for which you are creating a
program.

You must select the name of the database file in order to activate the Program
Generator from the Program repository.

If you activate the generator from the task tree, eDeveloper provides the
original dtabase table by default, but you can access the column and change
the table.

In the Main Table property, either enter the table’s sequential number from the
Table repository or zoom into the Table list to select a table entry.
Reference Guide 1229

Generate Forms

The Generate Forms field defines how each program is generated: Query,
Output, and Both.

• Query fields

The Query Fields property defines which fields are to be included in the
generated query program and the task form.

• Output fields

The Output Fields property defines which fields are to be included in the
generated output program, and are displayed in the HTML report returned
by the program.

Internet Tab

Query Title

The Query title property defines the title and heading of the HTML query form.

Query Wallpaper

The Task Query wallpaper property defines the wallpaper image of the HTML
query form. The rules regarding the location of Internet application images
apply.

Output Title

The Output title property defines the title and heading of the HTML output
form.

Output Wallpaper

The Task Ouput wallpaper property defines the wallpaper image of the HTML
output form. The rules regarding the location of Internet application images
apply.

Save Query Form As

The Save query form as property defines the file name of the query form to be
created. This is the same form that can be found in the generated program
Reference Guide 1230

when the APG generates for Query or Both. If the field is left empty, no file is
created.

Check Syntax Utility
This utility lets you check models, tables, tasks, programs, help screens, and
menus for incorrect syntax.

eDeveloper’s rapid development method lets you fill in repositories without the
delays incurred by online syntax and logical checks. It is your responsibility to
run the syntax checker to verify the syntax of the program.

Checker Message Categories

The checker results are divided into three categories:

• Error - Identifies incorrect syntax that may result in an unexpected
behavior.

• Warning - Identifies incorrect syntax that may not necessarily result in an
unexpected behavior.

• Recommendation - Provides a better syntax alternative.

For more information about setting the checker level, see The Toolkit Checker
Minimal Level environment setting in the Environment dialog box under
Preferences in Chapter 2, Settings.
Reference Guide 1231

Checker Results

Checker results are displayed in the Checker Results window, as shown in
Figure 20-2.

The Checker Results window can be docked to the eDeveloper MDI screen or
displayed as a floating window. Checker results can also be combined with the
property sheet and navigator.

Checker results are displayed in a data tree format, and the result display
group selection determines the first level of the tree. The check syntax results
can be displayed by:

• Type - Grouped by the checker message type: Error, Warning, or
Recommendation. Checker messages are sorted by the order in which
errors are found by the syntax checker.

• Object - Grouped by eDeveloper object: Models, Tables, Programs and
Subtasks, Help screens, and Menus. Checker messages are sorted by the
order in which errors are found by the syntax checker.

• Object and Type - Grouped by both the eDeveloper object and the checker
message type.

For information about displaying the checker syntax results, see the Group
Checker Messages By environment setting in the Environment dialog box
under Preferences in Chapter 2, Settings.

Figure 20-2 Checker Results Window
Reference Guide 1232

The Check Syntax Process

When the Check Syntax utility is running, a message box appears, as shown
in Figure 20-3.

If the checking process is canceled before completion, the Checker Results
window displays the incorrect syntax found when the Check Syntax utility was
stopped.

When the check syntax process has been completed, one of the following
prompt messages is displayed:

• For incorrect syntax at the Error and Warning levels:
Check Syntax completed. Please refer to the Checker Results
window.

• For incorrect syntax at the Recommendation or Unused Objects levels:
Program is OK. Please refer to
the Checker Results window.

• When incorrect syntax has not been found:
Program is OK.

Note: If the Jump automatically to First Item environment setting is set to
No, eDeveloper does not highlight the first checker result message entry and
does not park in the field where the error occurred.

Unused Objects

When the syntax checker finds an unused object, eDeveloper prompts you to
select one of the following commands:

Figure 20-3 Syntax Checker in Process
Reference Guide 1233

• Erase - Erases the current object expression.

• Erase All - Erases the current object expression and all other unused
expressions of the same object.

• Skip - Keeps the current object expression.

• Skip All - Keeps the current object expression and all other unused
expressions found in the check process until the next check is done.

Messages about unused expressions are displayed in the Checker Results
window.

Checker Messages Table

The Checker Messages table lets you customize the level of each message for
the checker. You can set a message as an Error, Warning, Recommendation, or
to be ignored by the checker. All checker messages are listed in the table with
the exception of error messages.

Click Checker Messages in the Settings menu to open the Checker Message
table, as shown in Figure 20-4.

Figure 20-4 Check Message Table
Reference Guide 1234

You cannot enter additional checker messages or remove existing messages.

The information displayed in the Check Messages table is kept in an external
Chk_std.dat file. Specify the file path in the Checker Messages table file
environment setting in the Environment dialog under the External tab. If the
file location is not defined, eDeveloper applies its own default settings.

Get Definition Utility
The Get Definition utility enables loading of table definitions directly from the
DBMS’s Data Dictionary into eDeveloper’s Table repository. Single or multiple
table definitions can be loaded from a database. The utility does not
synchronize definitions between eDeveloper and the DBMS’s Data Dictionary.
The developer makes such synchronization of data definitions manually.

When using an existing database, it is often preferable to read the existing
table descriptions for the RDBMS data dictionary tables than to redefine those
descriptions in eDeveloper. This reduces the risk of error and makes the
development process quicker and easier. The Get Definition option is available
from the Option menu. Note: The Get Definition utility works only for SQL
gateways.

Loading Tables

You can load either a single table definition or multiple tables. The menu will
be active if an entry in the repository has been assigned to one of the SQL
databases

To load a single table:

1. Access the Table repository.

2. Place the cursor on a new line.

3. Choose the database.

4. Enter the name of the table to be loaded in the DB Name column.

5. Click the Options menu. The Get Definition option is enabled.
Reference Guide 1235

6. Click on the Get Definition option. The Loading Window is displayed.

7. The Loading Window closes automatically. The table now has the
appropriate columns, keys, and foreign keys.

To load several tables at once:

1. Place the cursor on the title line (#) and select Get Definition from the
Options menu.

2. The Load Table Definition window appears.

3. Park on the Database field and zoom.

4. Choose the database you want to load from.

5. Park on the Tag Tables combo box and select a value.

6. Select All, if you want to load all the database tables accessible to the
database, as defined in the Database Table with user name and
password, or specify Several for multiple tables.

7. The Table Selection window opens.

8. Highlight the desired item.

9. Press the space bar. A check appears in the Select field to show that
the table has been selected for loading.

10. Press the space bar on each table you want to load.

11. Press the Select button to close the window.

12. Click OK to accept the operation.

Note the following about Get Definition behavior:

• When loading existing table definitions, eDeveloper uses the most
appropriate eDeveloper attribute for each database column.

• For float data type, eDeveloper uses the default picture from the DBMS
repository.

Get Definition of a View

SQL also offers view definitions, which can be accessed in the same way as the
table definitions are accessed. An SQL view is a virtual table defined by a
Reference Guide 1236

query. An SQL view is accessible as a table but does not physically contain
rows. You can access an SQL view in query mode, and in some cases
depending on the RDBMS, update them just as if they were tables in the
RDBMS.

A view does not contain an index. Therefore when loading a view, you need to
define a virtual unique index. This is because eDeveloper must have a position
for the table.

In Oracle or Informix, which has a ROWID, if the view is based on one table,
the ROWID can be obtained, and the position can be ROWID. Otherwise, the
virtual unique index is necessary as the positional index.

Cross Reference Utility
The Cross Reference utility provides information about where an entity such as
a model, column, or program is used. An example of where you might want to

Figure 20-5 Selecting a Database File
Reference Guide 1237

use the Cross Reference utility would be to obtain a list of programs that refer
to a certain column, index, or table.

The Cross Reference utility lets you find information about the following object
types:

• Model

• Table

• Index

• Program

• Help screen

• Right

• Menu

• Modal

• Event

• Component

• Expression

• Form

• I/O field

The results are displayed in the Cross-Reference tab of the Navigation pane
and can be printed. You can also delete the results from the result set.
Reference Guide 1238

The Location From Where to Cross Reference an
Object

The following table explains what objects can be cross referenced from which
eDeveloper repositories.

Object to be
Cross-Referenced

From eDeveloper
Repository

Tables Programs
Choice controls
Choice control models
Foreign keys

Columns Programs
Indexes
Foreign keys
Choice controls
Choice control models

Indexes Programs
Choice controls
Choice control models
Foreign keys

Programs Programs
Models/control model
Tables/column
Menus
Task Execution/
Call Program command
Virtual field
Control properties
Subforms
Reference Guide 1239

Help Screen Table fields
Program/ real and
virtual fields
Form properties
Controls
Menus
Field model
Control model
Form model

Prompt Help Table fields
Program/ real and
virtual fields
Controls
Menus
Field model
Control model

ToolTip Table fields
Program/ real and
virtual fields
Form properties
Controls
Field model
Control model

Rights Models
Tables
Programs/Tasks Rights
literal
Helps
Menus
Application events
Components

Menus Programs

Object to be
Cross-Referenced

From eDeveloper
Repository
Reference Guide 1240

You can cross-reference an object from a selected object entry in an
eDeveloper repository by clicking CTRL+X or by selecting Cross Reference

Field model Tables/columns
Programs/tasks (virtual
fields, arguments)

Control model Tables/columns
Programs/tasks (virtual
fields, arguments)
Controls
Field models

Task model Programs

Help model Help

Form model Forms

Components Components can be
cross-referenced as an
entire object or single
items of the component
can be cross-referenced.

Main Program
events

Programs

Task events Program tree

Object to be
Cross-Referenced

From eDeveloper
Repository
Reference Guide 1241

from the Options menu. The Cross Reference (X-ref) dialog box appears as
shown below.

Results for a cross reference are displayed by repository name in the Cross
Reference
(X-ref) navigator pane. The cross reference results are displayed in a
composite form.

Figure 20-6 Cross-Referencing an Object

Figure 20-7 Cross-Reference Results
Reference Guide 1242

Each object is displayed with the following information:

• Repository name

• Entry name

• Entry number - in brackets

You can click on the last node (the node which has no other nodes) to display
the corresponding repository in the Workspace pane and park on the selected
entry.

Cross references have the following characteristics:

• You can delete a cross reference result.

• You can issue a cross reference search from any result entry.

• When the cross reference search has been completed, automatically the
Navigator pane opens with the cross reference result. The result is
highlighted in grey.

• When the application is closed, the cross reference results are stored in the
user’s personal directory by application name and file extension (.xrf).
This file is in a binary format.

Deleting a Cross Reference

To delete a cross references:

• On the Navigator pane, click X-Ref and select a cross reference. Press F3
to delete the cross reference.

Searching for a Cross Reference

To search for a cross references to an item:

1. In an eDeveloper repository, select an entry and press CTRL+X.

2. In the X-Ref dialog box, select the repositories for eDeveloper to
search for related objects.
Reference Guide 1243

3. Click OK. The results are displayed in the Cross Reference tab of the
Navigation Pane.

Note: When you activate a second cross reference search, the cross-
referenced object becomes the root in the result tree.

Saving Cross References

To save cross reference results:

• From the File menu, click Cross-Ref Result and then click Save Result.

Printing Cross References

To print cross reference results:

• From the File menu, click Cross-Ref Result and then click Print Result.

Changing the Maximum Number of Cross-Referenced
Results

To change the maximum number of cross reference results in the
Navigation pane:

1. From the Settings menu, click Environment.

2. From the Preferences tab, enter a number representing the
maximum number of cross reference results in the Maximum
number of X-ref results environment setting.
Reference Guide 1244

Export-Import Utility
The eDeveloper Export-Import utilities provide a convenient way to move or
convert application components. The services provided include:

• Porting. You can export application components in order to import them
into another eDeveloper application across physical sites and platforms.

• Export and re-import the same application in order to reorganize the
application file. Note that the operation creates a new application file.

• Produce automatic documentation.

The Import utility imports application components that have been exported
using the Export utility. After the import operation, the imported components
are appended to the proper repositories. For example, if you imported a
database table named Customers, the table will appear at the end of the
current application’s Table repository. Or, if you imported a program named
Customer list, the program will be appended to the Program repository.

When moving from Version 7 to Version 9 using the Export/Import utilities,
eDeveloper converts the values for the cache as described below:

Table Properties - If any cache size was defined in Magic 7, it will be converted
to Position and Data. If no cache was defined in Magic 7, it will be converted to
No Cache.

Task Cache Strategy - The Task Cache Strategy setting is set according to the
Cache Strategy in the Table Properties dialog of the of the Main table

Task DB Table - If cache was set to No, it will remain No.

If cache was set to Yes or if an expression was given, the setting is taken from
the Cache Strategy in the Table Properties dialog.

The maximum cache memory size property in the Magic.ini file in Version 7 is
omitted in Version 9.

To perform an export/import operation, select File/Export-Import (SHIFT+F10).
The Export/Import dialog opens, as shown in Figure 20-8.
Reference Guide 1245

The Export/Import dialog contains a number of properties. eDeveloper is
sensitive to property selection, and allows access to a property in the dialog if
it is consistent with previous selections.

The Export/Import Dialog Box

Magic Version 9 exports documents as ANSI only.

The Import utility detects the import of documents from previous Magic
versions. When a document from a previous version is detected, then
eDeveloper treats the file as written in OEM. eDeveloper then translates the
document to ANSI by using the OEM2ANSI translation file.

Following is the list of properties in the Export/Import dialog, and their
possible settings.

Figure 20-8 Export/Import Dialog
Reference Guide 1246

Operation

The available operation options are: Export, Export Document, Import.

The property defaults to Export if the utility is activated for the first time. In
subsequent cases, it defaults to the operation last performed.

• Exports application components.

• The Export Document option produces a self-documenting report that lists
the various components of the entity you exported. eDeveloper’s export
document utility uses a special template file, DOC_STD.ENG by default,
which uses a special description language to set the listing format. The
DOC_STD.ENG file can be edited by text editors to customize it for your
needs, or by the special Documentation Template facility provided with
eDeveloper. An additional DOC_EXT.ENG file produces a more detailed
report of the eDeveloper repositories. For details about the Documentation
Template feature and the description language for its files, refer to the
Documentation Template Facility section in this chapter.

• Imports application components that were exported via Magic Version 7 or
higher.

Note: if you import your application and get an error stating that the
CALL-MODAL is an unexpected token, just delete that text from the input
file.

Type

Type is the application component to be exported.

The available Export options cover all the application components. You can
click on the property to open a combo box to see the Export options and to
select one. They are:

• Models: exports the Model repository.

• Tables: exports the Table repository.

• Programs: exports the Program repository.

• Help Screens: exports the Help Screen repository.
Reference Guide 1247

• Rights: exports the Rights repository.

• Menus: exports the application menus.

• Components: exports application components

• Application Data: exports the application’s control data.

• Application: The Application option exports the entire application from one
component to another. Therefore, whenever import is performed on an
entire application divided into components, the order is as follows:

• Help screens

• Models

• Tables

• Programs

• Menus

• User IDs

• Rights

• Application Data

Note: Be sure to import complete components, in order to maintain inter-
nal cross-references. eDeveloper will maintain references between reposi-
tories and within repositories, as long as the import is done in one session.
If the Program repository is split into two or more parts, only the first part
imported will maintain cross-references between programs. Importing pro-
grams to an existing application may also cause loss of internal cross-ref-
erences.

Export with Models

The Export with Models property is displayed when you select the Export
operation with the Type field set to Models, Tables, Programs, or Help Screens.
When the check box is marked, eDeveloper exports your object models with
the application. If you do not mark the check box, eDeveloper will export the
application without your object models, and the application will either point to
Reference Guide 1248

an equivalent model on the end-users computer or will use the application’s
default system model.

From...To...

If you are exporting models, tables, programs, or help screens, you can
indicate a range so as to export only some of them. For example, if you want
to export the first three database tables (those appearing on the first three
lines of the Table repository), indicate From No.=1 and To No.=3.

From either range field you can zoom to the Table list, the Program list, or the
Help list, according to the selection you made in the Type property. Figure 20-
9 illustrates the Table list.

Folders

• Exporting

Exported repository entries will always be exported with their folders. The
exported document will include the folder name.

Figure 20-9 Export/Import File List
Reference Guide 1249

• Importing

You can import a folder structure by selecting Yes in the Import Folder
Structure property of the Export/Import Utility dialog. If the folder already
exists, the imported entry appears as the last entry entered in the folder.

If you select No, the imported object will be created in the eDeveloper
Imported folder.

File Name

The disk file that will hold the exported components, or the file to be imported.

In an export operation, eDeveloper automatically determines the name of the
file, as follows:

• The first part is the application prefix, as defined in the Settings/
Applications repository.

• The prefix is followed by a letter representing the Model property. It is the
selection letter of the exported component’s name, such as E for Models or
F for Tables.

Flow Monitor/Debugger
The Flow Monitor lets you monitor the eDeveloper runtime engine and see how
a program is executed in the runtime environment. It helps you understand
program execution and identifies problems that may exist in the program
logic.

The Flow Monitor utility lets you log and display the command flow (for
example, tasks, levels, operation flow, and so on) that occurs when executing
a program.
Reference Guide 1250

The Debugger utility lets you set break points in the flow. When the Debugger
comes to a break point, the flow stops. You can then review each step of that
operation, skip that sequence of steps, or ignore the break point.

Τhe Flow Monitor/Debugger utility runs on a separate thread, parallel to
eDeveloper. The Flow Monitor receives activity messages from the eDeveloper
Engine.

Flow Monitor Toolbar

The Flow Monitor buttons are displayed below.

Figure 20-10 The eDeveloper Flow Monitor

Saves the flow Starts the Flow
Monitor

Stops the Flow
Monitor
Reference Guide 1251

Opens the Activity
Filter dialog.
Displays the filters
that you can set
for the Flow
Monitor.

Clears the Flow
Monitor

Opens the Variables
dialog. Displays the
program’s variables

When the Flow
Monitor/Debugger
comes to a break
point, the Step-In
command lets you
review a sequence
of commands one
line at a time.

When the Flow
Monitor/ Debugger
comes to a break
point, the Step Over
command lets you
skip over from one
command sequence
to another.

When the Flow
Monitor/Debugger
comes to a break
point, the Continue
command lets you
ignore the break
point.

Sets a break point
in the eDeveloper
program.
Reference Guide 1252

Flow Monitor Message Group Filters

You can specify the activities to be displayed by selecting the following filters:

Task Task Message
registers task activities
(For example: open task,
close task, task events)

Levels Flow Level Message
registers the task levels
For example: record prefix,
record suffix, and record
main.

Dataview Dataview Message
registers data view actions
For example, range, locate,
and so on.

Flow Operations Operations Message
registers the flow of
operations
For example: Select, Link,
Block and so on.

Gateways Gateway Message
registers gateway activities
For example, gateway
connections, SQL statements,
and so on.

Transaction Cache Registers the DML Statements
and data content stored in the
Transaction Cache of the
deferred transactions.
Reference Guide 1253

Flow Monitor Properties

• For activities that have Start/End messages, the user can block either
message or both of them.

• You can view the program variables (for example, record number, last
reservation, date, and so on) and display them on the flow dataview.

• You can set specific break points for the program. The break points defined
are displayed in the Break Points dialog when the program is implemented.

• When a break point is set, The Flow Monitor/Debugger will stop the flow
execution at that point. The user can also set a break point by using the
FlwMtr function in any given time during the implementation of the
program. A counter can also be set to a break point so that the flow will
stop after a certain number of times.

Recompute Recompute Message
registers the activities that
cause values to be
recomputed.
For example: updating a
value.

Monitor Browser Tasks
Activity

When this filter is selected,
you can specify the context
information to be displayed in
the flow monitor.

Triggered Events When this filter is selected,
the flow monitor displays
every event that is processed
by the eDeveloper engine.

Log Messages Registers the log actions.
Start - registers the beginning
of a compound action (for
example, a task prefix).
Stop - registers the ending of
a compound action.
Reference Guide 1254

• When a break point is encountered, the user can step into, step over, or
continue the flow. Step Into lets the user review the sequence of steps one
step at a time. Step Over lets the user jump over one sequence series to
the next. Continue lets the user ignore the immediate break point.

Flow Monitor Utility for a Server

The Flow Monitor/Debugger can also operate on a server in the Runtime
module. Flow monitor messages can be written in the log file, MGFlwMtr.LOG.

To load the Flow Monitor in background mode or on a server, enter the
following setting in the Magic.ini file:

[MAGIC_FLOW_MONITOR]
LoadMonitor=Y
Monitor2File=Log file name

Flow Monitor message filters can be defined in the MGFlwMtr.INI file under the
Application Name section, for example [MY APP], by using the keywords listed
below. These keywords determine what flow monitor messages appear in the
MGFlwMtr.LOG.

For each application, you can define the Flow Monitor message filters.

Keyword Value Description

BeginMSG=Yes Begin Message
registers the beginning of a
sequence of command steps
For example, Block

EndMSG=Yes End Message
registers the end of a sequence of
commands steps.
For example, End Block.

TaskMSG=Yes Task Message
registers task activities
(for example: open task, close
task, task events, and so on)
Reference Guide 1255

FlowMSG=Yes Flow Message
registers the task levels
For example: record prefix, record
suffix, and record main.

ViewMSG=Yes Data View Message
registers data view actions
For example, range, locate, and so
on.

RecomputeMSG=Yes Recompute Message
registers the activities that cause
values to be recomputed.
For example: updating a value.

OperationsMSG=Yes Operations Message
registers the flow of operations
For example: Select, Link, Block
and all other Operations.

LogMSG=No Log Message
registers the log actions.

Keyword Value Description
Reference Guide 1256

Flow Monitor Support for the Browser Client

eDeveloper provides flow monitor functionality for the browser client. The
changing foreground color differentiates between server-side operations and
browser client-side logic operations. Foreground colors can be set from the
Flow Monitor panel.

The Remote Flow Monitor

The Remote Flow Monitor lets you monitor eDeveloper applications that run on
a remote host.

You can start the Remote Flow Monitor by selecting the shortcut in the
start\Magic 940 eDeveloper menu group or by clicking the
Remote_Monitor.exe executable file, located in the Development folder.

The Remote Flow Monitor is an executable file, independent of the eDeveloper
engine, that uses TCP/IP to communicate with the remote eDeveloper engine.

To use the Remote Flow Monitor, the environment settings in the host engine
must be set to Remote Flow Monitor=Yes and a Remote Flow Monitor port
must be specified.
Reference Guide 1257

When the the Remote_Monitor.exe executable file is activated, the Remote
Flow Monitor client application appears, as shown in Figure 20-11.

The Remote Flow Monitor client application lets you:

• Define the remote application to monitor

• Start the monitor

• Restrict access

• Save the monitor data

• View statistics

• Set the activity filter

• Define message colors

• Select a specific context

Figure 20-11 Flow Monitor Client
Reference Guide 1258

• Set the cache size

• Stop the monitor

Defining the Remote Application to Monitor

Click Setting from the File menu to select the remote application to monitor.
The Setting Application dialog opens, as shown in Figure 20-12.

From this dialog, you can:

• Add new applications to monitor. When you click Add, the Application
Details dialog appears.

• Edit the information of the available applications. Edit is enabled only when
eDeveloper is parked on the application name. When you click Edit, the
Application Details dialog appears.

• Remove an application from your list. Remove is enabled only when
eDeveloper is parked on the application name.

Figure 20-12 The Remote Flow Monitor
Reference Guide 1259

You can add or edit an application from the Application Details dialog box, as
shown in Figure 20-13.

The Remote Application details are described below:

• Application Name - Enter the application name. This name should match
the name of the application you are monitoring.

• Host Name - The name of the machine on which the application is running.
If the host internet protocol is specified, you cannot set the host name.

• Host IP Address - The Internet Protocol (IP) of the machine on which the
application is running. If the host name is specified, you cannot set the
host IP.

• Port Number - The port number that the eDeveloper engine uses to
monitor connections.

• Users to Monitor - This field enables you to filter the messages sent by the
server. You can specify several different users, separating their names by
commas. Enter an asterisk (*) to instruct the flow monitor to receive all
messages.

Figure 20-13 Remote Application Details
Reference Guide 1260

Starting the Remote Flow Monitor

To start the Remote Flow Monitor, select an application from the Monitor menu.
eDeveloper prompts you to enter a user name and password, as shown in
Figure 20-14.

When the information is verified, the server begins sending flow monitor
messages to the flow monitor client. The information is filtered on the server
side according to the information provided on the flow monitor client.

You cannot start the flow monitor without a verified user name and password.

An error message is displayed when the flow monitor fails to connect to the
remote engine, as shown in Figure 20-15.

Restricting Access

You can restrict Remote Flow Monitor access to users with flow monitor rights
by specifying the rights in the Flow Monitor Right application property of the
Application Property dialog under Security. For more information, see Chapter
15, Application Properties.

Figure 20-14 Starting the Remote Flow Monitor Login Window

Figure 20-15 Remote Flow Error Message
Reference Guide 1261

Only one Flow Monitor client is allowed to monitor the application at a time. A
monitor request by other clients is rejected when the application is being
monitored.

Saving the Monitor Data

You can save the result data from the monitor into a text file for use after the
monitor is closed. Click Save from the File menu or the Save icon to save the
result data from the monitor to a text file. In the Save dialog box, specify the
file path and name, and click Save.

Performance Statistics

The monitor can display statistics about the performance of the monitored
application. Click Statistics from the View menu. The Statistics window
appears, as shown in Figure 20-16.

The Time Difference field displays the amount of time that has elapsed from
one selected monitor message to another. Click the monitor message where
you want to start and then click the monitor message where you want to stop.
The execution statistics display the number of specified actions (such as open

Figure 20-16 Statistics
Reference Guide 1262

tasks, closed tasks, open databases, and closed databases) that occur
between the two selected monitor messages.

Matching the Start and End of a Flow

The flow of an eDeveloper program contains a start and end point. For
example, the monitor displays the start of the record suffix and the end of the
record suffix. When a line position in the monitor is selected at the beginning
of a flow, you can jump to the end of the flow by clicking Match Start/End from
the Monitor menu. In our example above, eDeveloper will move the highlight
line to the end of the record suffix. This functionality lets you view and
understand what is being executed in a specific section of the flow.

Activity Filter

Click Options from the View menu to set monitor data filters. The Activity Filter
dialog appears, as shown in figure 20-17.

For more information about the Activity Filter, see the Flow Monitor/Debugger
section in this chapter.

Figure 20-17 Activity Filter
Reference Guide 1263

Color Management

You can customize how the monitor messages are displayed by specifying
colors for the different message types, as shown in Figure 20-18.

The monitor message types are:

• Engine activity - Select a color for server-side operations.

• Browser activity - Select a color for client-side operations, such as
browser-based programs.

• Context activity - Select a background color to display a change of context.
The selected background color will replace the default color, white.

Figure 20-18 Selected Colors for Monitor Data
Reference Guide 1264

Context Manager

Click Context Manager from the View menu to select a specific context that
you want to monitor. The Context Manager window appears, as shown in
Figure 20-19.

You can view the context number of the browser task in the Internet Explorer’s
address bar.

The Context Manager window has the following columns:

• Context ID - Select to display the context and the context number.

• User Name - Displays the name of the user running the context.

• User status - Displays the status of the context, whether the context is
running or whether it has been terminated.

• IP Address - Displays the IP Address of the context.

Figure 20-19 Context Manager
Reference Guide 1265

Setting the Cache Size

The Remote Flow Monitor stores the incoming message codes in the client
cache. You can specify the size of this cache by clicking Cache Size from the
View menu. The minimum size is 100 KB and the maximal size is 9999 KB. The
cache mechanism of the Remote Flow Monitor is First In First Out (FIFO).

Stop the Monitoring

To stop monitoring, click Stop Monitoring from the Monitor menu or click the

Stop icon.

The Profiler
The Profiler collects performance and coverage information on your application
and lets you analyze that information to learn about the runtime
characteristics of your application. You can then use this data, including
information on task usage, elapsed times, compute-bound tasks, I/O-bound
tasks, and so on, to help you identify and resolve bottlenecks in the
application.

Improving performance using the Profiler consists of four steps:

1. Collect data

2. Analyze results

3. Focus on problem areas

4. Fix problems

Profiler Operation

To activate the Profiler, you must set up an operating system variable.

For Windows or UNIX this is MGPROF.

For VMS this is MAGIC$TRACE.
Reference Guide 1266

For example, in DOS, enter set MGPROF=1 at the system prompt.

Profiler Output

The Profiler creates two output files for each program that is run. The first file
is the Program Execution Trace file that includes information about the Call
tree in the application (including events), and exact timing about the various
elements in the task execution. The second file includes information about files
used in the tasks. The profiler output files are regular ASCII files that can be
edited, printed, or even read into a spreadsheet program for the analysis
phase.

Program Execution Trace File

The Program Execution Trace file displays the calling sequence of the program.
The file consists of a line for the beginning of each task and a line for the end
of each task. The hierarchy of the tasks is shown through indentations from
the left margin.

The Program Execution Trace file contains the following columns:

Column
Name

Contents Remarks

1 # Line Number

2 Task
Number

Program Number in the
Program repository, or a
fully qualified Task Number
for tasks.

3 Task Name Program name
or Task name.

4 Start/End
Task

Start - for the beginning of
task execution.
End- for the end of task
execution.

This column is
displayed in a
hierarchical order
to show the
calling sequence.
Reference Guide 1267

5 Event Event - if the task was
executed as an event.

6 Total Task
Time

Total elapsed time from
beginning to end of task.

Elapsed time
includes the
elapsed time for
all called tasks.

7 Resident Y - if the task is resident.

8 Sort Time Elapsed time for sorting
the dataview.

9 # of Open
Files

Number of files that are
defined in the task.

10 Task Open
Time

Elapsed time to load the
task for execution.

Task open time
includes the time
to open the files
for the task.

11 Task Close
Time

Elapsed time to close the
task after execution.

Task close time
includes the time
to close the files
of the task.

12 Open Files
Time

Elapsed time to open the
tables for the task.

13 Close Files
Time

Elapsed time to close the
tables of the task.

14 # of
Updated
Records

Number of View updates.

15 Average
Update
Time

Average time for updating
a single dataview.

Column
Name

Contents Remarks
Reference Guide 1268

The output table name of the Program Execution Trace table is MGPROFT.LOG.

Opened Files Trace File

The Opened Files Trace file lists the tables that are defined within a task and
that eDeveloper opens for any reason, and also that eDeveloper is forced to
open or reopen because of a change in access and share modes.

16 # Load
Records

Number of View loads.

17 Average
Load Time

Average time for loading a
single dataview.

Column
Name

Contents Remarks
Reference Guide 1269

The Opened Files Trace file contains the following columns:

The output name of the Opened Files Trace file is MGPROFM.LOG. To change
the file name in DOS or UNIX use the command
 set MGTCNF=<file name>
and in VMS use the command
 set MAGIC$TRACE_CNF=<filename>.

Note: All measured times are in 55 milliseconds resolution.

The OEM2ANSI Utility
A conversion utility that lets you convert an entire series of external text files
from ANSI to OEM and from OEM to ANSI. The purpose of this utility is to
convert various files used in applications that may have different standards of
character mapping, for example, exporting a text file from an eDeveloper
Version 9 application to an application of a previous Magic versions.

#
Column
Name

Details

1 # Reference to the line number in the Program
Execution Trace file.

2 Task Number Program number in the Program repository,
or a fully qualified Task number.

3 File File number.

4 New New- if this is the first time the file was
opened.

5 Original Open
Mode

Access, Share, and Open Mode as defined in
the parent task.

6 Open Mode Access, Share, and Open Mode as defined in
the task.
Reference Guide 1270

The ODBC Check Driver Utility

The ODBC Check Driver utility is included with the ODBC driver. Running this
program tests the ODBC data source and prints a list of functions that are
produced by the driver. The test will tell you whether or not the driver can be
used with the eDeveloper Database Gateway for ODBC.

For more information, refer to Chapter 25, SQL Considerations.

The MakeKey Utility

The MakeKey utility lets you create a feature license that can be checked out
and in by other users of an eDeveloper application.

The MakeKey utility works best when run under the installed license server
directory. This utility prompts the user to enter the information required for
creating a new license entry.

The modules for the feature license implementation are the LMChkOut
function, LMChkIn function, and the MakeKey utility.

The Makekey.exe file is provided with the installation of eDeveloper. This file
will take you through a series of steps needed for creating your new license
entry.

The Table Conversion Utility

Table conversion is a process eDeveloper starts automatically if the physical
structure of a table is modified and the data table exists. For example,
changes such as adding a column to a table, removing a column from a table,
changing a column’s attribute, changing index specifications, or modifying a
type used in a table, each automatically launch the table conversion process.

It is important to note that if you change an index definition from non-unique
to unique, the conversion process deletes all the rows that meet the duplicate
index condition.
Reference Guide 1271

The table conversion process starts as you attempt to exit from a table row in
the Table repository, or exit from the Table repository, or as a result of a Model
repository conversion sweep.

eDeveloper maintains the structure of the table as it exists before the changes
are made to it, along with the new structure, until the table row is left or until
the table repository is left. If you cancel the conversion process, an
inconsistency between the physical and logical structures of the table may
remain. In this case, eDeveloper will not be able to perform an automatic
conversion at a later stage and may report an error the next time it accesses
the table.

The conversion process consists of the following stages:

1. eDeveloper opens the Confirm Convert Operation dialog. Select Yes to
convert the table automatically. If you Cancel the operation no
conversion will take place (in which case you may have to undo the
modifications manually).

2. If you confirm the convert operation, and depending on the database
used, eDeveloper opens the Confirm Backup Operation dialog. If you
want to preserve a copy of the original table (as it was before it was
modified), select Yes. The process creates a BCK file (for example, in
REM: GET WIN EX DOS, DMBCK001.DAT) in the current directory,
provided there is room on the disk.

3. If you confirm the convert operation, eDeveloper displays the Table
Convert dialog. In this dialog you can request eDeveloper to
rearrange the database table according to one of its previously
existing indexes. Index 0 arranges the rows in their physical
sequence. If you want to arrange the table according to a index,
either type the index’s sequential number (from the Index
repository), or zoom to the Index list to select a index. It is advisable
to rearrange a table according to the index that is most frequently
used, to enhance performance when scanning the table or in any I/O
operation with the selected index.

4. After you select Yes in the Table Convert dialog, eDeveloper carries
out the conversion. A Convert window appears and displays the
number of rows converted so far. When the window disappears, the
Reference Guide 1272

table is fully converted.

5. When possible, eDeveloper uses underlying database utilities for table
conversion, for example using the SQL ALTER statement when the
underlying database is SQL. Refer to the Magic Guide to the SQL.

Magic Flat File
The Magic Flat File (MFF) lets you deploy a database-independent eDeveloper
application file. The application, which is created as a binary file, can be stored
anywhere on the user’s computer system and is used for deployment only.

MFF files are meant to be used in a multi-platform environment. For example,
you can transfer an MFF from Windows NT to UNIX without importing or
exporting the application.

You can save an existing eDeveloper application as an MFF by clicking the Save
as MFF command from the File menu.
Reference Guide 1273

Print Data Wizard
For online tasks, you can enable the Print Data Wizard by setting the Allow
Print Data task control property, in the Task Control dialog, to Yes. When the
Print Data Wizard is enabled, the end-user can print data displayed on the
screen at runtime.

Runtime Operations

The Print Data Wizard lets you specify how to print data displayed on the
screen at runtime by defining the:

• Output Type

• Column Order

• Delimiters

Output Type

Click Print Data (CTRL+G) from the Options menu in runtime to start the Print
Data Wizard. The Print Data dialog box opens, as shown in Figure 20-20.

Figure 20-20 Print Data Dialog
Reference Guide 1274

You can print the data displayed on the screen in HTML, XML, or Text format.
Data can be sent to the printer, printed to file, or opened in an external
application. To send data to the printer, select the Create and Print file action
and Open Printer Dialog.

When printing data to a file, select the Create action and specify the file path
name. If no path is specified, the file is created in the Magic home directory.
Search for the file path name by zooming from the field.

You can display the data in an external application assigned to the data’s file
type by selecting the Create and Open File action. For example, an HTML file
that has a .DOC extension will be opened in Microsoft Word.

You can specify a template for an HTML or XML file. For an XML template,
select an XSL file. Template files specified in this field override the default files
selected in the Print Data HTML and XML Template environment settings. If
this field is left blank, eDeveloper automatically uses the default HTML and
XML template files.

You can create an XML Schema Definition (XSD) file when you specify the data
to be displayed in XML format. When the Create Schema File check box is
selected, eDeveloper creates the XSD file in the location specified in the Print
Data XML Template environment setting. The XSD file has the same name as
the XML file. For more information, see XSD Data Type.

Click Finish to print the data without specifying the column order or delimiters.

If you want to set the column order and delimiters before the data is printed,
click Next to open the Column Selection dialog box, as shown in Figure 20-21.

Column Order

If you do not want to print data from a column, enter 0 next to the column
name.

You can change the column order by entering a different order number next to
the column name. eDeveloper adjusts the column order accordingly.

Click Finish to print the dataview with the selected column order.
Reference Guide 1275

For text files, you can continue the process and click Next to select the
delimiter character that appears in the data printout. eDeveloper uses the
comma and single quotation mark for the default value and string delimiters.

Delimiters and String Identifiers

You can select a delimiter for the text file or enter a custom delimiter by
selecting Other in the Delimiter and String Identifiers dialog, as shown in
Figure 20-21

You can also select a string identifier, a single or double quotation mark, or
enter a custom string identifier by selecting Other.

Click Finish from the Delimiter dialog box to print the data as defined.

The printed data always appears in table format, even if invoked from a screen
mode task. Printing data is not available for multi-marked selections.

Runtime Behavior

eDeveloper prints the current screen control value for the:

Figure 20-21 Delimiters and String Identifiers
Reference Guide 1276

• Radio button

• Edit

• List

• Combo box

• RTF

If the Check box is selected, eDeveloper prints True. If it is not selected,
eDeveloper prints False.

If a control has an expression that does not provide a control name, the end-
user cannot print the control value.

If there is no data, the Print Data Wizard prints:
No data printed.

If eDeveloper cannot find the template or there is an error in it, the Print Data
Wizard prints:
Error in the printout template.

If there are no style definitions, the print data output will not have a defined
style.

XML Template Structure

When XML is specified as the print data output type, eDeveloper displays the
data in an XML template where the XML tags are labeled according to the
control name.

The XML template file should include a reference to the XSL file. Magic uses
the default template file when no template file is specified. If a template file is
specified, eDeveloper adds a reference to the XSL file, as displayed below:

<?xml-stylesheet type="text/xsl" href="sample.xsl" ?>
<Print_data>
</Print_data>

eDeveloper enters the records between the <Print_data> tags and the
<Record> tag for each record, as shown below:
Reference Guide 1277

<?xml version="1.0" encoding="ISO-8859-1"?>

<Print_data>

<Record>

<Emp_ID>1</Emp_ID>

<Name>David</Name>

<Email>david@mse.com</Email>

</Record>

<Record>

<Emp_ID>2</Emp_ID>

<Name>Dan</Name>

<Email>dan@mse.com</Email>

</Record>

<Record>

<Emp_ID>3</Emp_ID>

<Name>John</Name>

<Email>John@mse.com</Email>

</Record>

</Print_data>

XSD Data Type

When the Create Schema File check box is selected, eDeveloper creates the
data in the XML file according to the proper XSD data types, described below.

Magic Attribute XSD Data Type

Alpha string

Logical boolean
Reference Guide 1278

Note:

eDeveloper’s date and time format is converted to the XSD date and time
format.

The XSD data type is determined according to the picture. For numeric, date,
and time, the picture can contain only numbers and dots. If the picture
contains other characters, eDeveloper creates the XSD file with the String data
type.

XSD Header

The XSD header is shown below.

Elements

All elements the user selected for the XML file should be represented in the
XML Schema Definition. When the element name contains an illegal character,
it is replaced with an underscore, as shown below.

Note:

The element_name is replaced by the control name.

Numeric
without
floating point

integer

Time time

Date date

Memo string

Magic Attribute XSD Data Type

<?xml version="1.0" encoding="UTF-8"?>
<!--W3C Schema generated by eDevelper 9.4 (http://www.magicsoftware.com)-->
<schema targetNamespace=”http://www.magicsoftware.com/printdata94”
xmlns="http://www.w3.org/2001/XMLSchema”>

 <xs:element name="element_name">
 <xs:simpleType >
 <xs:restriction base="xs:type">
 <xs: maxLength value="n"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
Reference Guide 1279

The xs:type is set according to the conversion table in conjunction with the
control attribute.

The value is replaced with the control picture.

The Record Complex Type is specified as:

XML Example

Elements are replaced with element names in the order they appear in the
XML file, as displayed below.

<xs:complexType name="Record">
 <xs:sequence>
 <xs:element ref="element1"/>
 <xs:element ref=" element2"/>
 <xs:element ref=" element3"/>
 <xs:element ref=" element14"/>
 </xs:sequence>
 </xs:complexType>

<?xml version="1.0" encoding="UTF-8"?>
<!--W3C Schema generated by eDeveloper 9.4 (http://www.magicsoftware.com)-->
<schema targetNamespace=http://www.magicsoftware.com/printdata94
xmlns="http://www.w3.org/2001/XMLSchema”>
Reference Guide 1280

<xs:element name="EMPLOYEE_ID">
 <xs:simpleType >
 <xs:restriction base="xs:integer">
 <xs: maxLength value="5"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="FIRST_NAME">
 <xs:simpleType >
 <xs:restriction base="xs:string">
 <xs: maxLengthvalue="30"/>
 </xs:restriction >
 </xs:simpleType>
 </xs:element>
 <xs:element name="HIRE_DATE">
 <xs:simpleType >
 <xs:restriction base="xs:date">
 <xs: maxLengthvalue="8"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="LAST_NAME">
 <xs:simpleType >
 <xs:restriction base="xs:string">
 <xs: maxLengthvalue="30"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="PHONE_NUMBER">
 <xs:simpleType >
 <xs:restriction base="xs:string">
 <xs: maxLengthvalue="15"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:complexType name="Record">
 <xs:sequence>
 <xs:element ref="EMPLOYEE_ID"/>
 <xs:element ref="FIRST_NAME"/>
 <xs:element ref="LAST_NAME"/>
 <xs:element ref="PHONE_NUMBER"/>
 <xs:element ref="HIRE_DATE"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>
Reference Guide 1281

HTML Template Structure

When HTML is specified as the print data output type, eDeveloper displays the
data in the HTML template below:

<html>

<head>

<title> </title>

</head>

<body>

 <MGTABLE>

</body>

</html>

You can define the MGTABLE style tags, RowStyle and ColumnStyle, in the
HTML Template as described below:

• RowStyle:

• All - eDeveloper creates a specific style for each row and title.

• EvenAndOdd - eDeveloper creates two styles, an MG_Even_Row
and an MG_Odd_Row.

• Equal - eDeveloper creates the same style for all rows and titles.

• ColumnStyle:

• All - eDeveloper creates a specific style for each column.

• Equal - eDeveloper creates the same style for all columns.

The example below has four columns in the table. The MGTABLE is defined as
< MGTABLE RowStyle=ALL ColumnStyle=ALL >:

<table border="1" width="100%" class="MG_TABLE">

<THEAD>

 <tr >
Reference Guide 1282

 <td width="25%" class="MG_TITLE1">t1</td>

 <td width="25%" class="MG_TITLE2">t2</td>

 <td width="25%" class="MG_TITLE3">t3</td>

 <td width="25%" class="MG_TITLE4">t4</td>

 </tr>

</THEAD>

<TBODY>

 <tr class="MG_ROW1">

 <td width="25%" class="MG_DATA1">d11</td>

 <td width="25%" class="MG_DATA2">d12</td>

 <td width="25%" class="MG_DATA3">d13</td>

 <td width="25%" class="MG_DATA4">d14</td>

 </tr>

 <tr class="MG_ROW2">

 <td width="25%" class="MG_DATA1">d21</td>

 <td width="25%" class="MG_DATA2">d22</td>

 <td width="25%" class="MG_DATA3">d23</td>

 <td width="25%" class="MG_DATA4">d24</td>

 </tr>

</TBODY>

</table>

The eDeveloper Version 9.4 template tags below replace the template tags
from previous Magic versions.

• System Date and System Time (##/##/#### HH:MM) replace MGDate.

• The Owner parameter specified in the Magic.ini file replaces MGOwner.
Reference Guide 1283

• The eDeveloper logged-in user replaces MGUser.

Tools Infrastructure
The Tool Infrastructure lets you create your own tools, wizards and batch
processes that can run from a dynamic menu in toolkit mode. The Tools menu
is displayed only when an application is open.

Building the Menu

The Tools menu definition is loaded with the eDeveloper toolkit. Any
modification of the [TOOLS_MENUS] section in the Magic. ini file takes effect
only in the next session.

The menu entry order in the Tools menu and submenus are determined by the
order the menu entries are entered in the [TOOLS_MENUS] section.

The Tools menu entry is defined in the Magic.ini file by the following syntax:

Menu Name = menu type, menu caption, parent menu name, MFF
path\command, access key, pre-operation command file, post-operation
command file, image for tool number and tool group

If the Tools menu syntax is invalid, the option is not displayed in the menu.
If there are no valid tool entries found, the Tools menu is not displayed.

Menu Type

You can select a character below to specify a tool type:

A=Application This option creates a menu entry that activates an
eDeveloper application in a flat-file format.

O=OS Command This option creates a menu entry that activates a
defined OS command.

M=Submenu This option creates a submenu entry point.
Reference Guide 1284

Menu Caption

The menu caption lets you define a menu name.

The menu caption can include an ampersand character (&) to set the
accelerator key. The menu caption is mandatory for Application, OS command,
and Submenu entries but is not required for the Separator.

Parent Menu Name

A string defining the parent menu. If the Parent Menu Name parameter is
empty, the menu caption appears in the Tools menu.

MFF Path and Command

When the menu type is Application, the MFF Path/Command parameter must
specify the location of the application flat file.

Before a flat-file application is loaded, the current application will be closed.
The general information about the application is set as global parameters.

If no MFF path is defined, the menu entry is regarded as invalid and will not be
part of the menu structure.

When the menu type is OS Command, the MFF parameter specifies the OS
command to be executed.

Logical names are supported for both the MFF Path and Command parameters.

Access Key

This parameter defines the access key of the defined menu entry. This is an
optional parameter that applies only to Application and OS Command menu
types.

S=Separator This option creates a menu separator.

A=Application This option creates a menu entry that activates an
eDeveloper application in a flat-file format.
Reference Guide 1285

Pre-Operation Command File

The file name that lists a sequence of operations to be performed before the
current application is closed. For information about the command operations,
see Operation Commands on page 1287. This parameter supports logical
names.

Post Operation Command File

The file name that lists a sequence of operations that will be performed before
the current application is reloaded after the flat-file application closes. For
information about the command operations, see Operation Commands on
page 1287. This parameter supports logical names.

Tools Menu Example

[TOOLS_MENUS]

Menu1 = A,&Search and Replace
Tool,,Add_On\SearchReplace.mff,Ctrl+W,pre.txt, post.txt

Menu2 = O,&Notepad, ,notepad.exe magic.ini,

Menu3 = S,,,,,

Menu4 = M,S&ub Menu,,,,

Menu5 = M,&My Wizards,Menu4,,,

Menu6 = A,Wizard &1,Menu5,Add_On\wizard1.mff

Menu7 = A,Wizard &2,Menu5,Add_On\wizard2.mff

Menu8 = A,Wizard &3,Menu5,%Tools%wizard3.mff
Reference Guide 1286

The example is displayed in Figure 20-22.

Activating the Search and Replace Tool menu option results in the following
steps:

1. Runs the operations listed in the pre.txt operation file (for example,
exporting the application).

2. Closes the current application (for example, customers.mcf)

3. Opens the SearchReplace flat file in the current eDeveloper engine.

4. When the SearchReplace.mff closes, eDeveloper automatically returns
to the original application, customers.mcf.

5. Returns the list of operations in the post.txt operation file (for
example, importing an application).

When you select the Notepad menu option, Windows Notepad opens
with the Magic.ini file.

Operation Commands

The syntax for pre-operation and post operation commands are:

operation, main information, number, switches

The pre-operations and post operations are:

• Export - An internal export of an application

Figure 20-22 Tools Menu Example
Reference Guide 1287

• Document - A document export of an application

• Import - importing an eDeveloper application

• MFF - Saving an application as a flat file

• Application - Switching between defined applications

• Getdef - An SQL Get Definition operation

• OS - An OS command

• Simulate - Simulating keyboard strokes (for example, parking on a
repository object)

Export Operation

This operation has the following parameters:

Export, <file name>, <switches>

File Name

A valid fine name and path for the export file. The file name can support
logical names.

Switches

Optional instructions for the Export Document operation.

• Repository=X

This switch specifies which repository should be exported. Select the char-
acter representing the repository as listed below:

• M - Models

• T - Tables

• P - Programs

• H - Help screens

• R - Rights

• U - Menus
Reference Guide 1288

• C - Components

• D - Application data (properties)

• A - Application

• Range=

This switch sets the range of objects that can be exported within a defined
repository.

The range of values are defined by the From and To values, separated by a
hyphen (for example, 13-18).

When a single entry is exported, the parameter has only one entry number
or the same entry number for the From and To values (for example, 7 or
7-7).

When the range is not defined or invalid, eDeveloper exports the selected
repository.

Range values are irrelevant when exporting Menus, Rights, Application
data or an entire application.

You can export the parked object by using the Range switch. When the
Range is set to Range=@, the engine exports the parked object. This
switch is handled only in conjunction with the Repository switch.

For example: Export, myobject.exp, Repository=A (All), Range=@

To export a handled object of a specific repository, the Repository switch
must indicate the repository.

If the engine did not park on an object or handle an object within a
specified repository, the result file will be empty.

• WithModels=Y\N

When this switch is set to Y, exporting tables and programs will include the
models used in the export file. The default value is N.

For example: Export, %Path%AllTables.exp, Repository=T WithModels=Y

Export Document Operation

This operation has the following parameters:
Reference Guide 1289

Document,<file name>,<switches>

File Name

The file name and path used as the destination file for the output result.

Switches

Optional instructions for the Export Document operation.

• Repository=X

This switch specifies which repositories can be exported. Select the char-
acter representing the repository as listed below:

• M - Models

• T - Tables

• P - Programs

• H - Help screens

• R - Rights

• U - Menus

• C - Components

• D - Application data (properties)

• A - Application

• Range =

This switch sets the range of objects that can be exported within a defined
repository.

The range of values are defined by From and To values, separated by a
hyphen (for example, 13-18).

When a single entry is exported, the parameter has only one entry number
or the same entry number for the From and To values (for example, 7 or
7-7).

When the range is not defined or invalid, eDeveloper exports the selected
repository.
Reference Guide 1290

Range values are irrelevant when exporting Menus, Rights, Application
data or an entire application.

You can export the parked object by using the Range switch. When the
Range is set to Range=@, the engine exports the parked object. This
switch is handled only in conjunction with the Repository switch.

For example: Export, myobject.exp, Repository=A (All), Range=@

To export a handled object of a specific repository, the Repository switch
must indicate the repository.

If the engine did not park on an object or handle an object within a
specified repository, the result file will be empty.

• IncludeComponents=Y\N

When this switch is set to Y, exporting the defined repository include
entries from the Components repository.

• InternalValues=Y\N

When the switch is set to Y, exporting the defined repository displays its
values as fixed internal eDeveloper values, not translated through the
Mgconstw file.

• TemplateFile=

The file name and path of the document template used for the Export Doc-
ument operation.

If TemplateFile is not defined, the export document uses the value entered
for the Document Template environment setting. This switch supports log-
ical names.

For example: Document,%Path%Table.exp,Repository=T InternalVal-
ues=Y TemplateFile=My_Doc_std.eng

Import Operation

This operation has the following parameters:

Import, <file name>, <switches>

File Name

The file name and path used as the source file for the import process.
Reference Guide 1291

Switches

Optional instructions for the Import operation:

• ImportFolderInfo=Y/N

When the switch is set to Y, the selected objects are imported into their
defined folder. The default value is N.

• OverwriteMainProgram=Y/N

When the switch is set to Y, the imported Main Program overwrites the
existing one. The default value is N.

• OverwritePulldownMenu=Y/N

When the switch is set to Y, the imported pulldown menu definition over-
writes the existing one. The default value is N.

• OverwriteContextMenu=Y/N

When the switch is set to Y, the imported context menu definition over-
writes the existing one. The default value is N.

• OverwriteTarget=[repository entry number]

You can use this switch to import a specific export object to replace the
target object defined by the OverwriteTarget switch for a repository.

For example: Import, myobj.exp, Repository=P,
OverwriteTarget=17

If the target does not exist, the Import operation handles the import
object as if the switch has not been set, placing the imported object at the
end of the repository.

The Main program cannot be overwritten with this switch. You can only
overwrite the Main Program by using the OverWriteMainProgram switch.

Menus, Application Data, and Rights are always imported in their entirety,
and the OverwriteTarget switch is ignored.

If the target object is found, the ImportFolderInfo switch is ignored.

• AutoCheckOut=Y/N

When this switch is set to Y and the application is defined in a team devel-
opment environment, the imported repositories are automatically checked
Reference Guide 1292

out.

For example: Import, a.exp, ImportFolderInfo=Y OverwriteMainPro-
gram=Y OverwritePulldownMenu=N

Save as MFF Operation

This operation has the following parameters:

MFF, <file name>

File Name

A valid file name and path used as the MFF destination file.

Open Application Operation

This operation has the following parameters:

Application, <Application number>

Application Number

The application identifier from the application list. Any consecutive operation is
performed on the most recently opened application.

Get Table Definition Operation

This operation has the following parameters:

Getdef, <database name>, <table name>, <switches>

Database Name

The name of the database that determines the table definition. This name
should be defined in eDeveloper Database settings.

Table Name

The full table name, including the owner name.

FolderName Switch

The name of the folder where the table is created.
Reference Guide 1293

For example: Getdef, Mssql, dbo.GA_table, FolderName = folder1

This switch is optional.

OS Command Operation

This operation has the following parameters:

OS, <OS command>, <switches>

OS Command

The OS command to be executed.

Switches

Optional instructions for the OS Command operation are:

• Wait=Y/N

If set to Y the next operation waits until the OS Command operation is
completed.

• Show =[Hide, Normal (default), Maximize, Minimize]

This switch determines how the DOS prompt window should be displayed.

For example: OS, notepad, wait=Y show=hide

Simulate Operation

This operation has the following parameters:

Simulate, <collection of instructive tokens>, <switches>

The three tokens below instruct the eDeveloper engine to either park on an
object or simulate keyboard strokes. A semicolon is used to separate the token
values.

• WIN - This token instructs the eDeveloper engine to park on a repository
object.

Each repository is defined by a string as follows:

• MDL_REP - Models
Reference Guide 1294

• TBL_REP - Tables

• PRG_REP - Programs

• HLP_REP - Help screens

• RGT_REP - Rights

• MNU_REP - Menu

• CMP_REP - Components

These strings are suffixed by a number representing the object number in
the repository.

For example: Simulate, WIN=MDL_REP#15, parks on the fifteenth model
entry in the Model repository.

• TXT - This token instructs the eDeveloper engine to simulate keystrokes.

Simulate, TXT= <text>, enters the text at its current location.

For this token, <free text> starts from the character immediately following
the = sign. A space is considered a character.

• KEY - This token instructs the eDeveloper engine to simulate a key
combination. The supported key combinations are:

• F1 … F12 - As is, prefix by Shift+ or Ctrl+ or Alt+

• Ctrl+<any character>

• Home - As is or could be prefixed by Shift+ or Ctrl+ or Alt+

• End - As is or could be prefixed by Shift+ or Ctrl+ or Alt+

• Up - As is or could be prefixed by Shift+ or Ctrl+ or Alt+

• Down - As is or could be prefixed by Shift+ or Ctrl+ or Alt+

• PgUp - As is or could be prefixed by Shift+ or Ctrl+ or Alt+

• PgDn - As is or could be prefixed by Shift+ or Ctrl+ or Alt+

• Tab - As is or could be prefixed by Shift+ or Ctrl+ or Alt+

• Esc - As is or could be prefixed by Shift+ or Ctrl+ or Alt+
Reference Guide 1295

• Del - As is or could be prefixed by Shift+

• Back - As is or could be prefixed by Alt+

• Enter - As is or could be prefixed by prefix by Ctrl+

• Space - As is or could be prefixed by Ctrl+

• Ins - As is or could be prefixed by Shift+ or Ctrl+

• Plus

• Minus

• Clear

• Help

For example: Simulate, KEY=SHIFT+F10 ; KEY=Enter

Global Parameters Information

A running tool application can retrieve information about the current
eDeveloper application. Use the GetParam function to retrieve preset global
values about the handled application through the global value names listed in
the table below.

Parameter Name Value

MG_ApplicationIDX The entry number of the application
in the systems list

MG_ApplicationPrefix The application prefix

MG_ApplicationName The name of the application

MG_CurrentObject A number representing the internal
serial number of the object on which
the developer is parked.

MG_CurrentObjectISN The number representing the
internal serial number of the object
on which the developer is parked.
Reference Guide 1296

MG_CurrentObjCheckedIn The engine returns True when the
last parked or handled object is
checked in, or False when the last
parked or handled object is checked
out. When the application is not
defined for team development, the
setting does not display a value.

MG_CurrentObjCheckedOut The engine returns True when the
last parked or handled object is
checked out or False when the last
parked or handled object is checked
in. When the application is not
defined for team development, the
setting does not display a value.

MG_CurrentRepository A number representing the
repository that developer was
parked on prior to activating the tool
application.

The Repository identifiers are:

1 – Models

2 – Tables

3 – Programs

4 – Help Screens

5 – Rights

6 – Menu

7 – Components

9 - Application Properties

Parameter Name Value
Reference Guide 1297

MG_TeamDev Y when the application is in team
development mode. N when the
application is not in team
development mode.

MG_ToolEntry A string representng the INI entry of
the activated tool.

MG_TotalModels The total number of models, not
including components

For example, if an application has 20
models this global parameter returns
the number 20

MG_TotalTopModels The total number of models set with
no folder

MG_TotalTables The total number of tables, not
including components

MG_TotalTopTables The total number of tables set with
no folder

MG_TotalPrograms The total number of programs, not
including components

MG_TotalTopPrograms The total number of programs set
with no folder

MG_TotalHelpScreens The total number of help screens,
not including components

MG_TotalTopHelpScreens The total number of help screens set
with no folder

MG_TotalRights The total number of rights, not
including components

MG_TotalTopRights The total number of rights set with
no folder

MG_TotalComponents The total number of components

Parameter Name Value
Reference Guide 1298

 Automatic Processing

The toolkit engine can perform automatic operations in the background and
toolkit modes. Operations are listed in a text file defined in the Magic.ini file in
the [MAGIC_ENV] section as AutomaticProcessingSequenceFile=file name

When an eDeveloper generator engine loads in background mode, it
automatically executes the operations listed in the
AutomaticProcessingSequence file.

If the engine is in background mode and is not loaded as a server, it will
automatically shutdown after the last listed operation.

Automatic processing can be useful for running a series of automatic
operations at specified times.

The name of the AutomaticProcessingSequence file can be defined by using a
logical name.

Automatic Processing Sequence Example

To automatically export application number 2,
add AutomaticProcessingSequenceFile=c:\tools\operations.txt to the
Magic.ini file.

Enter the following lines in c:\tools\operations text file:

Application,2,
Export, %Path%MyApplication.exp, Repository=A WithModels=Y

Create a shortcut with the proper ApplicationStartup environment setting, user
name and password for executing the automatic processing file.

An example of a shortcut target is:

MG_TotalTopComponents The total number of components set
with no folder

Parameter Name Value
Reference Guide 1299

C:\program files\magic 940\MGgenw.exe /ActivateRequestsServer=N /
ApplicationStartup=B /user=guest /password=guest /
AutomaticProcessingSequenceFile=AutoProcess1.txt

Monitor Utility
The Monitor Application utility lets you monitor your enterprise servers for a
selected broker. You can open the utility by double-clicking the MGRQMonitor
executable file from the 9.40 subdirectory under Magic or by selecting
Monitor from the context menu when you right-click the Magic Broker icon on
the Windows status bar. The windows that constitute the Monitor Application
screen are described below.

Enterprise Servers

This window displays all active servers. You can load or close an enterprise
server by clicking Load Enterprise Server or Shutdown Enterprise Server
from the Actions menu.

The columns for the Enterprise Servers window are:

Host/Port - Internet Protocol (IP) or host name

PID - The client’s process identifier

Application - The application name

Status - The request status

Current Threads - The current number of requests

Peak Threads - The peak number of threads that the server requests from
the broker

Max Threads - The maximum number of threads that the server requests
from the broker

Request Count - The number of requests processed

Context Count - The number of contexts available
Reference Guide 1300

When shutting down an enterprise server, a warning box appears. If you click
OK for a server that is running, the server shuts down. If the server is not
running, the Monitor utility displays an error message.

Contexts

This window displays the context threads for the selected request broker. You
can close a selected context by clicking Terminate Context from the Actions
menu.

When closing a context, a warning box appears. If you click OK for an active
context, the context is closed. If the context is not running, the Monitor utility
displays an error message. When a context is closed, the cursor parks on the
next context.

Requests

This window displays the requests issued to the server by the selected request
broker. You can close the selected request by clicking Delete Request from
the Actions menu.

The columns for the Request window are:

Application/Program - The application or program executing the request

Client - The Internet Protocol (IP) or computer name of the client submitting
the request

Status - The request status, such as Failed Request, Completed Request,
Request in Progress, or Pending Request

Submission Time - The time the request was submitted according to the
broker

Elapsed - The time in seconds that elapsed since the request was submitted
to the broker until the request was completed.
Reference Guide 1301

When deleting a request, a warning box appears. If you click OK for a request
that is pending, it will be deleted. If the request has already been handled, it
will not be deleted.

Statistics

This window displays the request statuses, which are listed below:

• Failed Request - A request that could not be completed

• Completed Request - A request that is finished

• In-Progress Request - A request being processed

• Pending Request - A request waiting for an available server or for
other reasons

• Total Requests - All failed, in-progress, pending, and completed requests

The number of requests by status are displayed by a color-coded bar line.
You can determine the status options that are displayed and their desig-
nated colors from the Requests Filter dialog. You can return to the
default settings by clicking Default.

Applications

You can open a window displaying the available applications by clicking
Available Applications.

Window Displays

You can determine the windows that are displayed by selecting the window
options from the View menu.

The Monitor utility screen can appear as horizontal tiles or as cascading
windows by selecting Tile Horizontally or Cascade from the Windows
menu. Click Default Layout to return to the original screen display.
Reference Guide 1302

Changes to the screen can be displayed immediately by clicking Refresh (F5).

You can also set how often the Monitor utility refreshes the screen by clicking
Refresh Settings in the Options menu. Enter the refresh time in seconds or
the number of requests before eDeveloper refreshes the Monitor utility values.

Monitoring Servers

You can start monitoring by clicking Start Monitoring from the Monitor
menu. The Monitor utility prompts you to select a request broker. The local
broker is the default.

You can add or remove a request broker by clicking Broker List from the
Options menu. The Broker List dialog appears.

Click Stop Broker to stop monitoring the status of your requests.

The Documentation Template Facility
The Documentation Template facility is used to create hard copies of the
eDeveloper elements - such as tables, repositories, dialog boxes, and end-user
forms - that are associated with the various eDeveloper structures for a
particular application. These hard copies can serve as developer
documentation.

Producing Template Documentation

To produce template-specified documentation, create a documentation
template file as explained in the “Syntax” section. The file must be in text
format, and its width cannot exceed 256 characters. Note, however, that the
width of the documentation output is 132 columns.

You can use the default documentation template file, DOC_STD.ENG, or
DOC_EXT.ENG as a guideline. These files, which will create documentation for
all data items, are included as one of the configuration files in the eDeveloper
package.
Reference Guide 1303

After you have prepared your documentation template file, you can run the
export utility in Document mode, using the following procedure:

1. After opening your application, choose Settings/Environment and
select the External files tab.

2. Use Edit/Table Locate or page down to get to the Documentation
Template File property. Enter the name of your documentation
template file.

3. Select File/Export-Import SHIFT+F10 to access the
Export/Import dialog.

4. Select Export Document from the Operation combo box.

For the Type combo box, select the eDeveloper component you want to
have documented (except for Application components). Your
documentation template file must include a section for the component you
select.

If your documentation template file has sections for several eDeveloper
components, repeat steps 5 to 9, selecting a different eDeveloper
component for the Type combo box each time.

1. If there are several occurrences of the type you have just selected,
you can specify a subset of these items by zooming in the Range From
and To properties to indicate the range of occurrences you want to
document.

2. Type an output file name in the file name field. The documentation
generator will choose the first letter of the output file name based on
the component you have selected, placing the file in the same disk
directory in which the application resides, according to the application
prefix specified in the Application repository. You can override the
generated first letter in the filename.

3. Press OK to confirm the export properties.
If the documentation template has a syntax error in the section you
have specified, you will receive an error message at this point, and
the process will terminate.

4. If you want to create documentation for other components, return to
Reference Guide 1304

the Type combo box and select the next type.

5. Leave eDeveloper by selecting File/Exit System (or choose File/Shell
to OS to go out temporarily) and examine the documentation
report(s) created.

You can interrupt the documentation generator at any point by pressing ESC.

The documentation generator uses the first entry in the Printer repository to
obtain information such as the number of lines per page and the printer-
control character set. You can access the Printer repository by selecting
Settings/Printers.

Output can be directed to a printer directly by specifying the printer name as it
appears in the Printer repository.

The application provided with eDeveloper is simple to use, and contains on-
screen helps to assist in its usage.

Syntax - Documentation Template File

Each row of the documentation template file can contain both keywords and
regular text that is printed as is. There are no restrictions as to where on the
input line the keywords can appear. Similarly, both keywords and text can
contain an unrestricted mixture of upper-case and lower-case type.

There are three types of command lines in the Documentation Template file:
control lines, output lines, and comments. As noted below, each line begins
with a special character that serves as a command-type indicator.

Control Lines

Control lines can be report section delimiters or condition indicators. They
must begin with the # character.

Report Section Delimiters

The section delimiters signal either the beginning or the end of a report section
for a given eDeveloper structure. All command lines for a particular section,
Reference Guide 1305

therefore, must appear within that section’s delimiters. Similarly, the sub-
section delimiters set off an eDeveloper sub-structure.

The section-start and sub-section-start delimiters take the form:

#Section Section_Name_Keyword, Parm1, Parm2, . . . , Parmn

where Parm indicates additional parameters. These parameters are tasks and
must be separated by commas. Some are unique to a particular template
section.

Section_Name_Keyword typically is derived from the eDeveloper data
structure you want documented. For example, the beginning of the Type Table
report section is indicated by:

#Section Type_Table,Top

Similarly, the section-end delimiter takes the form:

#End Section_Name_Keyword.

Sub-section command lines are nested inside section command lines. For
example, if you want template documentation for the Task Properties and Task
Control sub-sections of a Program Structure, the template input section will
appear as:
Reference Guide 1306

#Section Program

———————————————————————————

Program Structure command lines ———-

———————————————————————————

#Section Task_Properties

———————————————————————————

Task Properties command lines ———-

———————————————————————————

#End Task_Properties

#Section Tasks_Control

———————————————————————————

Task Control command lines ———-

———————————————————————————

#End Tasks_Control

———————————————————————————

Additional Program Structure command lines

———————————————————————————

#End Program

Condition Indicators

The condition indicators `If,’ `Else,’ and `Endif’ set off text blocks that the
documentation generator prints depending on the evaluations to true or false
of the various condition indicators:

#If Condition

Block_of_Text_1

#Else
Reference Guide 1307

Condition indicates a Boolean (logical) operator that compares a keyword’s
value with a constant or another keyword:

Only one comparison can appear in any given line. However, since condition
nesting is allowed, you can include compound conditions. For example, by
placing each comparison on a separate line, you can tell the documentation
generator to output text only when a series of conditions is met:

Output lines comprise the actual text blocks that will be printed by the
documentation generator in each report section. There are three types of
output lines: headers, data lines, and footers.

Headers

Headers correspond to report heading lines you want to appear in the
documentation generator output. They can contain both keywords that are
specific to particular sections as well as global keywords, which may be used
anywhere in the documentation template file.

Each header must begin with the character ‘H.’

Footers

The footer lines contain the section footer that you want to appear in the
documentation report.

Footer lines, which can contain global keywords only, begin with the character
‘F’.

Block_of_Text_2

#Endif

Symbol Means

== equal to

!= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to
Reference Guide 1308

Data Lines

All data lines must begin with the character ‘D’. Data lines implies a loop to the
documentation generator on all the elements of the data structure being
output.

Data lines correspond to the actual data of the eDeveloper structure that you
want to document. The information required depends on the report-section
type, as noted below in “Documentation Template Sections.”

All three output line types can contain printer control characters. You can use
these, for example, to print wide reports on standard-size paper by specifying
the character sequence that initiates compressed print.

Comments

Comment lines are internal notes that do not appear in the output report. Put
any explanatory information that you do want the documentation generator to
print in either the header or footer lines.

Comments must begin with the characters ‘;‘ or `’‘*‘.

Documentation Report Sections

There are three types of report sections:

• full screen - for entry screens, such as the Task Properties Screen. To
receive an accurate copy of the screen from the documentation report
generator, enter the relevant keywords across several data lines, as they
appear in the actual screen.

• table - used to obtain a copy of a multi-line table, such as the Expressions
repository. You supply a sample data line, including all pertinent keywords.
The documentation report generator will output all of the table lines, using
the sample provided as its guide.

• forms - used for text blocks, such as help screens or input forms. This
section type generally does not have any special keywords other than
screen-location variables. The documentation generator therefore will
produce this type of report without requiring a sample output line or
Reference Guide 1309

screen from the user. As noted in the section on Special Parameters, the
display block can accept the parameters: Frame (frame type) and Offset,
which are unique to this sub-section.

Report Section Hierarchy

Shown below is a list of output report sections, and their hierarchy, that can be
obtained from the documentation generator.

The command lines for lower-level reports (sub-sections) are nested within the
higher level sections to which they belong.

Any section or sub-section can appear more than once in the input file. This
feature should prove useful whenever you want two documentation copies of a
particular eDeveloper structure, one showing more detail than the other.
Reference Guide 1310

Application

Model
repository

Table
repository

Index repository

Index Segments
repository

Foreign Key
repository

Help Screens
repository

Help Display Block

Menus
repository

Context Menu
Definition
repository

Menu Line
Description

Pulldown Menu
Definition
repository

Menu Line
Description

Application
Data

Application Events

Rights
repository
Reference Guide 1311

Program
repository

Task Properties

SQL Commands

SQL Where

Task Control

Local Variable
repository

DB Table
repository

I/O File repository

Sort repository

Events
repository

Events Parameters
repository

Expression
Rules
repository

Form
repository

Form Display Block

Field Location
Table (Displayed
Item Dialog)

Level Definition
repository

Operation
repository

 Operations
Description
Reference Guide 1312

Keywords

Keywords are distinguished from other text by the % character. Each set
consisting of a of keyword plus parameter list is enclosed by the % character.
That is, the % character will appear as the first character and as the last
character of such sets:

%Keyword, Parm1, Parm2, . . . , Parmn%

Optional Parameters

There are three Optional parameters:

• nn - a number that defines the width of the field in which data represented
by the keyword is to appear in the output report.

• Wrap - indicates that the data represented by the keyword output is to be
continued in its field on the following line if the output does not fit in the
field width that has been specified. If Wrap is not specified, the data
represented by the keyword output will be truncated if it exceeds the field
width specified.

Example: if the data represented by the keyword output is 23 letters long, and
contains the line ‘This is a sample output’

will produce

Specifying an input line of

%Keyword,
10,Wrap%

This is a

sample
out

put

%Keyword,
10%
Reference Guide 1313

will produce

The text “sample output” is truncated.

• Blank - tells the documentation generator to print blanks when the given
numeric data represented by the keyword has the value zero.

Special Parameters

Some keywords can accept special parameters that modify their output
values:

• Name - causes a field’s description to be displayed instead of its code.
Many file parameters in the various eDeveloper dialogs and repositories
contain codes of indexes of elements in other eDeveloper repositories. The
Name parameter causes the description of the code to be output instead of
the code or index. For example, one of the keywords in the File Table
Fields sub-section is Fld_Hlp, which outputs the number of the field’s Help
Screen. When the Name parameter is specified along with this keyword,
the title of the Help Screen from the Help repository appears in the output
report.

• Short / Long - appears after keywords used to print an expression’s
number. The Short and Long parameters tell the documentation generator
to print the expression itself in short or long (expanded) form. An
exception, however, can occur in the case of a keyword that represents a
field whose value is `Yes,’ `No,’ or an expression number. When the field’s
value is either `Yes’ or `No,’ the actual field value will be displayed, even if
you have instructed the documentation generator to print the expression
itself.

• File - relevant only in the Field Location sub-section of Form repository. The
File Parameter indicates the name of the file to which a particular field
belongs.

Keyword Types

There are two types of keywords, global and local.

This is
a

Reference Guide 1314

Global keywords can be used anywhere in the template file, e.g., Date and
Time (the date and time, respectively when the report is printed).

Local keywords are relevant only in specific sections.

A section or sub-section that is nested within a higher-level section (such as a
dialog invoked by a repository field - see the Report Section Hierarchy chart)
can use the keywords associated with the higher-level section.

Section Delimiters and Keywords

The following describe the section delimiters and keywords.

Model Repository

Section delimiter: Model_Table

Table Repository

Section delimiter: File_Table

Keyword Task &
Special
Parameters

Produces

EXD_MODel_TBL_IDX Model entry index
number

EXD_MODel_TBL_NAME Model name

EXD_MODel_TBL_FOLDER Model folder

EXD_MODel_TBL_CLASS Model class

EXD_MODel_TBL_ATTR Model attribute

Keyword Produces

Idx Table entry index

File_Name Table (File)
description

File_Folder Table folder

Fld_Cnt Column (Field)
counter
Reference Guide 1315

There are no Optional parameters for this section’s keywords.

Key_Cnt Index (Key) counter

Size Table (File) size

File_Path Optional table name
(filename)

File_DB Physical database
used

File_Acc_Key Data file access index
(key)

Encr Table (File)
encryption flag

File_DB_Info Database information

Resident Resident Memory
repository (Table)

SQL_Hint SQL Hint string

SQL_Cursor SQL cursor

SQL_Check_Exist SQL check

SQL_File_Type SQL file type

SQL_Array_Size SQL array size

SQL_Owner SQL owner

SQL_Position SQL position

SQL_Position_Key SQL position key

SQL_File SQL file

Cache_Strg Cache strategy

Keyword Produces
Reference Guide 1316

Column Repository

Sub-section delimiter: Fields_Table

Keyword Optional &
Special
Parameters

Produces

Fld_Idx Column (Fields)
repository Index

Fld_Name Column (Field) Name

Type Name Column (Field) Type
Number/Name

Attr Column (Field)
Attribute

Picture Column (Field)
Picture

Range Column (Field) Range

Fld_Hlp Name Help Screen Number/
Name

Fld_Prompt Name Prompt Help No./
Name

Fld_Sel_Prg_Nr Name Select Program No./
Name

Fld_Sel_Prg_Cl Column (Field) Prop’s
Sel Pgm Call

Fld_Modif Column (Field) Prop’s
- Modifiable

Fld_Trans Column (Field) Prop’s
- Translate

Fld_Stor_As Column (Field) Prop’s
- Stored as

Fld_Size Column (Field) Prop’s
- Size
Reference Guide 1317

Fld_Type File_Name_Siz
e

Database type

Fld_User_Type File_Name_Siz
e

Database user type

Fld_DB_Def Column (Field) Prop’s
- Column’s definition

Fld_DB_Name Column (Field) Prop’s
- Database Name

Fld_DB_Info Column (Field) Prop’s
- Database
Information.

Null_Allow Column (Field) Prop’s
- Allow Nulls

Null_Val Column (Field) Prop’s
- Calc Value

Null_Dsp Column (Field) Prop’s
- Displayed string

Null_Default Use Null as a default
(Yes, No)

Default Null default value

DB_Default File_Name_Siz
e

Database default
value

CTRL Number = type of
control

Ret_Act Return action

Rb_Cols No.of radio button
columns

Sld_Step Slider step

VISUAL_LineS No. of lines

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1318

Index Repository

Sub-section delimiter: Keys_Table

VISUAL_STYLE 3D or 2D

VISUAL_BORDER Thick, Thin, None

VISUAL_MULTI_Line Yes/No

VISUAL_COLOR Color number

VISUAL_FONT Font number

Keyword Produces

Key_Clustered Clustered Index (Yes, No)

Key_Constraint Index constraints

Key_Hint Index Hint string

Key_Idx Index (Keys) Table Index

Key_Name Index (Key) Name

Key_Type Index (Key) Type (Unique or
Non-unique)

Key_Dir Index (Key) Properties -
Direction

Key_Rng_Mod Index (Key) Properties -
Range Mode

Key_DB_Name Index (Field) Properties -
Data Base Name

Key_DB_Info Index Properties - Database
Information

Key_Vir_Real Index Properties - Real
variables

Seg_Cnt Index (Key) Segments
Counter

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1319

Index Segments Repository

Sub-section delimiter: Keys_Seg_Table

Foreign Key Repository

Section delimiter: FKeys_Table

Keyword Optional &
Special
Parameters

Produces

Seg_Idx Index (Key)
Segments Table
Index

Seg_Fld Name Index (Key)
Segments Field
Index/Name

Seg_Size Index (Key)
Segment Size

Seg_Dir Index (Key)
Direction

Keyword Optional &
Special
Parameters

Produces

FKey_Idx Foreign Key
Table Index

FKey_Name Foreign Key
Name

R_Tab_Name Referenced Table
Name

R_Tab_Idx Referenced Table
Index

PKey_Name Public Key Name
Reference Guide 1320

Foreign Key Segment Repository

Section delimiter: FKeys_Seg_Table

Component Repository

PKey_idx Public Key Index

Keyword Optional &
Special
Parameters

Produces

FKey_Seg_Idx Foreign Key
Segment Table
Index

CTab_Col_Idx Current Table
Column Index

CTab_Col_Name Current Table
Column Name

RTab_Col_Idx Referenced Table
Column Index

RTab_Col_Name Referenced Table
Column Name

Keyword Optional &
Special
Parameters

Produces

Comp_Idx Component Table
Index

Comp_Name Component
Name

Comp_Folder Component
Folder

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1321

Component Models

Section delimiter: Comp_Models

Component Tables

Section delimiter: Comp_Tables

Component Programs

Section delimiter: Comp_Programs

Comp_Desc Component
Description

Keyword Optional &
Special
Parameters

Produces

Model_Idx Model Index

Model_Name Model Name

Model_Remark Model Remark

Keyword Optional &
Special
Parameters

Produces

Table_Idx Table Index

Table_Name Table Name

Table_Remark Table Remark

Keyword Optional &
Special
Parameters

Produces

Program_Idx Program Index

Program_Name Program Name

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1322

Component Helps

Section delimiter: Compo_Helps

Component Rights

Section delimiter: Comp_Rights

Component Events

Section delimiter: Comp_Events

Program_Remark Program Remark

Keyword Optional &
Special
Parameters

Produces

Help_Idx Help Index

Help_Name Help Name

Help_Remark Help Remark

Keyword Optional &
Special
Parameters

Produces

Rights_Idx Rights Index

Rights_Name Rights Name

Rights_Remark Rights Remark

Keyword Optional &
Special
Parameters

Produces

Events_Idx Events Index

Events_Name Events Name

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1323

Component Properties

Help Screen Repository

Section delimiter: Help_Screens

Events_Remark Events Remark

Keyword Optional &
Special
Parameters

Produces

Comp_ID Component
Identification

Appl_File Application File

Flat_MCF Flat MCF
Deployment

Revision Revision

Load_Imm Load
Immediately

Help_File Help File

Help_Key Help Key

Mci_File MCI File

Appl_Prefix Application Prefix

Color_File Color File

Color_YN Use Color File

Font_File Font File

Font_YN Use Font File

Keyword Produces

Hlp_Idx Repository
(Table) Index

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1324

Hlp_Name Help Screen
Name

Hlp_Folder Help folder

Hlp_Row Help Screen
row location on
screen

Hlp_Left Help Screen
column
location on
screen

Hlp_Height Help block
height (in
UOM)

Hlp_Width Help block
wideth (in
UOM)

Hlp_Clr Help Screen
color number

Hlp_Top Help block top
position (in
UOM)

Hlp_Win_Type Help type:
Internal/
Prompt/
Windows

Hlp_Win_File Windows Help
file name

Hlp_Win_Command Windows Help
command

Hlp_Win_Key Windows Help
key

Keyword Produces
Reference Guide 1325

Help Display Block

Sub-section delimiter: Help_Block

This sub-section reports the contents of the Help Screen.

Rights

Section delimiter: Rights

Hlp_Title_Bar Help has Title
Bar? Yes/No

Hlp_Sys_Menu Help has Sys
Menu? Yes/No

Hlp_Font Font number

Hlp_Win_Prompt Prompt line

Hlp_Frame_Type Frame type:
Thin/Thick/
None

Keyword Produces

Idx Repository (Table) Index

Name Right’s name

Folder Right’s folder

Key The Right’s Index (Key)

Public The Right’s Public Flag

Keyword Produces
Reference Guide 1326

Context Menus

Section delimiter: Context_Menus

Context Menu is a table-type section, refer to Documentation Report Sections
above. The way in which each line in the Context Menu repository is processed
depends on its sub-section type. These types are unique to the Menu
structure.

Entry Type 1: Program

Sub-section delimiter: POP_Prog

Keyword: Mnu_Prg_Nr

Optional parameter: Name

Produces the invoked program’s number or name.

Entry Type 2: Exit

Keyword Optional &
Special
Parameters

Produces

Idx Repository (Table)
Index

Menu_Type Menu Type

Menu_Name Name in Menu

Menu_Sh_Key Menu Short Index
(Key)

Menu_Hlp Name Menu Help Screen

Menu_Acc_Rght Menu Access Right

Menu_Level Name Menu Level and
Name

Menu_Cnt Menu entry counter
Reference Guide 1327

Sub-section delimiter: POP_Exit

Entry Type 3: System

Sub-section delimiter: POP_System

Keyword: Mnu_Act

Produces the action’s description.

Entry Type 4: Line

Sub-section delimiter: POP_Line

No special keywords.

Entry Type 5: Menu

Sub-section delimiter: POP_Menu

Keyword: Sub_Lines

Produces: number of sub-lines

Pulldown Menus

Section delimiter: Pulldown_Menus

Keyword Specifies

Mnu_OS_Cmd OS command to be executed

Mnu_Wait Wait for the started task?
Yes/No

Mnu_Show Show the started task? Yes/
No

Keyword Optional &
Special
Parameters

Produces

Idx Repository (Table)
Index

Menu_Type Menu Type
Reference Guide 1328

Pulldown Menu is a table-type section, refer to Documentation Report Sections
on page page 1309. The way in which each line in the Pulldown Menu
repository is processed depends on its sub-section type. These types are
unique to the Menu structure.

The sub-section definitions for Pulldown Menus can be found above in the
“Context Menus” section, with the “POP_” prefix replaced with “PDM_,” e.g.,
PDM_Prog instead of POP_Prog.

Menu_Name Name in Menu

Menu_Sh_Key Menu Short Index
(Key)

Menu_Hlp Name Menu Help Screen

Menu_Acc_Rght Menu Access Right

Menu_Pos_If_Lst Menu position if last
entry

Menu_level Name Menu Level and
Name

Menu_Cnt Menu entry counter

Menu_Prompt_Help Menu Prompt Help

Menu_Is_Pulldown Pulldown Menu

Menu_Tool_Image Menu Tool Image

Menu_Tool_Tip Menu Tool Tip

Menu_Tool_Group Menu Tool Group

Menu_Tool_Number Menu Tool Number

Menu_Checked Menu Checked

Menu_Visible Visible Menu

Menu_Enabled Enabled Menu

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1329

Application Properties

Section delimiter: CTL_Data

Keyword Optional &
Special
Parameters

Produces

Alpha_Nul_Def Alpha Null value as a
default (Yes, No)

Alpha_Def_Val Name_Size Alpha default value

Num_Nul_Def Numeric Null value
as a default (Yes, No)

Num_Def_Val Numeric default
value

Bool_Nul_Def Logical Null value as
a default (Yes, No)

Bool_Def_Val Logical default value

Date_Nul_Def Date Null value as a
default (Yes, No)

Date_Def_Val Date default value

Time_Nul_Def Time Null value as a
default (Yes, No)

Time_Def_Val Time default value

Memo_Nul_Def Memo Null value as a
default (Yes, No)

Memo_Def_Val Name_Size Memo default value

MVCS_Right_Ke
y

Name Force MVCS security
key

HTML_ Style_
File

File_Name_
Size

HTML Style file

Internet_Root File_Name_
Size

Internet
Development file root
Reference Guide 1330

The Application Data section has a sub-section for NULL values defaults.

Logo_Scr Name Help Screen used as
Logo Screen

Startup Application startup
mode (Toolkit,
Runtime)

Pr_Attr_File Application Print
Attributes repository
(file) names

Clr_Def_File Application Color
definition repository
(file)

Nul_Clc Application Null
Arithmetic

Pub_Rght_Key Public Rights Access
Index (Key)

Super_Key Super Right Index
(Key)

Appl_Key Application Access
Index (Key)

Fnt_Def_File Font Definition
repository (file)

Fore_St_End Yes/No Force Start/
End prog

Kbd_Map_File Keyboard mapping
repository (file)

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1331

NULL Value Defaults

Sub-section delimiter: Null_Data

Keyword Produces

Nul_Alpha_Val Null default value for Alpha
data type

Nul_Num_Val Null default value for Numeric
data type

Nul_Bool_Val Null default value for Boolean
data type

Nul_Date_Val Null default value for Date data
type

Nul_Time_Val Null default value for Time data
type

Nul_Memo_Val Null default value for Memo
data type

Nul_Alpha_Dsp Null display string for Alpha
data type

Nul _Num_Dsp Null display string for Numeric
data type

Nul_Bool_Dsp Null display string for Boolean
data type

Nul_Date_Dsp Null display string for Date data
type

Nul_Time_Dsp Null display string for Time
data type

Nul_Memo_Dsp Null display string for Memo
data type

Nul_BLOB_Dsp Null display string for BLOB
data type

Alpha_Def_Value Alpha Default Value

Num_Def_Value Numeric Default Value
Reference Guide 1332

Application Events

Sub-section delimiter: CTL_Events

Bool_Def_Value Boolean Default Value

Date_Def_Value Date Default Value

Time_Def_Value Time Default Value

Memo_Def_Value Memo Default Value

Keyword Optional &
Special
Parameters

Produces

Idx Repository (Table)
Index

Hot_Key Hot Key

Elaps_Time Elapsed Time

Nam_Exp Short, Long Expression number
returning the Elapsed
Time

Call Call type

Prog_Task Name Number/Name of the
called program

Parm_Cnt Parameter counter

Event_Cnt Events repository
(Table) entry counter

Action Action that triggers
event

Keyword Produces
Reference Guide 1333

Program Repository

Section delimiter: Program

Keyword Optional &
Special
Parameters

Produces

Prg Name Number/Name of the
current report Program

Prg_Folder Program Folder

Public Public_Name Public Name of the
Program

Task Name Level or Name of the
currently reported Task

Task_Id Name Name of the currently
reported Task (or of the
Task and its parent
tasks as specified in the
form
Program.Task_Parent1.
(...)
Task_ParentN.Task_Na
me

Upd_Date Date of the Last Update

Upd_Time Time of the Last Update

First_Prg Flag that indicates if the
currently reported
Program is the first (1 =
yes; 0 = no)

Last_Prg Flag that indicates if the
currently reported
Program is the last (1 =
yes; 0 = no)
Reference Guide 1334

Task Properties

Sub-section delimiter: Task_Properties

Batch_Tsk Returns 1 if task is
batch or 0 if task is
online

Keyword Optional &
Special
Parameters

Produces

Alo_Abort Allow Abort

Main_Display Short, Long

Task_Name Task Name

Main_File Name Number/Name of the
Main Table (File)

Key Name Number/Name of the
Sort Index (Key)

Key_Exp Short, Long Number of the
Expression that
returns the Index
(Key) Number

Tsk_Typ Task type (online,
batch)

Init_Mod Initial task mode

Ini_Mod_Exp Short, Long Number of the
Expression that
returns the initial
mode

Sel_Tab Short, Long Selection repository
(Table)

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1335

Res_Tsk Flag indicating
whether the Task is
resident (1=yes; 0 =
no)

Icon_Name Icon File Name

Task_Size Returns the size of
the task

Icon_Name Returns the Icon file
name

Popup_Menu Attached Popup
menu

Sql_Tsk Yes/No: Main table
(file) is SQL

Limit_To Row Limit expression

Trans_Mode Transaction Mode

Trans_Begin Transaction Begin

Lock_Strg Locking Strategy

Error_Strg Error Behavior
Strategy

Var By Variable

Exd_Tsk_Prop_Ret_V
al_Exp

Return value
expression

Exd_Tsk_Prop_Chunk
_Sz_Exp

Chunk size
expression

Exd_Tsk_Prop_Exit_U
rl

Exit URL

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1336

SQL Command

Sub-section delimiter: SQL_Cmd

SQL Command Input Parameter Table

Sub-section delimiter: SQL_Cmd_Inp_Prms

Cmd Optional &
Special
Parameters

Produces

Db_Name Database where SQL
command is
executed

Res_Tab Result repository
(table) of the SQL
Command

Cmd SQL command text

Inp_Prms_Cnt Input parameter
count

Out_Prms_Cnt Output parameter
count

Ret_Code Name Return code variable
identifier/name

Keyword Optional &
Special
Parameters

Produces

Parm_Idx Parameter repository
(table) index number

Parm_Var Name, File Variable number /
name used as an
input parameter /
table (file) to which
variable belongs
Reference Guide 1337

SQL Command Output Parameter Table

Sub_section delimiter: SQL_Cmd_Out_Prms

Range and Locate

Parm_Exp Short, Long Expression number
of text

Keyword Optional &
Special
Parameters

Produces

Parm_Idx Parameter repository
(table) index number

Parm_Var Name, File Variable number /
name used as an
input parameter /
table (file) to which
variable belongs

Parm_Exp Short, Long Expression number
of text

Keyword Optional &
Special
Parameters

Produces

Rng_Exp Range Expression

Rng_Ord Range Order

Loc_Exp Locate Expression

Loc_Ord Locate Order

Pos_Exp Position

Usage Usage

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1338

SQL Where Clause

Sub-section delimiter: Where_Clause

Task Control

Sub-section delimiter: Task_Control

SQL_Exp Magic SQL
Expression

DB_SQL DB SQL

Keyword Optional &
Special
Parameters

Produces

Where_Clause SQL Where Clause

Keyword Optional &
Special
Parameters

Produces

Opn_Tsk_Win Short, Long Open Task Window

Clos_Tsk_Win Short, Long Close Task Window

Fg_Win Short, Long Foreground Window

Ref_Win Short, Long Refresh Task Window

Flip_Fld Short, Long Flip Record (Field) on
Input

Cyl_Rec Short, Long Cycle Record Main

Conf_Upd Short, Long Confirm Update

Loc_Exp Short, Long Locate Expression
Number

Loc_Ord Locate Order

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1339

Rng_Exp Short, Long Range Expression

Rng_Ord Range Order

End_Tsk Short, Long End Task

End_Chk End Check

For_Rec_Suf Short, Long Force Row (Record)
Suffix

For_Rec_Del Short, Long Force Row (Record)
Delete

Form_Recs Form Row (Records)

Lock_Strg Locking Strategy

Skip_Lock On Locked Row
(Record)

Skip_Fail On Failed Row
(Record) Access

Alo_Opt 3, Short, Long Allow Tasks

Alo_Mod 3, Short, Long Allow modify

Alo_Cre 3, Short, Long Allow create

Alo_Del 3, Short, Long Allow delete

Alo_Qur 3, Short, Long Allow query

Alo_Loc 3, Short, Long Allow locate

Alo_Rng 3, Short, Long Allow range

Alo_Key_Ch 3, Short, Long Allow key change

Alo_Sort 3, Short, Long Allow sorting

Alo_IO 3, Short, Long Allow Input/Output
files

Alo_Rpr 3, Short, Long Allow reports

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1340

Local Variable Repository

Sub-section delimiter: Virtual_Fields

Alo_Kopt 3, Short, Long Allow key
optimization (Yes,
No)

Alo_Qlct 3, Short, Long Allow locate query
(Yes, No)

Cache_Strg Cache Strategy

Keyword Optional &
Special
Parameters

Produces

Fld_Idx Repository (Table)
Index

Fld_Name Column (Field)
Name

Line Line

Prg Program

Task Task

Type Column (Field)
Type

Attr Column (Field)
Attribute

Picture Column (Field)
Picture

Range Column (Field)
Range

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1341

V_Fld_Hlp Name Column (Field)
Properties - Help
Screen Number

V_Fld_Prmt Name Prompt Help
Number/Name

V_Fld_Sel_Prg_
Nr

Name Select Program
Number/Name

V_Fld_Sel_Prg_
Cl

Select Program
Call

Null_Allow Value of the Allow
Nulls Parameter

Null_Val Null Value for
Calculation

Null_Dsp Null Display String

Null_Allow Allow Null values

Null_Val Calculated Null
value

Null_Dsp Displayed Null
value

Null_Default Null as a default
value (Yes, No)

Default Null default value

Ret_Act Return Action

SLD_Step

Translate Data native
translation

Visual_Line No. lines

Visual_Cols No. columns

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1342

DB Tables Repository

Sub-section delimiter: DB_Files

Visual_Style 3D or 2D

Visual_Border Thick, Thin, None

Visual_Goin Yes/No

Visual_Multi_Lin
e

Yes/No

Visual_Color Color no.

Visual_Font Font no.

CTRL No. representing
control

Keyword Optional &
Special
Parameters

Produces

Idx Table Index

File Name File Number/Name

Acss Access Method

Share Share Task

Open Open Task

Nam_exp Short, Long Number of the
Expression that
returns the filename

Cache_Exp DB file cache size
expression

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1343

I/O File Repository

Sub-section delimiter: IO_Files

Keyword Optional &
Special
Parameters

Produces

Idx Repository (Table)
Index

Name Table (File) Name

Media type of Media

Page type of Paper

Header Header

Footer Footer

Copies Number of Copies

Expcopies

Orient Page Orientation

Prn Printer Name

Acss Access Method

Frmt I/O Format

Nam_Exp Short, Long Number of the
Expression that
returns the
tablename

Rows Number of rows

Pdlg Open a printer dialog
when printing with a
graphic printer? Yes/
No

Tmpl_Nam Template name

Tmpl_Nam_Exp Shrt, Long Template Name
expressions
Reference Guide 1344

Sort Repository

Sub-section delimiter: Sort_Table

Task Event Repository

Sub-section delimiter: Events_Table

Prefix Token prefix

Suffix Token suffix

Keyword Optional &
Special
Parameters

Produces

Idx Repository (Table)
Index

Var Name Variable Number/
Name

Size Variable size

Dir Sort Direction
column

Keyword Optional &
Special
Parameters

Produces

Idx Repository (Table)
Index

Hot_Key Hot Key

Elaps_Time Elapsed Time

Nam_exp Short, Long Expression
number returning
the Elapsed Time

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1345

Task Event Parameter Repository

Sub-section delimiter: Event_Parms

This repository contains the parameters passed to the called Program / Task.

Scope Event Scope (Task
or Structure)

Call Call type

Prog_Task Name Number/Name of
the called
program

Lock Event Lock
parameter

Parm_Cnt Parameter counter

Event_Cnt Events repository
(Table) entry
counter

Action Action that
triggers event

Exd_Evnt_Desc Event description

Exd_Evnt_Type Event type

Exd_Evnt_Trigger Event trigger

Exd_Evnt_Force_Exit Event force exit

Keyword Optional &
Special
Parameters

Produces

Parm_Idx Parameter repository
(Table) Index
Number

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1346

Expression Rules Repository

Sub-section delimiter: Exp_Table

The Expressions Table combines the Program Variable (fields) Table and the
Program Expressions Table.

Parm_Var Name, File Variable Number/
Name used as a
parameter/table to
which Variable
belongs

Parm_Exp Short, Long Expression Number

Keyword Optional &
Special
Parameter
s

Produces

Idx Repository (Table)
Index

Fld Name, File Column (Field)
Number/Name/File

Exp Short, Long Expression number /
Short or Long
description

Exp_Cnt Number of
Expressions in the
repository

Fld_Cnt Number of Columns
in the Repository
(Table)

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1347

Form Repository

Sub-section delimiter: Forms_Table

This section reports the following Form repository information:

• Display Block information

• The location of columns in each form in a Form repository sub-section

• The layout of forms belonging to a particular class

The Form repository documentation display depends on whether the program
I/O is routed only to the interactive window or to other output devices as well.
eDeveloper reserves Class 0 for the interactive window. A program can also
have forms that are used for output reports or files; each corresponding
output device is allocated a unique non-zero class number. For each particular
report on a given output device, various report sections can be processed by
different tasks. The documentation generator will print the report’s entire
Display Block contents at the lowest task level that outputs records to a non-
zero-class device. Display Block parameters, however, are displayed at each
task level that outputs records for a particular report:

• When the Display Block class is 0, corresponding to the interactive window,
the Display Block parameters are reported in a one-entry table, and the
Display Block contents are reported immediately afterwards. The value
returned by the Disp_Area keyword is 1.

• When the Display Block class is non-zero, and a lower level task also has a
Display Block of the same class, then the Display Block parameters are
printed in a one-entry table, but the Display Block contents are not shown
at the present task level. The value returned by the Disp_Area keyword is
0.

• When there is more than one Display Block whose class is non-zero, and no
lower level task has a Display Block of the same class, all the Display
Blocks of the same class are reported in one Form repository. Their
Reference Guide 1348

combined Display Block contents appear immediately after the table. The
value returned by the Disp_Area keyword is 1.

Keyword Optional &
Special
Parameters

Produces

Idx Form repository (Table)
Index

Dsp_Blk Display Block Title
Class Block class
Area Block area type
Rows Block height
Cols Block width
Color Block color
Hlp Name Assigned Help Screen

Number/Name
Disp_Area Flag indicating whether the

contents of the Display
Block are reported right
after the current Display
Block record or in a lower
level task

First_Dsp_Blk Whether the record of the
currently reported Form is
the first

Last_Dsp_Blk Whether the record of the
currently reported Form is
the last

Uom_Type Unit of measurement
Vert_Factor Vertical factor
Hor_Factor Horizontal factor
Show_Grid Show form’s grid? Yes/No
Reference Guide 1349

Grid_X Size of grid X
Grid_Y Size of grid Y
Interface_Type GUI/Text based/HTML

Forms and
Documents, and Java forms

Att_Txt_Form Name Index/name of attached
text form

Is_Child Form is child? Yes/No
Title_Bar Form has Title bar? Yes/No
Title_Bar_Exp Short, Long Form has Title bar -

expression
Sys_Menu Form has Sys menu? Yes/

No
Min_Button Form has Min button? Yes/

No
Max_Button Form has Max button? Yes/

No
Use_Best_Plt Form uses Best palette
Font Font number
Frame_Type Frame type: Thick/Thin/

None
Frame_Left Frame left position (in

UOM)
Frame_Top Frame top position (in

UOM)
Frame_Width Frame width (in UOM)
Frame_Height Frame height (in UOM)

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1350

Frame_Left_Exp Short, Long Frame left position -
expression

Frame_Top_Exp Short, Long Frame top position -
expression

Frame_Width_Exp Short, Long Frame width - expression
Frame_Height_Exp Short, Long Frame height - expression
Form_Placement_Left 0-100 percent
Form_Placement_Top 0-100 percent
Form_Placement_Wid
th

0-100 percent

Form_Placement_Hei
ght

0-100 percent

Hyper_Lnk Form hyperlink
Hyper_Lnk_Type Form hyperlink type
Magic_App eDeveloper Application

form name
Public Public_Name_Len eDeveloper Hyperlink

form public name
Param eDeveloper Application

form parameter names
URL Hyperlink URL
URL_Exp Shrt, Long Hyperlink URL Form

Expressions
DST_Frame Name_Size Hyperlink forms

destination frame
Ctrl_Name Name_Size Hyperlink forms control

name
Cntxt_Vars Context variables

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1351

Use_Cookies Use Cookies
Domain_Restr Domain restriction
Expr_Date_Exp Shrt, Long Expiration date expression
Expr_Time_Exp Shrt, Long Expiration time expression
Secured Secured Cookies
Wallpaper File_Name_Size Wallpaper file name
Wallpaper_Exp Shrt, Long Wallpaper file name

expression
Submit_Form Submit form (Yes, No)
Img_Border_Val Defines a border value for

an image control
Img_Border_Exp Determines an expression

for an image control border
value.

Color_Exp Color number expression
Ctrl_Hyper_Lnk Controls hyperlink
Ctrl_Hyper_Lnk_Typ
e

Controls hyperlink type

Ctrl_Magic_App eDeveloper Application
control name

Ctrl_Public Public_Name_Len Hyperlink eDeveloper
public program

Ctrl_Parm eDeveloper Hyperlink
Control Parameters

Ctrl_URL Hyperlink URL
Ctrl_URL_Exp Shrt, Long Hyperlink URL expression

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1352

Ctrl_DST_Frame Name_Size Hyperlink Destination
frame

Ctrl_Ctrl_Name Name_Size Hyperlink control name
Stable_Rows Static Table rows
Stable_Columns Static Table Columns
Stable_Border Static Table border width
Stable_Spacing Static Table cell spacing
Stable_Padding Static Table cell padding
Follow_Text Follow text formatting
Hspace Horizontal spacing
Vspace Vertical spacing
Text_Type Text type
Indent Indent level
Int_Attr Internal HTML Attribute
Int_Attr_Exp Internal HTML expression
Is_Int_Attr_Exp Is Internal HTML Attribute

expression
Ext_Attr External HTML attribute
Ext_Attr_Exp External HTML Attribute

expression
Is_Ext_Attr_Exp Is External HTML

Attribute expression
Inc_HTML_File Include an external Head

file
Inc_HTML_Exp Include a Head file

expression

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1353

Form Display Block

Sub-section delimiter: Form_Block

This sub-section reports the contents of the Form Display Block.

Field Location Repository

Sub-section delimiter: Flds_Loc_Table

For each Display Block in the Form repository, this sub-section creates a
repository of field locations.

Hidden_Var Hidden variable

Para_Align Paragraph alignment

Fixed_Width Width property

Alt_Text Alternate text property

DSP_Type Display type

Keyword Optional &
Special
Parameters

Produces

Model Model settings for
field locations

Idx Repository (Table)
Index

Fld Name, File* Column (Field) Name

Exp Short, Long Number of the
Expression whose
result is displayed

Attr Column (Field)
Attribute

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1354

Picture Column (Field)
Picture

Pic_Exp Short, Long Number of the
Expression that
returns the Column
(Field) Picture

Top Column (Field) row
location

Left Variable (Field)
column location

Height Column (Field) width

Width Column (Field)
height

Allow_Inp Short, Long Input allowed

Must_Inp Short, Long Input required

Color Column (Field) Color

Color_Exp Short, Long Number of the
Expression that
returns the Field
Color

Exp_Win Name Number/Title of the
Form for the
expansion window

Hlp Name Number/Title of the
assigned Help screen

Prompt Name Number/Title of the
assigned Prompt
Help screen

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1355

Sel_Prg_Nr Name Select Program
Number/Name

Sel_Prg_Cl Called Program
method

Multi_Lin_Edt Is Edit control a
multi-line control?
Yes/No

Visible Control visible? Yes/
No

Enable Control enabled?
Yes/No

Font Font number

Ver_Align Vertical alignment:
Top/Center/Bottom

Hor_Align Horizontal
alignment: Left/
Center/Right

Style Control style: 2D/3D-
raised/3D-sunken

Password Is Edit control
password protected?
Yes/No

Img_Button Is Push button an
image? Yes/No

Border_Style Border: Thin/Thick/
None

Is_Hor_Sld Is slider horizontal?
Yes/No

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1356

Choice_Rng No. of choices in
Radio button

NW_Se_Line Is Static control a
line from NW to SE?
Yes/No

Ne_Sw_Line Is Static control a
line from NE to SW?
Yes/No

Hor_Line Is Static control a
horizontal line? Yes/
No

Ver_Line Is Static control a
vertical line? Yes/No

Rect Is Static control a
rectangle? Yes/No

Round_Rect Is Static control a
round rectangle?
Yes/No

Ellipse Is Static control an
ellipse? Yes/No

Def_Img_Name Image file name (for
Image control and
Image button)

Img_Style Image style: Tiled/
Copied/Scaled...

Top_Exp Control top position-
expression

Left_Exp Control left position-
expression

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1357

Height_Exp Control height -
expression

Width_Exp Control width -
expression

Text Text attached to the
control

Combo_Lines Number of lines in
combo box

Fix_Size_Table Set table size

Title_On_Every_Pa
ge

Places a title on
every page

Font_Exp Font expression

Range_Exp Range expression for
choice

Scroll_Bar Table scroll bar

Line_Divider Table - raw divider

Vert_Scroll MLE vertical scroll

Horz_Scroll MLE horizontal scroll

Allow_CR MLE allow CR in data

Allow_MIQ Allow modify in query

Placement_Left 0-100 percent

Placement_Top 0-100 percent

Placement_Width 0-100 percent

Placement_Height 0-100 percent

Img_Effect Image effect

Tab_Side Location of tabs

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1358

Choice_Cols Radio button no. of
cols.

OLE2_Class OLE class

OLE2_Display_As Display OLE as...

OLE2_Store_As OLE Content...

OLE2_Auto_Link Yes/No

OLE2_Frame_Type Thick, Thin, None

Name Field name

Ret_Act Return action

Sld_Step Slider step

Ctrl Returns the name of
the control. If in IF
statement, returns
the value:
10- Edit control
20- Push control
30- Choice control
31- Radio button
control
32- Combo box
control
33- Tab control
34- List control
40- Check control
50- Image control
60- Static control
70- Slider control
80- Table control
90- OLE control
100- Line control

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1359

* File is a special parameter indicating the file to which the Variable belongs.

Level Definition Repository

Sub-section delimiter: Level_Def_Table

This template section, which documents the Task Flow repositories, reports the
Task’s Break Level Definition repository and includes a sub-section for each
level’s Operations repository.

* When the current Level is Record or Task, Var displays nothing.

Keyword Optional &
Special
Parameters

Produces

Idx Level Definition
repository Index

Var Name Change Level

Variable Index*

Pref Prefix Operation
Count

Main Main Operation
Count

Suff Suffix Operation
Count

Trans Transaction Value

Abort Transaction Error
Value

Level_Cnt Number of entries in
the Break Level
Operations repository
Reference Guide 1360

Operation Repository

Sub-section delimiter: Oper_Table

The Operations repository sub-section is a repository-type section, see
Documentation Report Sections on page page 1309 above. Each repository
entry is handled as one of the sub-sections unique to the Operations
repository:

Operation 0: Remark

Sub-section delimiter: OP_Remark

Keyword: Remark

Produces: remark contents

Operation 1: Select

Keyword Optional &
Special
Parameters

Produces

Curr_Flow Current flow -
current Change Level
(e.g. Record Main)

Idx Operation repository
Index

Oper_Cnt Name Operation Number/
Name

Flow_Dir Flow direction

Flow_Mode Flow mode

Cond_Exp Short, Long Operation Condition

Rec_Main Flag indicating
whether the current
Task Flow is Record
Main or not
Reference Guide 1361

Sub-section delimiter: OP_Select

Operation 2: Verify

Sub-section delimiter: OP_Verify

Keyword Optional &
Special
Parameter
s

Produces

Fld_Type Column (Field) Type:
Real/Virtual

Fld Name Table (File)

Ini_Exp Short, Long Initial Value
Expression

Rng_Min_Exp Short, Long Range Min.
Expression

Rng_Max_Exp Short, Long Range Min.
Expression

Loc_Min_Exp Short, Long Locate Min.
Expression

Loc_Max_Exp Short, Long Locate Min.
Expression

Keyword Optional &
Special
Parameters

Produces

Verif_Exp Short, Long Expression to be
verified

Verif_Mod Verification mode
Reference Guide 1362

Operation 3: Link

Sub-section delimiter: OP_Link

Operation 4: End Link

Sub-section delimiter: OP_End_Link

No special keywords.

Operation 5: Block

Sub-section delimiter: OP_Block

Keyword: Exd_Op_Block_Type (Block type)

Operation 6: End Block

Sub-section delimiter: OP_End_Block

No special keywords.

Operation 7: Call

Keyword Optional &
Special
Parameter
s

Produces

Link_Type Link Type

File Name Number/Name of the
Linked Table (File)

Key Name Number/Name of the
Linked Table Index
(File Key)

File_Dir Table (File) Access
direction

Ret_Var Variable receiving the
return code
Reference Guide 1363

Sub-section delimiter: OP_Call

Keyword Optional &
Special
Parameters

Produces

Call_Type Call type (Task or
Program)

Prog_Task Name Number/Name of the
called Program/Task
(if the operation calls
a Program or a Task)

Call_Exp Short, Long Expression Number/
Name used when the
operation calls by an
Expression (for “Call
By Expression” or
“User Exit”)

Parm Number of
Parameters passed

Form Name Form Number/Name

Ser_Priority_Loc
k

Call_Lock Lock Value for the
Call Operation

Wait Wait (Yes, No)

Service Name_Size Service name

Prog_Name Program name

Res_File File_Name_Si
ze

Result file name

Ret_Code Name Return Code variable
Reference Guide 1364

Parameters List

Sub-section delimiter: Parm_List

Operation 8: Evaluate Exp

Sub-section delimiter: OP_Eval_Exp

Operation 9: Update Operation

Keyword Optional &
Special
Parameters

Produces

Parm_Idx Parameter repository
(table) Index
Number

Parm_Var Name Number/Name of
Variable used as a
Parameter/Row (File)
to which Variable
belongs

Parm_Exp Short, Long Expression Number

Parm_Nam Parameter Name

Keyword Optional &
Special
Parameters

Produces

Eval_Exp Short, Long Evaluated Expression

Ret_Var Name, Table
(File)

Number/Name/Table
(File) of the return
code.
Reference Guide 1365

Sub-section delimiter: OP_Update_Var

Operation 10: Output Form, Output Merge

Sub-section delimiter: OP_Out_Form or OP_Out_Merge

Keyword Optional &
Special
Parameters

Produces

Fld Name, Table
(File)

Number/
Name/Table
(File) of the
Updated
Column
(Field)

Upd_Exp Short, Long Expression
used for
updating

Upd_How Evaluation
mode

Upd_Undo Undo
operation

Keyword Optional &
Special
Parameters

Produces

Form Name Form Number/Name

IO_File Name I/O File Number/
Name

IO_Page_Form Output page format

Param_Idx Output Merge
parameter name

Parm_Tag Name, File Output Merge
parameter tag
Reference Guide 1366

Operation 11: Java/Text Form

Sub-section delimiter: OP_In_Form

Operation 12: Browse on Exp

Parm_Var Name, File Output Merge
parameter variable

Parm_Exp Short, Long Output Merge
parameter
expression

Picture Picture

Pic_Exp Picture Expression

Keyword Optional &
Special
Parameters

Produces

Form Name Form Number/
Name

IO_File Name I/O File Number/
Name

IO_Dlm Input File
Delimiter type

IO_Dlm_Ch Delimiter
character

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1367

Sub-section delimiter: OP_Browse

Operation 13: Exit on Exp

Sub-section delimiter: OP_Exit_on_Exp

Operation 14: Raise Event

Sub-section delimiter: Op_RaiseEvent

Keyword Optional &
Special
Parameters

Produces

Brow_Exp Short, Long Tablename
(Filename)
Expression

Brow_Edt Edit-scan mode

Form Name Form Number/Name

Keyword Optional &
Special
Parameters

Produces

Ex_Prog_exp Short, Long External program
expression

Ex_Wait Wait for the started
task? Yes/No

Ex_Show Show the started
task? Yes/No

Ret_Var Name, File Number/Name/File of
the return code

Keyword Optional &
Special
Parameters

Produces

Name Name

Wait Wait
Reference Guide 1368

Section Parameters

Top - skip to a new page when starting the section and print the section
header.

For sections that report the contents of Display Blocks:

Frame - the type of frame that surrounds the Display Block contents; the
parameter syntax is:

Frame = T

where T is the frame type, chosen from the valid eDeveloper Display Block
frame types.When a special character is used for the frame, the parameter
syntax is:

Frame = Oc

where O is the letter, standing for “other,” and c is the character to be used for
the frame.

Offset - the offset in the output line containing the Display Block contents.

Example:

#Section Help_Block, Frame= T, Offset=3

Special Global Keywords

• Page - the current page number

Arg Arguments

Cond_exp Conditional
Expression

Flow_Mode Flow Mode

Flow_Dir Flow Direction

Dest_CTX_Name Destination context.

Keyword Optional &
Special
Parameters

Produces
Reference Guide 1369

• Line - the current line number

• Date - the current date

• Time - the current time

• Owner - the system owner

• Version - current eDeveloper version number

• App - the application number

App has the following special parameters:

Parameter Meaning

Name show the application name instead of its
number

Path show the application’s file prefix, including the
full path

Pref the application’s two-character file prefix

Ctl_File the name of the application’s control file

Rep_File the name of the application’s RPR file

DBMS the application’s DBMS type

D_B the application’s database
Reference Guide 1370

 Simple Network
Management Protocol 21

he Simple Network Management Protocol (SNMP) governs network
management and monitors network devices and their functions.
Applications and various eDeveloper modules can send trap messages to

a pre-configured Network Management Station (NMS), also referred to as an
SNMP monitor, which lets the system administrator query and control an
application or eDeveloper module when alarms, failures, or other exceptional
events occur.

In this chapter:

• SNMP Implementation

• Network Management Station Query from eDeveloper

• NMS Management Options

• Installation and Configuration

T

Reference Guide 1371

SNMP Implementation
The Simple Network Management Protocol (SNMP) can only be implemented
for eDeveloper if the SNMP agent is installed on the operating system.

The eDeveloper SNMP extension, the Mgsnmp.dll file, is placed in the
eDeveloper root during installation.

eDeveloper supplies two Management Information Base (MIB) files, Magic.mib
and Magic_trap.mib, located in the Magic Support directory. The MIB files are
compiled according to the Network Management Station (NMS) version
installed. It is recommended to copy the MIB files to the NMS server.

You can set various values for the SNMP parameters, defined in the Mgreq.ini
and Mgrb.ini files, to specify when the Magic Requester and Magic Requester
Broker send trap messages.

eDeveloper Requester Settings

The Mreq.ini settings below can be specified under the [SNMP] section.

EnableAgent = Y, N

This property determines whether the eDeveloper SNMP agent extension is
active. If EnableAgent = Yes, the NMS is enabled to monitor eDeveloper.

The EnableAgent setting is automatically set to Yes during installation only if
the eDeveloper SNMP extension is installed.

EnableTraps = Y, N

This property determines whether eDeveloper sends trap messages to the
SNMP monitor.

NMSAddress

You can enter the Host name or TCP/IP address of the server that has the NMS
installed.
Reference Guide 1372

Version = 1,2

You can specify the NMS version.

Community

Enter a community name. The community name acts as a password to the
NMS.

ReportStatusCode

You can select the error codes that are sent to the SNMP monitor. They can be
displayed as a list separated by commas, a range of values, or as both; for
example: 103,104,105, or 102-107,109. To monitor a full range of error
codes, you can enter 0-9999.

Although the error codes are negative values, they are displayed as positive
values to prevent confusion when the error codes are displayed as a range of
values.

Magic Request Broker Settings

The Mgrb.ini settings below can be set under the [SNMP] section.

AverageWaitTime = N seconds

You can enter the average time in seconds that a request waits for an available
enterprise server. If the average wait time exceeds the AverageWaitTime
value, an SNMP trap message is sent to the Network Management Station
(NMS).

AverageProcessTime = N seconds

You can enter the average time in seconds for a request to be processed in an
enterprise server. The threshold is checked for all registered enterprise servers
each time a request is sent. If the average process time exceeds the
AverageProcessTime value, a trap message is sent to the NMS.
Reference Guide 1373

DelayThresholdTraps = N in minutes

You can enter the time in minutes that a request of a specified type has to wait
between threshold traps to avoid flooding the Network Management Station
(NMS). The default value is one minute.

Environment Settings

The SNMP Database Connections Utilization Threshold environment setting, on
the External tab in the Environment dialog box, lets you enter a percentage
number that determines how many open connections are permitted for a
DBMS before eDeveloper sends a trap message.

For example, if the Maximum Connection property is set to 10 for a specified
DBMS and the SNMP Database Connections Utilization Threshold is set to 50,
eDeveloper sends a trap message to the NMS when 5 connections (50% of 10)
to the DBMS have been opened.

For more information, see the SNMP Database Connections Utilization
Threshold environment setting in Chapter 2, Settings.

SNMPNotify Function

This function lets the eDeveloper application send an application-defined trap
message to an NMS. For more information, see the SNMPNotify function in
Chapter 8, Expression Rules.

Other Traps

When an alarm or error occurs outside of the application development process,
a trap message is sent to the NMS.

Examples of the types of trap messages sent are:

• A thread crash or fatal error of eDeveloper or the eDeveloper gateway.

• Termination due to the license limit.
Reference Guide 1374

• The application cannot connect to a specified DBMS.

• Database connection threshold was exceeded.

• An enterprise server was stopped and started. The trap message contains
the address of the enterprise server.

• An enterprise server aborted its connection to the Magic request broker.

Network Management Station Query from
eDeveloper

eDeveloper SNMP implementation provides various query options for the
enterprise server and request broker from the NMS.

Enterprise Servers (QUE=RT)

When you define a QueryRTTable query, the NMS displays a list of query
options. Use the keywords in the table below to define the selected view:

Query Option MIB Node

1 Unique Identifier EntServerEntryIndex

2 Enterprise server’s host name EntServerHost

3 Enterprise server’s port
number

EntServerPort

4 Name of the opened
application

openedApplication

5 Enterprise server priority EntPriority

6 Running thread counter runningThreads

7 Peak thread count value peakThreads

8 Current context count value runningContexts

9 Peak context count value peakContexts

10 Number of requests served requestsServed
Reference Guide 1375

Requested Query (QUE=QUE)

When you define a QueryQueTable query, the NMS displays a list of pending
requests with the following information. Use the keywords in the table below
to define the selected view:

Loaded Query (QUE=LOAD)

When you define a QueryLoad query, the NMS returns the following statistical
information about the broker. Use the keywords in the table below to define
the selected view.

11 Number of execution errors executionErrors

Query Option MIB Node

1 Unique identifier EntServerQueEntryIndex

2 Application name application

3 User name userName

4 Priority number of the request priorityNum

5 Request identifier requestId

6 Client host name clientHostName

7 Client process identifier clientProcessId

8 Request submitting time requestSubmittingTime

Query Option MIB Node

1 Broker’s host address brokerHost

2 Broker’s port number brokerPort

3 Average wait time averageWaitTime

4 Total number of requests
submitted to the Magic
Request Broker

totalRequestsNumber

Query Option MIB Node
Reference Guide 1376

NMS Management Options
eDeveloper SNMP implementation provides various management options for
the enterprise servers and request broker from the NMS. Use the keywords in
the table below, which are in italics, to enter Set commands from the
eDeveloper Request command line.

5 Total number of pending
requests

pendingRequestsNumber

6 Total number of requests in
progress

inProgressRequestsNumber

7 Total number of completed
requests

completedRequestsNumber

8 Total number of failed requests failedRequestsNumber

Set Commands MIB Node

Stop enterprise server:
host/port
graceful

Due to the limitations of some Network
Management Station software that allow
for only one parameter, the following
syntax can be used for the Stop
enterprise server: host/port,T (T denotes
a graceful shutdown)

shutdownEntServerRequest
shutdownEntServer
graceful

Query Option MIB Node
Reference Guide 1377

Start enterprise server:
application to load
startup parameters

Due to the limitations of some Network
Management Station software that allow
for only one parameter, the following
syntax can be used for the Start
enterprise server: background,-
LoadMonitor

startEntServerRequest
exeEntryEntServer
startupParameters

Enterprise server priority:
enterprise server name
priority

The priority number must be between 1
(highest) to 5 as specified by the Load
Balancing Priority property.

Due to the limitations of some Network
Management Station software that allow
for only one parameter, the following
syntax can be used for the Enterprise
server priority: host/port,4 (priority
number)

priorityEntServerRequest
priorityEntServer
priority

Reset peak thread count server:
enterprise server name

resetPeakThreadCount
resetEntServerThreadCount

Reset peak context server:
enterprise server name

resetPeakContextCount
resetEntServerPeakContext
Count

Reset all number-of-requests:
served counters
enterprise server name

resetNumRequestServed
resetEntServerNumRequest
Served

Reset all number-of-execution:
error counters
enterprise server name

resetNumExecutionError
resetEntServerNumExecutio
nError

Set Commands MIB Node
Reference Guide 1378

Installation and Configuration
For eDeveloper to be SNMP-enabled, SNMP must be started from the operating
system. When the operating system is SNMP-enabled, eDeveloper
automatically installs the SNMP component in the typical installation. For

example, in Microsoft® Windows®, the Microsoft® SNMP Agent service must
be started.

When the SNMP option has been selected, the installation process

automatically sets the EnableAgent setting to Yes. In Microsoft® Windows®,
the SNMP service is restarted so that the changes to the eDeveloper
requesters can take effect immediately.

Reset all:
enterprise server name

resetAllCounters
resetEntServerAllCounters

i When the value of the host or port parameter is an asterisk (*), the set
command affects all running enterprise servers.

Set Commands MIB Node
Reference Guide 1379

Supported SNMP Agents

The supported SNMP agents are listed below.

• Windows® - Microsoft® SNMP Agent

• UNIX - Net-SNMP Agent

• iSeries - Native SNMP Agent

For each supported SNMP Agent, the following values should be configured:

• Security - The Community property should have Read and Write rights
specified.

• Traps - The Host Trap destination should be defined. Usually, these values
are the same as the values in the Mgreq.ini file.
Reference Guide 1380

J2EE Integration 22
agic eDeveloper allows you to generate Enterprise JavaBeans (EJBs).
Clients operating within a J2EE environment are able to view and
activate programs as EJB methods.

This chapter explains the process of creating an EJB using eDeveloper’s
Component Builder Utility, and how it connects with eDeveloper’s enterprise
server.

In this chapter:

• J2EE Terminology

• Component Builder

• Enterprise JavaBean

• eDeveloper Configuration and
Deployment

M

Reference Guide 1381

Terminology
The following is a list of standard terminology used in relation to the J2EE
environment:

J2EE Java 2 Enterprise Edition
An architecture for developing,
deploying, and executing applications in
a distributed environment.

EJB Enterprise JavaBeans
These are server components written in
Java that are accessible from various
types of clients in a J2EE environment.

JAR Java Archive file
This file is used to store EJBs, clients
and applications. Jar is the file name
extension.

Container A container is a runtime environment
that controls enterprise beans and
provides them with system-level
services. EJBs run within containers.

DD Deployment Descriptor
An .xml file that describes the
component.
Reference Guide 1382

The Component Builder
eDeveloper lets you create EJB components using your existing programs. The
Component Builder has enhanced functionality, which generates and packages
the modules you want to deploy in a J2EE environment, and saves them in the
form of a .jar file. This file will contain all the required modules including .class
files & DDs.

Use of the eDeveloper broker is optional. If you make the broker active, it can
be used to query the status of the enterprise servers, to load new enterprise
servers, and to terminate existing enterprise servers.

Defining the EJB

When you create an EJB using the component builder you can only select
programs. Models, tables and other objects that you can normally include

Stateless
session bean

The container selects, and creates if
needed, an instance of the EJB for each
method invocation.

Data inside the EJB is maintained across
method invocations, for example a
connection to an external source.

However, a client using the EJB will not
get the same instance for each method
invocation, therefore the client cannot
maintain any personal state across
method invocations.

No context will be maintained inside the
enterprise server across method
invocations. A new context will be
created for the duration of each request,
as for any other request which is not a
browser-based program
Reference Guide 1383

when building a component are not available. These objects are only available
internally, when a program is invoked.

Naming

There are important naming issues to be aware of when creating the EJB
component.

• The component’s name is used as the class name.
Note: The component name is not used to locate the EJB. The JNDI
(Java Naming and Directory Interface) name, which is set during
deployment, is used for this purpose.

• Each program’s public name is used as the method name.

• For each parameter, the parameter’s name in the selected program
is used as the parameter’s name in the Java code.
Reference Guide 1384

The Component Builder validates the names of components, programs, and
parameters.

• If the names are invalid, the component names and programs must be
modified in the original application in which the Component Builder was
activated.

• Names of invalid parameters are modified while the .jar file is being
generated. For example, spaces are replaced with an underscore.

Returned values

Task Returned Value

• The task’s Returned Value, which is specified in the Task Properties dialog
box, is used as the method’s returned value.

• An IO Requester type is disregarded and will not be returned to the EJB.

Compound returned values

• Compound returned values include arrays and structures. They are
available by using user-defined XMLs, whose content is recognized both by
the activated eDeveloper program and the client invoking the EJB.

• The enterprise server passes the XML to the EJB, which in turn passes it to
the client as it is, without parsing the XML.

• You can prepare the XML file either using alpha/memo fields or BLOB. With
the BLOB method you work with a text file and then load it using the
File2Blb function.

EJB Component Builder Screen

The EJB Interface Builder enables an eDeveloper application to be exposed as
an EJB in a J2EE enterprise server.
Reference Guide 1385

Click the EJB Interface from the Components menu to create a Jar file. The EJB
repository opens, as shown in Figure 22-1.

In the lower half of the screen you select which programs to include by clicking
Select Program. You can zoom from the Arguments/Ret. value column to open
the Arguments dialog box as shown in 22-2. All the Select Parameter fields of
the selected program are displayed in the table. They are later generated into
the Java code.

Figure 22-1 The EJB Component Builder Screen
Reference Guide 1386

The Argument name is taken from the parameters table of the selected
program. The Java Type is calculated according to the field’s picture defined in
the selected program.

A Returned Value can only be an expression. The Expression column displays
the textual image of the expression. The Java Type list only displays the
allowed types according to the attribute or picture definitions defined in the
program field or expression.

The Precision slider is only visible for expressions that can return a numeric
value. The Java Type list and Expression field will be unavailable for numeric
arguments and for programs without a returned value.

Figure 22-2 Arguments Dialog Box
Reference Guide 1387

Comparing eDeveloper and Java types

The following table shows the different eDeveloper types with the
corresponding Java types:

• You can choose Java types for the parameters and returned values that are
either BLOB or Alpha fields, or expressions that can return BLOB values
such as File2Blb or Alpha fields (Str).

• To maintain accuracy, Numeric parameters must properly map the
parameters of the activated program. The Component Builder assigns the
Java type based on the parameter’s attribute and picture, using the same
rules used to assign a storage type to fields of database tables. You cannot
choose another type.

• For a Numeric task’s returned value, i.e. an expression returning a
numeric value, the Component Builder does let you choose the Java type.
If the selected type is Float or Double, you have to specify the picture.

The default type is Double with a Precision of 2. If Precision is 0, the Java
Type changes to Long.

EJB Settings

From the Options menu, click Settings to select from the following J2EE
enterprise servers:

• BEA WebLogic Version 5 or 6

• Sun Reference Version 1.3

eDeveloper
type

Java type

Alpha String / StringBuffer

BLOB String / StringBuffer / byte

Numeric Byte / short / long / float / double

Logical Boolean

Date/Time String
Reference Guide 1388

• JBOSS

• Oracle Enterprise Server Version 9i

• Sun ONE Enterprise Server Version 7

• Fujitsu Interstage Enterprise Server Version 5

• WebSphere

Creating the JAR file

The process of generating the .jar file is similar to that of creating a regular
Magic Component Interface file. From the Options menu, you can choose
“Build Jar File” instead of the regular “Build Interface File” option.

The Build Jar File dialog box is displayed, prompting you for input, if any or
all of the following cannot be found:

• Intermediate files location
Input is only required if the TEMP environment variable is not found.

• J2EE Home Directory
Input is only required if the J2EE_HOME environment variable is not found.

• Java Home Directory
Input is only required if the JAVA_HOME environment variable is not
found.

You can either type or zoom to enter the correct path.

When the JAR generation process is complete the Component Builder validates
that the JAR has been created successfully and displays a message with the
following information:

Bean XYZ was packed into path\XYZ.jar, and is ready for deployment
Reference Guide 1389

The message also contains a View Script and a View Log button.

EJB Configuration
The Magic Component Builder creates a Deployment Descriptor (DD) file that
describes the newly created EJB and packs it into the JAR file. This file contains
the information the bean needs to operate. The two types of settings are
Environment and Resources.

EJB Environment Definitions

Magicenterprise servers

This setting, in the form of a string, indicates the enterprise servers with which
the EJB can connect. Each name, delimited by ‘,’ references a URL resource, as
described in the Resources section on page page 1391.

Syntax: MAGICURL1[,MAGICURL2..]

Default: MAGICURL1

MagicApplication

This setting, in the form of a string, indicates the name of the eDeveloper
application with which the EJB should connect.

Syntax: (name of the application)

Communication Timeout

This setting, which is numeric, determines the time, in seconds, to allow for
connecting, sending or receiving requests between the EJB & the enterprise

i You must install JDK Version 1.3 or higher to be able to
create the JAR file. If you are creating a JAR file for either
WebLogic, WebSphere or Sun, you need to have these
products installed on your machine.
Reference Guide 1390

server. The Timeout setting does not include the time spent in executing the
request.

Syntax: nnn (<=0 is handled using the default value)

Default: 10

Resources

MAGICURL1

This setting represent a URL of the enterprise server. MAGICURL1 represents a
single resource. You can however use additional resources if you allowed for
this in the eDeveloper enterprise servers setting.

Default: http://localhost:1500

eDeveloper Configuration and Deployment
The EJB will only be able to work when interacting with an enterprise server
that supports J2EE. This section outlines the different factors impacting on the
EJB’s interaction with the enterprise server.

Environment

An EJB created by eDeveloper can only be used with an eDeveloper enterprise
server.

eDeveloper clients executing remote calls will not be allowed to reference
J2EE-type servers from the services table. If an EJB does attempt to reference
another server during checker and remote call activation, the following error
message will be displayed:

J2EE type servers cannot be used to send remote calls
Reference Guide 1391

Runtime
The EJB cannot provide the enterprise server with user information such as
username and password. This information can only be provided locally in the
enterprise server. You can do this in the Magic.ini file. You can also use
command line parameters, such as the following example:

mgrntw.exe –User= -Password=
Reference Guide 1392

Generic Messaging Layer (mgrqgnrc.dll)

The Settings and Behavior settings of the Generic Messaging Layer’s
enterprise server layer must be defined to ensure that the eDeveloper
enterprise server can accept requests from EJBs. No changes are required in
the engine modules.

Environment (Mgreq.ini)

The definitions for the Environemnt property relate to the use of keywords.

Gateway=5

When you set Gateway to 5 this tells the enterprise server that the gateway
is J2EE. This has the following consequences:

• The Generic Messaging Layer is signalled that EJB is supported.

• No new gateway module will be loaded, as with MQ/DQ/Corba.

• Requests will not be accepted from other sources that are not EJBs.

Other Keywords

• The Log keyword remains functional when EJB is supported.

• Other keywords are not relevant when EJB is supported.
Reference Guide 1393

Enterprise Server Layer

The Enterprise Server layer has three settings which are important for
determining how the EJB interacts with the enterprise server. These settings
are Initialization, License Validation, and Status Messages to the Broker.

Initialization

When Gateway=5, the messaging server passed from the enterprise server is
optional. If a broker exists at the specified address, it will be used for login or
administration purposes. If a broker is not present, the enterprise server filters
out all messages sent to the broker when Gateway=1.

The enterprise server will be loaded on a port, specified in
[MAGIC_COMMS]TCP/IP.

License validation

The license can limit the number of hits or concurrent requests on an
enterprise server. When Gateway=1, this task is performed by the broker.
However, when EJB is supported, license validation is carried out in the
enterprise server.

Where the number of hits or concurrent requests is exceeded, the enterprise
server will self-terminate on the next request (error 136), and subsequent hits
will be returned with error 109. If the enterprise server is unable to serve a
request because the number of concurrent requests was reached, it will return
error 104.

For more information, see the Errors section on page 1397.

Status Messages to the Broker

When Gateway=5, and the messaging server sent from the enterprise server
is acknowledged as an active Broker, it will be used for the enterprise server’s
logging or administration purposes. Request completion messages will not be
sent as they have no request ID and are therefore meaningless to the Broker.
Reference Guide 1394

Broker Configuration and Deployment

Query-Only Enterprise Servers

The broker must be aware that some of the enterprise servers are "Query-
Only" and they will then be marked as such. Query-only enterprise servers can
only send status information and can neither accept requests from the broker
nor be assigned to requesters.

Termination

If the Broker is terminated when EJB is supported, it will send XML-based
termination requests to Query-only enterprise servers.

Loading enterprise servers

You can load an enterprise server during initialization, from command line
requesters or from RQ functions.

Command Line Requester

Termination

A broker is required for password validation. Without a broker, the enterprise
server can be terminated by the OS as with any other process.

Queries

A Broker is required.
Reference Guide 1395

Remote calls from other requesters (not EJBs)

Remote calls from any other requester, such as a command line or Web, when
Gateway=5 will not be functional.

J2EE and eDeveloper Installation
When you install eDeveloper, eDeveloper searches for a J2EE server. When
eDeveloper finds the J2EE server it copies a special .jar file to a directory on
the J2EE server: %JAVA_HOME%\jre\lib\ext. The file, Mgejbgnrc.jar,
enables EJBs to interact with eDeveloper enterprise servers.

If eDeveloper cannot find the J2EE server, the .jar file is copied into an EJB
folder in eDeveloper’s default directory. Later, you should manually copy the
file over to the %JAVA_HOME%\jre\lib\ext directory on the computer
where the J2EE server is located.

Connection Difficulties

Where an EJB has problems connecting to the enterprise server, the EJB
attempts to connect with another enterprise server if possible. If the EJB is still
unsuccessful in connecting, either to the original enterprise server or to the
alternatives, the EJB will throw an “exception”. The eDeveloper exception
contains the numeric return code, as described in the requester
documentation, and the name of the URL resource that was used, for example
MAGICURL1.
Reference Guide 1396

Error Types

The following are cases when the eDeveloper enterprise server returns an
error, and what the errors mean.

Code Description Occurrence Action

104 Application in
use

During
License
validation

The EJB continues to
connect to the enterprise
server for as long as
allowed in the
CommunicationTimeo
ut setting. If the EJB
fails to connect it will
throw the
“ApplicationBusy”
exception to the client
that activated it.

109 Connection to
the enterprise
server
refused

During
termination

Verify that the enterprise
server you wish to
terminate is at the
requested address.

117 J2EE type
servers can
only accept
remote calls
from EJBs

Following a
remote call by
a different
requester

Set Gateway=5 in the
Mgreq.ini file, to ensure
that users cannot send
remote calls from a
command line or web
requester in this
directory.
Reference Guide 1397

128 Application
rejected

When a
request is
accepted by
an enterprise
server that
has another
application
open

The EJB continues to
connect to the enterprise
server for as long as
allowed in the
CommunicationTimeo
ut setting. If the EJB
fails to connect it will
throw the
“ApplicationBusy”
exception to the client
that activated it.

129 Mode
rejection

When a
request is
accepted by
an enterprise
server which
is Busy-
Toolkit or
Avail-
Running on
another
application

Switch the enterprise
server to Avail-Idle.

136 Maximum
number of
hits was
reached

During license
validation

Enable more license
access than allowed for
in the enterprise server

138 Program
aborted
during
execution

The EJB includes error
messages from the
aborted program in an
exception thrown to the
EJB client.

Code Description Occurrence Action
Reference Guide 1398

Multi-User
Considerations 23

he method and degree of data-sharing are major concerns for the
development of multi-user applications. The developer must consider
the implications of multiple users accessing the same data

simultaneously. This chapter focuses on multi-user considerations, and the
many issues that are inherent when users share the same data.

In this chapter:

Definitions
The following are terms necessary for the understanding of the multi-user
issues explained in this chapter.

Isolation Level

The Isolation level determines what happens during the concurrent
(simultaneous) use of the same transaction.The user can change the Isolation

• Definitions

• Concurrency

• Table Modes

• Setting the Multi-User Environment

• Context

T

Reference Guide 1399

level in the database only. Changes made in the DBMS Properties dialog box has
an effect on the system.

The types of situations that can occur are:

• Dirty Reads return different results within a single transaction when an SQL
operation accesses an uncommitted or modified record created by another
transaction. For example, one user can view the changes made to the data
by another user before the transaction is committed. If a rollback occurs,
the data viewed will still reflect the change. Dirty Reads increase
concurrency, but reduce consistency.

• Non-Repeatable Reads return different results within a single transaction
when an SQL operation reads the same row in a table twice. Non-
Repeatable Reads can occur when another transaction modifies and
commits a change to the row between reads within the same transaction.
Non-repeatable reads increase consistency, but reduce concurrency.

• Phantoms return different results within a single transaction when an SQL
operation retrieves a range of data values twice. Phantoms can occur if
another transaction inserted a new record and committed the insertion
between executions of the range retrieval.

Each Isolation level behaves differently for the situations described above.

Isolation
Level 1

Dirty Read Non-
Repeatable

Phantom

0 Read
uncommitted

X X X

1 Read
committed

X X

2 Repeatable
read

X

3 Serializable
Reference Guide 1400

Locks

Locks are used to preserve data integrity. When a user updates data, some
notification should appear, so other users do not update the same data. other
users of the same data must receive a notification that the data is currently
being updated. This notification is called a lock.

When no lock is issued, updated information can be lost. If each user
transaction is unaware of the other, the last update overwrites the other
updates.

Process

A process is an instance of a program running in a computer. It is close in
meaning to a task, a term used in some operating systems. Like a task, a
process is a running program with which a particular set of data is associated
so that the process can be kept track of. An application that is being shared by
multiple users will generally have one process at some stage of execution for
each user.

Transactions

A transaction is a sequence of Data Manipulation steps in the database that
must be completed in its entirety before the database is actually updated. If
something fails before the sequence is completed successfully, all changes will
be undone (this is known as rollback). In other words, either the whole
sequence is updated or none of it. This also preserves data integrity.

Concurrency
Concurrency is when at least two users are accessing the same application at
the same time. This section focuses on how to allow concurrent users to
access the same data without any loss of data. The following example
illustrates the importance of data integrity in a concurrent work environment.
Reference Guide 1401

Two users are accessing a database table called Stock Level. Currently, there
are 94 items in stock. The first user enters the Total in Stock column to update
the item number to 93 (having sold an item). The second user enters the Total
in Stock column to update the item number to 92 (having sold two items).
Three items have been sold, but the number of items only reflect the sale of
two items. Data was lost because of a lack of data integrity.

Locking

If a transaction cannot open a table or record at runtime, because of a
potential conflict with another transaction, eDeveloper will continue trying to
open the table or record that is currently locked. While waiting for access,
eDeveloper will display a message informing the end-user that the table or
record is currently locked. eDeveloper’s attempt to enter the table or record
ends when either the end-user presses Exit (ESC) to abort the task, or when
the transaction of the other user ends the transaction. Note that if the
transactions of both users were non-conflicting, neither would have to wait to
gain access to the table or record.

eDeveloper implements two kinds of locking methods: Database locks and
Developer locks.

• A database lock is a lock that uses the methods specified by the specified
DBMS. For example, using SELECT…FOR UPDate in Oracle and
SELECT…UPDLOCK in MSSQL.

• An eDeveloper lock uses the mglock to perform its logical locking method.

By default, all SQL gateways except for ODBC and Cache use physical locks as
their locking strategy.

Identify Modified Row

The Identify Modified Row column in the DB Table repository lets you
determine how eDeveloper will identify that a row is being updated. The option
selected can determine the access of other users to fields in the row as
described in Position and Update Fields and Position and Selected Fields
Reference Guide 1402

options. For a complete description of the Identify Modified Row column, see
the DB Table Repository section in Chapter 6, Programs.

The options for the Identify Modified Row column are:

• Position – This is the lowest level. eDeveloper updates the record in the
database using a unique identifier only, such as RowID in Oracle. In this
case the last update will be the successful one. This may cause problems
when two users need to update the same field. In general, unless the
identifier has been modified (which in Oracle is improbable) or else the row
has been deleted, eDeveloper will not identify this row as being updated,
which may result in the loss of updated data.

• Position and Updated Fields – eDeveloper updates the record in the
database using a unique identifier plus those columns that have been
updated. For example if a user accesses the record to update the Total in
Stock column, then eDeveloper will fetch the record (for update) using the
unique identifier plus the Total in Stock column. In this method, if another
user tries to update the Total in Stock column, one of them will receive an
error message indicating the loss of their updated data. But, if one user
accesses the Total in Stock column and the other user accesses the Total
on Order column, no loss of data occurs.

• Position and Selected Fields – eDeveloper updates the record in the
database using a unique identifier plus all the columns selected by the
developer for use in that task. In other words, if in the same task, the
developer used both the Total in Stock column and the Total on Order
column, eDeveloper fetches the record (for update) using the unique
identifier plus the Total in Stock column as well as the Total on Order
column. In this method, any changes made to either of those columns, will
result in an error message indicating the loss of updated data.

For example, if in a database table where there is a record with the Total in
Stock and Total in Order fields that are being updated by User A and User B
Reference Guide 1403

concurrently, depending on Identify Modified Row option, the result will be as
described in the table below.

Transactions

Much thought should be given to the subject of transactions. On the one hand
transactions increase data integrity due to the use of the locking mechanism,
but also reduces concurrency. The longer the transaction, the more
concurrency is reduced. You can select the Transaction mode from the
Enhanced tab in the Task Properties dialog. The options for the Transaction
Mode property are:

• Deferred Transactions - All Data Manipulation operations are logged by
eDeveloper in the Cache memory. Other users will have no access to that
data. Once this transaction ends, eDeveloper updates the database with
the various operations that were logged during the Deferred transaction.
The updating of the database is performed according to the Identify
Modified Row option described above. If data for the selected records has
been modified before you have committed your changes, an error
message will be displayed and your updates will be lost. The only course of
action is to redo your updates. There is always a risk that updated data
can be lost when working in the Deferred transaction mode.

Identify Modified Row Options Total in Stock
Updated By

Total in Order
Updated By

Loss
of
Data

Error
Message

Position User A and User
B

User A and User
B

Yes No

Position User A User B No No

Position and Updated Fields User A and User
B

User A and User
B

Yes Yes

Position and Updated Fields User A User B No No

Position and Selected Fields User A User B Yes Yes

Position and Selected Fields User B User A Yes Yes
Reference Guide 1404

Note that Deferred transactions are the only mode that is valid in a
Browser Client task.

• Physical Transactions - All Data Manipulation operations are logged by
eDeveloper in the rollback segment of a physical database. Other users
will be able to see the updated data depending on the defined Isolation
Level explained under the Definitions section. As a result, there is less
probability of losing updated data.

For more information about Transaction modes, see Chapter 11, Data
Management.

Note that in ODBC and Cache DBMS systems, there are no physical locks and
all transactions are implemented by eDeveloper.

Task Level Transaction Usage Considerations

Selecting the transaction to begin Before Task Prefix, causes all updates to be
logged as a single transaction.This has various implications for multiple users
as it reduces concurrency but it does increase performance. The following
suggestions should be considered:

• For improved concurrency, it is better to begin transactions at the Task
Prefix handler for batch tasks with a dataview that includes only a few
records. Of course, this depends on your application, as there may be
instances in which you are required to lock many records. Note that if the
user is working in Deferred mode, it is not recommended to begin the
transaction before the Task Prefix handler since these operations are
stored in Cache memory, and memory is limited.

• In Online tasks, tables can be locked for long periods of time. Once again,
there may be instances in which this is required.

• Be aware that if a task is called within this transaction, those locked rows
will also be part of the transaction and thus unavailable to other users.

• When entering a task in which either a transaction is already open or else
there is a task level transaction, Oracle locks the entire dataview of that
task (that is, all records in the range). In some cases, this is the intended
behavior. You should be aware that if you only want to lock some of the
records, you should adjust the range accordingly. This behavior is
Reference Guide 1405

beneficial for data integrity and performance, as all records are locked
while they are being fetched to create the dataview. In other databases,
the data is only locked when parked on the record. This affects
performance, because for each record the data is locked. But on the other
hand, concurrency is maximized.

Before Record Prefix Transaction Usage Considerations

The transaction is opened before the dataview is fetched, that is many records
are locked at a time. For online tasks where the human factor determines the
duration of time that a dataview is locked, it is not recommended to select the
Record Prefix Transaction option in a multi-user environment.

Before Record Update Transaction Usage Considerations

When you select the Record Update Transaction option, The transaction is
opened just before updating the record. Only then does eDeveloper send a
request to lock the record, according to the Identify Modified Rows column in
the DB Table repository. The advantage s that the transaction is small, which
maximizes concurrency. But remember that because the lock is performed at
the last minute, another user may have updated the data. Therefore, there is
a risk of losing updated data.

Locking Strategy

The Lock Strategy property, available for online and batch tasks, defines when
eDeveloper issues a lock to prevent other users from accessing the record
processed by the current task, and whether verification is used for the
information contained in the memory. Verification is performed according to
the selected Identify Modified Rows option, which determines the way
eDeveloper re-reads the record to update it. For more information about
Locking Strategy, see Chapter 11, Data Management.

The Locking Strategy property can have one of the following values:

• Immediate - eDeveloper locks the record immediately as it is fetched and
displayed to the end-user. The record is kept locked until it is released.
This strategy increases data integrity, but reduces concurrency. Using the
Reference Guide 1406

Immediate Locking Strategy in an online, multi-user environment may
cause prolonged record locks, as the period of time that a user may
remain in the same program is unpredictable. This value applies only to
the Physical Transaction mode.

• On Modify - eDeveloper locks the record as soon as the user enters a
character in the record for an online task. The On Modify option is the
default lock for online tasks. Online tasks by default are created with
Deferred Transaction and No Lock options for the Transaction Mode and
Locking Strategy task properties.

For batch tasks, the lock is issued by the first Update operation that is
executed in a Record Prefix handler or Record Suffix handler, or the first
task or program called, which causes a lock (refer to the Call operation in
Chapter 7, Operations).

For the On Modify locking strategy, modification verification is required, as
described in the Identify Modified Row column in the DB Table repository.
eDeveloper will issue a lock in the following cases:

• Modifying an input column.

• Calling a task or program in which the Lock property is set to Yes.

• The task executes a non-abortable Update operation.

• The Import Form operation is executed.

• Event programs will lock the dataview of the event.

• Before Update - eDeveloper locks the record only before the actual write to
the database. This means that the record is not locked during the
interaction stage (online) and the Record Suffix operations for online and
batch tasks. If the data verification stage of the lock fails (the record was
updated by another user since last read), the update will not be carried
out, and a message to that effect will be issued to the user. As a result,
there is the possibility in this mode of losing updated data. Subtasks called
by the current task may have updated information to other tables, thus
possibly causing inconsistency if the current record is not updated to the
disk. Since the transaction duration is short, concurrency is increased, but
Reference Guide 1407

at the expense of data integrity. It is recommended that you should only
use the Before Update locking strategy, in cases where locking the
underlying database would be problematic, and where the task structure
ensures that there would be no loss of update data should the verification
fail. This locking strategy option applies only to the Physical Transaction
mode.

• No Lock - The record is not locked. The No Lock option should be used with
great caution, because in this case eDeveloper may update records that
have been accessed and updated by other workstations causing loss of
data integrity. No Lock is the default setting for Online and Browser tasks.

Task Nesting and Locking

When calling a task or a program, the processing of the current view record is
suspended until the call returns. The called task or program has access (for a
program, if columns are passed as arguments) to all the current view record’s
variables. Therefore, the called task or program may also update some of the
displayed columns of the record. When using the On Modify locking strategy,
the view record is locked immediately on the first change or after a complete
column is accepted. If a called subtask or a program is about to change the
current record, the current record should also be locked.

As subtasks and programs are complete units that can take some time to
execute, other users should not be allowed to gain access to the current
dataview record and modify it while the subtask or program is executing. This
would prevent writing the current record to the disk when the called subtask or
program terminates. Therefore, the current record should be locked before
executing the subtask or program. However, to avoid blocking access to other
users, the current view record should not be locked before executing the
subtask or program if the called subtask or program is not about to modify the
current view record.

The Call operation’s Lock property lets the developer lock the record when a
task or program is called. Options for the Lock property are:

No - eDeveloper will not lock the current dataview record when executing the
task or program. It is the programmer’s responsibility to verify that no updates
Reference Guide 1408

will occur from the called process to the calling record columns. If such
updates do occur, they may be lost if the current view record cannot be written
to disk due to the changes made by other users.

Yes - means that the current view record will be locked immediately on
executing the called task or program. Use this option when the called task or
program is going to update the current view record, or the updates performed
by the called task or program must be done together with the current dataview
record. Be aware that if the transaction is not yet opened, this mode of the
switch is invalid. For instance, having a Call Task in the Record Prefix handler
and opening the transaction before the Record Suffix handler.

Isolation Level

When the database has an Isolation level of 0, all locks will be granted to this
session. No user will wait, Even if a table is locked exclusively. This Isolation
Level setting allows for maximum concurrency, but low data integrity.
Depending on the data structure of your application, this Isolation level
maximizes concurrency but to the detriment of data integrity. Informix, DB2
and MSSQL support Isolation level = 0, but Oracle does not.

Oracle supports Isolation level = 1 for a user’s request to read data that is
locked by another user, Oracle will display the previously unmodified data to
this user, data that has been committed.

Differential Update

For SQL databases, you can select Differential Update from the Update Style
field property. The Differential option lets you minimize the problem of losing
updated data.

The following example present a problem that can occur when the Absolute
Update option is selected.

There are 94 units of the item in stock (fetched from Total in Stock column),
and User A updates the Total in Stock column in order to 93 (having sold an
item) and User B updates the Total in Stock column to 92 (having sold 2 items
in the same sale). Loss of updated data occurs.
Reference Guide 1409

A differential update, however, updates the database as:

• Total in Stock: – (minus) 1 for one user

• Total in Stock: – (minus) 2 for the other user

The end value of Total in Stock is Total in Stock – (minus) 3, which in this
example is 91. No loss of updated data occurs.

For more information about this option please refer to Chapter 11, Data
Management.

Table Modes
The sharing of data among many workstations or instances demands a process
of synchronization, so that access to a table by more than one process is
restricted or controlled.

The operations a process can perform on a table are:

• Read (denoted as R) - The process does not intend to update the table.

• Write (denoted as W) - The process might update the table. Write also
implies Read. In the technical literature, R is called Read Only and W is
called Read/Write.

Access Mode

In eDeveloper, the Access mode is the intended operation a process requests
to perform on a table. eDeveloper facilitates controlled access to tables by
requiring each process to declare its intended Access mode on the table before
it can access it. The built-in automated system manager then decides whether
to grant that access. However, the system manager cannot know in advance
whether the access modes of two parallel processes will conflict.

For example, Process A requests the read-only access to a table, while Process
B requests read-write access to the same table.
Reference Guide 1410

The system manager cannot know whether these two Access modes are
conflicting. If Process A is simply counting the number of records in the table it
is irrelevant if those records are being updated at that time, so the two access
modes are compatible. But if Process A is performing statistical calculations,
the modes are incompatible, and access to one of the processes should not be
granted. Therefore, the system manager needs additional information to
determine whether the two modes are compatible. In eDeveloper, this is called
the Share mode.

Share Mode

In addition to a process declaring an Access mode, every process must declare
a Share mode. The Share mode specifies which Access modes are compatible.

A statistical program would access a table in Access mode=R and Share
mode=R. Thus it would only read records from the table and would allow any
other process that is also only reading records from the table to access it at
the same time.

Once the system manager is provided with the Access and Share modes, it can
determine whether to grant the request.

To open a table in an Exclusive mode, the Share mode is set to N for None. No
other process may be granted access to the table.

Multi-User Considerations When Defining Table Modes

• Table locks are issued when either None or Read is selected for the Share
mode of a table within a task. eDeveloper locks this table exclusively. The
behavior for an exclusive lock depends on the particular DBMS. Some
DBMS systems support exclusive locks, other DBMS systems do not. In
Oracle, for example, although the table is locked exclusively, other users
are able to read from the table. Therefore the use of Share mode=N is
invalid. It is recommended that the developer be aware of support
limitations for exclusive locks by the selected DBMS.

• A table lock is only valid within a transaction. Do not use record level
transactions with a table lock. eDeveloper will behave as if the entire table
Reference Guide 1411

is locked, and will not let additional user’s access other records in the
table.

• Table locks should be avoided if possible, because they greatly diminish
concurrency.

• The developer can issue an eDeveloper lock at the table level. Note that for
exclusive locking the same limitations apply, as described above.

• eDeveloper issues a database lock when the Write option has been selected
for both the Access mode and Share mode. If the transaction is in a
Deferred mode, a database lock is not issued and an eDeveloper lock is
issued, using the mglock file. Be aware that the eDeveloper lock is only
released once the transaction ends.

• In browser tasks, database locks or table locks do not apply, because there
is no physical transaction. Only eDeveloper locks apply to browser tasks.

• In MSSQL, the record locking default is physical locking. eDeveloper sends
a SELECT …UPDLOCK command to the database that is similar to the
SELECT … FOR UPDATE command in Oracle. This default differs from
previous versions of Magic, which was a logical lock (that is, a regular
SELECT statement was sent to the database using all its selected
columns). To change the default, refer to the MSSQL gateway section in
Chapter 25, SQL Considerations.
Reference Guide 1412

How to Define Table Modes

You define the Access mode and Share mode of a table in a DB Table
repository entry.

The DB Table repository of a task includes the two columns labeled as:

• Access - The value can be either W for read/write (the default) or R for
read only

• Share - The value can be W for read/write (the default), R for read, or N for
none. None means the table is not shared in any mode.

Table Sharing Interaction

The following table describes the sharing interaction between two tasks
opening the same table. A plus sign (+) indicates that modes are compatible
while a minus sign (-) indicates that modes are incompatible

.

Figure 23-1 A Task DB Table Repository

Process A

Access
Mode

Rea
d

Writ
e

Reference Guide 1413

For example, if Process A opens the a table in R/R mode (that is, Access=R
and Share=R), Process B can open the same table with modes R/R and R/W.

If process A opens the table in R/W mode, process B can open the table in R/
R, R/W, W/R, or W/W modes.

Setting the Multi-User Environment
The Environment dialog contains all of the globally configured eDeveloper
properties. These properties reside in the [MAGIC_ENV] section of the
Magic.ini file. You can use Environment settings to customize eDeveloper
according to the specific needs of the installation. All changes made to settings
in the Environment dialog are registered in the Magic.ini file. Some of the
setting changes take effect immediately, while others will be effective from the
next eDeveloper session.

Mod
e

Share
Mode

Rea
d

Writ
e

Non
e

Rea
d

Writ
e

Non
e

Mod
e

Process
B

Rea
d

Read + + - + + -

Writ
e

+ + - + + -

Non
e

- - - - - -

Writ
e

Read - + - - - -

Writ
e

- + - - + -

Non
e

- - - - - -

Figure 23-2 Valid Access/Modes
Reference Guide 1414

eDeveloper Environment settings are not related to operating system
environment variables. If eDeveloper was invoked with Command Line
properties, the values that appear in the Environment dialog will reflect the
Command Line properties for the respective components. Command Line
options take precedence over the Magic.ini values. However, any modifications
you make to the Environment dialog during a development session will also
automatically update the Magic.ini file, and will override any corresponding
Command Line values.

Environment dialog properties related to multi-user considerations are:

Multi-User Access

• No - The default value instructs eDeveloper to open all tables for exclusive
use (overriding the task table open mode), thereby preventing access
from any other workstation.

• Yes - Instructs eDeveloper to implement concurrence controls on all
database table access, thereby allowing table-sharing while maintaining
database integrity. The default is Yes. Change it to No for a single-user
environment.

Figure 23-3 Enabling Multi-User Access
Reference Guide 1415

Terminal

Set Terminal to a unique numeric identifier for each end-user, or set it to 0 for
an automatic terminal number resolution.

Lock File

eDeveloper implements record and table locking at two levels. The first level
uses the locking mechanism of the underlying vendor-supplied DBMS. The
second, optional, level is eDeveloper’s own locking mechanism. The
eDeveloper locking mechanism involves creating a lock file in every directory
that contains at least one of its tables (data or system files).

The first user accessing a shared table in a directory causes the directory’s
eDeveloper lock file to be opened. Exiting from eDeveloper deletes the
eDeveloper lock file.

Context
Note that each context has its own environment. The list below are of objects
that are not shared and are only valid for the current context:

• Global variables

• Resident tables

• Memory tables

• Resident INI

• Cache (for Deferred transactions)
Reference Guide 1416

Workgroup Development24
agic’s workgroup development capability maintains concurrence
among developers working on the same application. This capability
underlies the concept of Team Development.

In this chapter:

• Workgroup Options

• Team Development

• Active Management

M

Reference Guide 1417

Workgroup Options
Workgroup options are defined in the Workgroup tab of the Application
Properties dialog. The following settings are available:

Activate Team Development

• Options: Yes and No.

• Default: No.

MVCS Snapshot File

• Zoom from this field to select the MVCS snapshot file for Team
Development.

MVCS Lock File Path

• Zoom from this field to select the MVCS Lock File path for Team
Development.

Workgroup options can be modified only if the developer has supervisor rights
and nothing is currently checked out. For more information on supervisor
rights see Chapter 13, Authorization System.

Objects
The basic unit for manipulating an application is an object. All Team
Development operations are performed on an object basis.
Reference Guide 1418

Check Out/Check In Mechanism
The Workgroup Development system provides a check out/check in
mechanism for every repository and program. A repository must be checked
out as a whole unit. A Program, however, can be checked out individually.

The MVCS pulldown menu provides the following commands:

• Check Out Object

• Check In Object

• Checked Out Object List

• UnCheck Object

• Resync Objects

• Check Out Program Repository

• Check In Program Repository

Check Out Object

A developer can edit an object only after checking it out. Without checking out
the object, the developer is limited to read-only access. Note that although the
Form Editor will not appear to be read only, any modifications applied to the
form will not be applied if the task is not checked out first.

All repositories, with the exception of the Program repository, are checked out
as a whole unit. Programs are checked out individually. You are required to
check out the Program repository, which is also considered an object,
whenever you modify the Program list.

Checking out a repository automatically locks that object from any other
developer. Other developers then have only read-only access to the last
updated version of the repository.

When an object is checked out under Team Development, any modification is
written into the developer’s temporary snapshot file. The latter file can be
accessed only by the developer who created it.

A program must be checked out before it can be deleted.
Reference Guide 1419

Check In Object

In an application under Team Development, checking in an object updates and
synchronizes the MCF.

Check Out Object List

The Checked-Out Object list provides a list of objects that are checked out.

• Object name - Name of one of the basic application objects.

• Locked by - Identification of the user who checked out the object.

• Locked on - Date and time when the object was locked.

Click one of the column headers to sort the Object List information by that
column.

• Users - Click Users to display a list of the active users in the application
workgroup.

• OK - Click OK to exit the Object List.

• Refresh - Click Refresh to update the Checked Object List.

Figure 24-1 Checked Object List
Reference Guide 1420

UnCheck Object

The developer can uncheck every checked-out object. This cancels any
modifications made to the object, and cancels its checked-out status.

The Workgroup (MVCS) Menu

The MVCS options are described in the table below.

Figure 24-2 The MVCS Pulldown Menu

Use: To:

Check Out
Object

Check out the selected object. Enabled only when
the object is not currently checked out.

Check In
Object

Check in the selected object. Enabled only when the
object is currently checked out by the same
developer. All current modifications to the object will
be saved and other developers will be able to view
the modified objects.

Object List Display a list of objects currently checked out.

Resync Objects Synchronizes the objects.
Reference Guide 1421

Team Development
Team Development maintains concurrence among developers. Up to 128
developers can work on a single application file using the Team Development
feature. By maintaining locks, the team development interface controls
concurrence among developers and helps synchronize the application.

Requirements for Team Development

• Each developer in the workgroup who accesses the application must have a
unique User ID.

• The system must be configured for multi-user access.

• Development cannot be performed on an application currently being
accessed by users in Runtime using the MGRNTW executable.

Activation of Team Development

Set the Activate Team Development property on the Workgroup tab of the
Application Properties dialog to Yes. When Team Development is active, the
Navigator list bag displays the MVCS option. When you click MVCS, all check
out objects appear and can be selected for the enabled MVCS options.

Uncheck Object Uncheck the current object, canceling all
modifications made to the object since it was
checked out.

Check Out Prog
Rep

Check out the Program repository to make changes
in the Program list.

Check In Prog
Rep

Check in the Program repository to make available
to other developers the changes you made in the
Program list.

Use: To:
Reference Guide 1422

Snapshot File

An object must be checked out before it can be modified in an application.

When an object is checked out, any modification is written to a temporary file
that holds all the changes until the object is checked back in. This temporary
file mechanism allows the rest of the development team to continue work on
the application.

The file that contains the temporary modifications is called the snapshot file.
The snapshot file name can be defined in the Application Properties dialog. If a
snapshot file name is not defined, a default filename is created in the format
xxSNP. MCF, where xx is the application prefix.

Concurrence

Concurrence among developers is maintained by volatile and non-volatile locks
on the application. The non-volatile locks are placed on the application file
itself, indicating that an object has been checked out. Volatile locking is added
to indicate activity on the application, and is implemented by the lock file.

Modifications to the Program Repository

The Program repository maintains the application’s Program list order. Every
Program list modification requires updating the Program repository.

The Program repository is not automatically checked-out and checked-in for
modifications to the Program list. The developer is required to manually check
out and check in the Program repository.

You can only modify the Program list by checking out the Program repository.
The Program list can be modified by:

• Creating a new program

• Deleting a program

• Changing the sequence of programs

• Moving a program to another program folder
Reference Guide 1423

• Renaming a program folder

• Overwriting a program

• Copying programs

• Assigning rights to the Program repository

• Importing a program

• Generating a program from the Table repository

Check Out and Check In of the Program Repository

You can check out or check in the Program repository by clicking the Check
Out or Check In options as displayed on the MVCS menu, or by clicking the
Check Out or Check In toolbar buttons. You cannot uncheck the Program
repository.

Importing Programs

When you import an application that has programs, you are required to check
out the Program repository. When importing an eDeveloper V9.3 export file,
eDeveloper prompts you to check out the Program repository. If you do not
check out the Program repository or the Program repository is checked out by
another developer, eDeveloper issues a warning that the import process
cannot be performed.

When you import an application of a previous eDeveloper version, the import
process cannot detect the programs included. You will only be prompted when
eDeveloper, through the import process, finds a program. If you do not check
out the Program repository or if the Program repository is checked out by
another developer, eDeveloper issues a warning that the import process
cannot be performed. The import process will fail and the application will be
rolled back.

Lock File

The application Lock file is called xxMVCS.LOC and resides in a directory
defined in the MVCS Lock File Path field in the Workgroup tab of the
Reference Guide 1424

Application Properties dialog. Locking is performed during development only if
Activate Team Development has been set to Yes.

The following table defines the locks issued.

Note: When an object is locked in share mode, all actions that need exclusive
access to the locked object are blocked.

Object Action Lock

Models Enter repository if not checked
out
Enter repository if checked out
Check in

Share
Exclusive
Exclusive

Tables Zoom into Table, Columns, or
Indexes
Properties
APG on file
Check in

Share
Share
Share
Exclusive

Program
Repository

Adding, Moving, and Removing
programs

Exclusive

Programs Zoom
Execute
Check in

Share
Share
Exclusive

Helps Zoom into Help
Check in

Share
Exclusive

Rights Enter repository if not checked
out
Enter repository if checked out
Check in

Share
Exclusive
Exclusive

Menus Enter repository if not checked
out
Enter repository if checked out
Check in

Share
Exclusive
Exclusive

Application
Properties

Check in Exclusive
Reference Guide 1425

The Synchronization Process

The most important aspect of Team Development is synchronizing work among
the developers. Synchronization is divided into two parts:

• Detecting if a change to the application occurred, and whether the change
affects anything.

• Synchronizing the changes into the development environment for each of
the users.

Detection of Modifications

In order to detect modifications, each toolkit has counters that determine the
current revision of the objects. Another copy of these counters is placed in the
station lock file. Whenever an object is checked in, the counter of the object is
incremented in the station lock file.

When a synchronization event occurs, the toolkit compares the internal
counters with the counters in the station lock file.

Synchronizing Modifications

When the Team Development feature detects that modifications have been
made, a synchronization process begins. This process involves reading the
modified objects into the development environment.

After loading, all open windows that are related to any version control object
are re-displayed with the updated object. If the cursor was positioned on an
entry that was removed, the cursor parks on the top of the object’s repository.
A message indicating the modification is displayed.

Synchronization Timing

The following table defines the timing of the synchronization events.

Object Action

Models Access Model repository
Display Model Selection
repository
Reference Guide 1426

Application Access and Share Modes

The following table defines the Access and Share modes for accessing the
application file.

Tables Access Table repository
Display Table Selection
repository
Zoom into Table Columns
Zoom into Table Indexes

Program
repository

Access Program repository

Programs Access Program repository
Display Program Selection
repository
Execute program
Edit or browse program

Helps Access Help repository
Display Help Selection
repository
Edit or browse help

Menus Access Menu repository

Components Access Component repository

Development /
Deployment

Team
Development

Access Share

Development On Write Write

Development Off Write None

Deployment N/A Read Read

Object Action
Reference Guide 1427

Station Lock File

The application station lock is called xxSTTION.LOC, where xx is replaced by
the application prefix. The station lock file resides in a directory defined by the
MVCS lock file path field on the Workgroup tab in the Application Properties
dialog. If that field is left blank, the file will be opened in the current working
directory.

When you open an application, your User ID is entered into the station lock
file. No other user using the same User ID will be allowed to open the
application. Note also that the same user cannot open two instances of the
application while using a single User ID. If for any reason the user attempts to
open the application but has not logged on, the message “MVCS is on - cannot
open application without user logon” will be displayed.

The station lock file is created upon the first logon to the application and is
removed after the last logoff.
Reference Guide 1428

SQL Considerations 25
o define the eDeveloper environment when working with SQL
databases, you must know how to define the flags and settings in the
Magic.ini file.

In this chapter:

• Configure and Define the eDeveloper
Environment

• Naming Conventions - eDeveloper
Gateways

• eDeveloper and SQL Configuration and
Performance

• eDeveloper Database Gateway for
Oracle

• MSSQL Server Database Gateway

• Informix Database Gateway

• DB2 Database Gateway

• ODBC Database Gateway

• ODBC Check Driver Utility

T

Reference Guide 1429

Configure and Define the eDeveloper Environment
The eDeveloper Database Gateway for any SQL database must be defined and
installed under both the eDeveloper Client/Server architecture and the RDBMS
Client/Server architecture. It is necessary to define for eDeveloper that a
specific gateway must be loaded by pointing to a variable that contains a DB
number. The DB number points to a specific executable that is the relevant
gateway.

Windows Operation Systems

In Windows platforms, the MGDBnn is set to point to the relevant DLL in the
[MAGIC_ GATEWAYS] section of the MAGIC. INI file. For example, the Oracle
id in the DBMS section is 13:

MGDB13= mgora8.dll

If you used the eDeveloper client server, MGDB13 should refer to .dll. An
example of the gateway section in the MAGIC. INI file under Windows is:

[MAGIC_ GATEWAYS]
;MGCOMM01=mgwsock.dll
MGDB00=MGBTRV.dll
;MGDB03=mdcisam.dll
MGDB13=mgora8.dll
MGDB14=mginf73.dll
;MGDB16=gateways/mgeac32.dll
;MGDB18=mddb2.dll
;MGDB19=mgodbc.dll
MGDB20=mgms7.dll
MGDB21=mgmemory.dll

Unix Operating Systems

In Unix operating systems an environment variable points to the executable,
which should be used for a specific gateway.

For example, in UNIX:
Reference Guide 1430

MAGIC_ DB_ 14_ DRIVER=$ MAGIC_ HOME/ bin/ mgoracle8

where the number 14 refers to the DB number +1.

Naming Conventions - eDeveloper Gateways
The actual gateway image will vary from one operating system to another.
Therefore the names of the images are structured to distinguish among them.

In the Windows operating systems, the structure is MGyyyyyy where
yyyyyy stands for the specific RDBMS, such as INF or ODBC.

In the UNIX operating system, the structure is MGyyyyyy where
yyyyyy stands for the specific RDBMS, such as Informix or Oracle.

Gateway Name Structure

The following is the structure of the eDeveloper Gateway version shown in the
Help/About information:

• The first string will contain the RDBMS name.

• The next string will be the word Version.

• The third string will be the eDeveloper version number followed by a “-”
character.

• The fourth string will be the source id which will be in the format of X.Y,
with X representing the major source version, such as 9 or 8, and Y
representing the minor source version, or its running number, which is
changed every time the source is changed.

• The last string will be the date on which the gateway was created.

For example:

Oracle 8 Version 9.00 - 9.1 08-Jan-2001
Reference Guide 1431

Oracle 8 is the RDBMS name and version, followed by the word Version,
followed by the eDeveloper version number 9.00, then the source id 9.1 and
finally the creation date of the gateway 08-Jan-2001.

eDeveloper’s API Implementation and Versions

eDeveloper is a dynamic tool with no compilation or link stages. eDeveloper
programs can be executed as soon as an operation is inserted into the proper
eDeveloper table. The databases defined in eDeveloper are also dynamic, and
can change from one program to another and from one application to another.
eDeveloper does not limit the variety of dataview.

To provide this versatility with a single rule-based engine, eDeveloper uses
dynamic SQL to construct the SQL dataview that eDeveloper programs
require. Each eDeveloper task that uses SQL tables issues the proper SQL
statement to specify the dataview needed. The SQL statement is then
prepared by the eDeveloper Database Gateway. During this preparation stage
the DBMS optimizer analyzes the statement and prepares the statement for
processing.

Unlike 3GLs and 4GLs that use embedded SQL to eliminate runtime SQL
statement parsing and optimization by pre-compilation, eDeveloper does not
use compilation. Therefore, the preparation stage may produce additional
overhead by executing a task that is repeatedly called. However, if the task is
declared resident, the SQL statement is prepared just once and is not
released. Repeated calls to the task will use the existing statement instead of
preparing a new one. In this case, the performance of eDeveloper’s dynamic
SQL implementation is the same as the performance of an embedded SQL
program.

Oracle

The Oracle Database Gateway is written with the Oracle Call Interface ()
procedures to achieve maximum capability and performance. It is designed to
work with Oracle version 7.3 and above. Oracle subtitles need to be aligned
the same way as the subtitles in Informix and DB2.
Reference Guide 1432

MS-SQL

The MS-SQL Database Gateway is written with the Object Link Embedding DB
interface (OLE-DB). For maximum performance it uses client cursors and
commands. It is designed to work with the Microsoft SQL server Versions 7
and above. MS-SQL subtitles need to be aligned the same way as the subtitles
in Informix and DB2.

ODBC

The Database Gateway is written using the ODBC 2.00 API. It is designed to
work with ODBC drivers version 2 and above. ODBC subtitles need to be
aligned the same way as the subtitles in Informix and DB2.

Informix

The Informix Database Gateway is written using /C API. It is designed to work
with Informix version 7.3 and above.

DB2

The DB2 Database Gateway is written using the DB2 Call Level Interface ()
procedures. It is designed to work with DB2 version 5 and above.

Pervasive SQL.2000

eDeveloper supports both the Pervasive SQL.2000 ISAM engine through
eDeveloper’s Btrieve gateway, and the SQL engine through the eDeveloper
Pervasive gateway.
Reference Guide 1433

Data Definition Rules

1 eDeveloper’s Table Checker cannot distinguish between Oracle LONG and
LONG RAW and eDeveloper Memo fields. If eDeveloper finds more than one
field of any of these types, it will return the following error message: Database
supports one memo field in record.

Characteristic MSSQL Oracle Informix DB2

Longest object
name (user,
column, table,
view, index)

128 30 18 18

Maximum
length of char/
binary

8000 2000 255 254

Maximum
length of

8000 4000 32767 4000

Most columns in
a table, view

1024 1000 255

Maximum
length of row
(row length)

8060 32511 32700 4005

Maximum index
length

900 255 255 255

Maximum size
of each BLOB
field

2GB 2GB

Maximum
number of
segments per
index

16 32 16 16

Maximum
number of
memo fields
supported

1 1
Reference Guide 1434

Configuration and Performance
Now that you understand how eDeveloper & SQL work, it is important to learn
how to work with eDeveloper & SQL efficiently. Various concepts and
techniques for achieving optimal eDeveloper & SQL performance are discussed
below.

Transactions

A transaction is a sequence of one or more SQL statements that are usually
closely related but perform interdependent actions and which form a logical
unit of work. Each statement in the transaction performs some part of a task,
but all of the statements are required to complete the task. The DBMS
executes the sequence as one operation because the statements are grouped
as a single unit. All the statements must be completed for the database to
remain consistent.

When applications update multiple tables in a database, transactions ensure
database integrity.

The Transaction Mechanism

If the transaction does not complete successfully, a Rollback statement returns
the data to the state it was in prior to the beginning of the transaction. If the
transaction completes successfully, a COMMIT statement permanently stores
the data in the database.

Due to the nature of SQL and relational database architecture, where each
update can act on only one table at a time and where there are no trailers in
the usual sense, two update statements must be executed simultaneously.
Both update statements must either succeed and COMMIT or fail and Rollback.

In a transaction a group of updates must either COMMIT or Rollback together.
First a transaction is declared, and then either the COMMIT or the Rollback
SQL statement is issued for all the statements that have been issued since the
transaction declaration.
Reference Guide 1435

Locking

eDeveloper V9 introduces the concept of Physical and Deferred transaction
modes. The following is the default behavior for the eDeveloper SQL gateways
in each of the transaction modes:

• Physical transaction mode

All SQL gateways (except for ODBC) use physical locking as their default
locking strategy.

ODBC always use logical locking, regardless of the transaction mode.

• Deferred transaction mode

All SQL gateways use logical locking as their locking strategy.

Records are locked to preserve data integrity and to give each user a
consistent view, while providing maximum concurrency. Locking prevents a
record or group of records from being changed while a user is viewing or
modifying them. Locks can either be exclusive, not allowing other users to
even read the records, or shared, letting other users read the records without
modifying them in any way.

Transactions and locking are tightly bound in RDBMSs. Because SQL databases
run in multi-user environments, indiscriminate locking can cause an
application to severely limit user access. Different levels of locking are
available in all the RDBMSs.

A record is locked for updating and then immediately released when we leave
it. In an RDBMS, the lock is enforced at the beginning of the transaction and
released only by a COMMIT or Rollback operation.

Locking Levels

During a normal operation, the RDBMS locks the view structures. Implicit
locking is performed automatically and protects the data without any user
intervention. Overriding default locking is known as explicit locking.

Implicit locking occurs automatically when SQL statements are executed. For
example, the statements INSERT, UPDATE, and DELETE cause implicit locking
so that data consistency and integrity are maintained during transactions.
Reference Guide 1436

Some , such as Oracle and Informix, acquire locks at a record level. Other
RDBMSs acquire only page-level locks, which cause other records belonging to
the same page to also be locked.

Escalating a Lock to a Table Lock

In some database systems lock escalation occurs because when many locks
are held at one level, the RDBMS automatically changes these locks to a
different lock at a higher level (such as a table lock). The number of locks is
therefore reduced, but the granularity of what is locked is increased.

Enforcing Locks

Explicit locking can be acquired at the same levels as implicit locking. When
updating a record, an implicit exclusive lock is acquired at record level.

When initiating a

select * from table where ... for update

statement under Oracle, or a

select * from table (UPDLOCK NOWAIT) where …

statement under MSSQL, an explicit shared lock is acquired at record or page
level, and the record cannot be updated until the lock is released.

Note that while using Informix, one cannot explicitly lock records when using the
ORDER BY clause.
Reference Guide 1437

Lock Duration

A data lock is acquired at some time during the lifetime of a transaction and is withheld
until a COMMIT or Rollback command is initiated. Locks are not released during a trans-
action.
Example:

begin transaction;
update table set fld1= 1 where fld2= 2
update table set fld1= 3 where fld2= 4

both records are locked with an exclusive lock

commit;

both records are released.

Locking and Transaction Processing

Locking and transaction processing are essential in multi-user environments.
To achieve maximum concurrency, online transactions must be short and must
not interfere with user interaction.

Transactions are opened according to the eDeveloper’s Task properties
settings. The following affect the way eDeveloper opens transactions and
enforces locking include:

• Environment settings for multi-user and ISAM Transaction. In the system’s
Environment settings, both the Multi-user access setting and the ISAM
Transactions setting must be set to Yes. Otherwise, eDeveloper will not
issue any transaction that handles requests.

• Database settings for table locking.

• Access and share mode in the DB Table repository.

• Task type specified in the Task Properties dialog: Online, Batch or Browser.

• Locking strategy options specified in the Task Properties dialog.

• Transaction mode option specified in the Task Properties dialog.

• Transaction Begin option specified in the Task Properties dialog.
Reference Guide 1438

• The Lock property specifed in the Call Properties dialog, for Call Task and
Call Program operations.

The Multi-User Access Setting

The Multi-user access setting, located in the Multi User tab of the Environment
dialog, specifies that when an eDeveloper lock is performed, the lock is also
performed inside the underlying database.

When the Multi-user access setting is set to Yes, eDeveloper also sends the
necessary SET TRANSACTION commands to the DBMS to ensure data integrity
with other running applications.

When the Multi-user access setting is set to No, the application cannot be used
simultaneously by more than one eDeveloper user. Therefore, no locks are
performed by eDeveloper, and no physical or logical locking is performed by
the gateway (that is, no SELECT ... FOR UPDATE). However, other DB users
can change the data directly through the DBMS tool.

Table Access and Share Mode

In eDeveloper, you open a table with both an access mode and a share mode
as specified in the task’s DB Table repository (CTRL+D). When opening a table,
eDeveloper performs some internal tasks, such as getting the structure of the
table from the database, checking for the table’s existence, and more. If
eDeveloper locks are used, relevant information is written in the mglock file.
Reference Guide 1439

When working with RDBMSs, there is no Open File or Open Table command.
Therefore, the access and share modes have almost no meaning except for the
following cases:

• Share is None - The SQL gateway sends a Lock Table command to the SQL
database. This is done only Oracle and Informix.

• If when a lock is requested the access modes is READ, the share mode is
WRITE, and the table is a linked table, the records of the linked tables will
not be locked. If the access is WRITE, eDeveloper assumes that the linked
table may also be updated, and a lock is issued for it as well.

Physical and Logical Locks

There are two major levels of locks in SQL:

• An exclusive lock, which is automatically generated when an UPDATE
statement is issued.

• A shared lock, which can be issued by a SELECT statement or by adding
the FOR UPDATE clause at the end of a SELECT statement. A shared lock
tells the SQL server that you plan to update the record, and that no
updates will be allowed until this lock is released. If another user tries to
update the record or to send a SELECT ... FOR UPDATE statement, an error
message that the record has been locked by another user is sent to that
user.

Physical Locks

The SELECT ... FOR UPDATE statement is available in Oracle, MSSQL 7,
Informix, and DB2. These RDBMSs support row-level locking. Therefore, when
a lock is requested according to the selected locking strategy, eDeveloper tells
the gateway that the record should be read again with a lock. If a transaction
has not been started, the gateway starts a transaction. Then the gateway
reads the current record with the FOR UPDATE clause (except in MSSQL 7
where it uses the UPDLOCK hint instead).

The procedure described above ensures that no application, including non-
eDeveloper applications, will be able to update the record until the end of the
transaction, which usually occurs after the update is done.
Reference Guide 1440

Example:

The current record is retrieved:

SELECT empnum, ename, deptno, rowid
FROM emp
WHERE rowid= 1111

Returned values: 1 , John, 30
The lock is requested:

SELECT empnum, ename, deptno, rowid
FROM emp
WHERE empnum= 1111
FOR UPDATE NO WAIT

Returned values: 1 , John, 30
Assume that the deptno was changed to 40:

UPDATE emp SET deptno= 40
WHERE rowid= 1111

In batch tasks, when an Immediate locking strategy is used the gateway may
be able to lock the whole dataview, ahead of time.

In Oracle, a SELECT statement can be issued with a FOR UPDATE clause and
an ORDER BY clause. Therefore, when the cursor is defined at the beginning of
the task, it is declared with a FOR UPDATE clause. Then all the records are
fetched from this cursor.

Informix and DB2 do not allow the procedure used by Oracle. Instead, the
cursor is opened, and another cursor is opened with a FOR UPDATE clause for
every record.

For addtional information see the reference material on Operations, in the Link
Join section.

Logical Locks

MSSQL 7 supports both logical and physical locks. To work with logical locks,
the flag SQL_PHYSICAL_LOCKING=N should be specified in the Database
Information field in the Database Properties dialog.
Reference Guide 1441

ODBC supports only page level locking, which may result in locking problems.
Therefore a logical lock strategy is used in which the record is not actually
locked. Instead, eDeveloper verifies, for integrity reasons, that no one
changes the record from the moment the record was logically locked until the
update.

When a lock is requested and eDeveloper asks the gateway to read the record
with a lock, the gateway reads the record and keeps the values of the read
record.

When the UPDATE statement is then issued in the record suffix, all of the
columns are added to the WHERE clause.

If in that period of time the record, which was not locked, has been changed
by another user, the gateway sends a message that the record has been
changed by another user, and the UPDATE fails.

Example:

The current record is retrieved:

SELECT empnum, ename, deptno
FROM emp
WHERE empnum= 1
values: 1 , John, 30
Reference Guide 1442

Lock is requested:

SELECT empnum, ename, deptno
FROM emp
WHERE empnum= 1
values: 1 , John, 30

Assume that the deptno was changed to 40:

UPDATE emp SET deptno= 40
WHERE
empnum= 1 AND ename= John’ AND deptno= 30

The ODBC gateway also uses logical locking behavior because it cannot
assume that a record lock or a FOR UPDATE statement is available in the
accessed database.

Null Value

Nulls represent missing and unknown data. All SQL databases support null
values. A field that has a null value is different from a blank field in an ISAM
file. Null means that the value is not known. Null values require special
handling. If you attempt to do arithmetical operations on a numeric column
and one or more of the values are null, then the result will be null. If an alpha
field allows null values, and you select all records in which the alpha field is
blank, records with the null value in the alpha field will NOT be selected.

Null values do not participate in index searches. It is highly recommended not
to define indexes on columns that are null-allowed.

For example, this SELECT statement

SELECT *
FROM Table1
WHERE Fld1>=4 or Fld1<4

will return all the records in Table1 except for the records where Fld1 is null.

Nulls are represented in a different sort value in each database. For example,
if we perform this SELECT statement in Oracle and in MSSQL, we’ll receive a
different order of records in each database.
Reference Guide 1443

SELECT *
FROM Table1
Order by Fld1 ASC

In Oracle nulls are saved as the highest value in the database, so records with
nulls in column Fld1 will appear as the last records of this SELECT statement.

In MSSQL nulls they are saved as the lowest value in the database, so records
with nulls in column Fld1 will appear as the first records of this SELECT
statement.

Index Definition and Usage

For best response time RDBMS indexes should be used for most data retrieval.
Usually the RDBMS uses one of the indexes when the SQL statement has a
WHERE clause on one or more first segments of that index and the requested
record order is consistent with that index.

Each of the following examples illustrates which SQL statements use the
indexes and when. For these examples, assume there is an index IN1 on fields
F1, F3, F5 of table TBL1, and another index IN2 on F3, F4, F5.

eDeveloper issues this next statement when using the first key and ranging on
F1 with the same expression for FROM and TO, and on F3 with two different
expressions.

Example:

SELECT F1, F2, F3, F4, F5
FROM TBL1
WHERE F1= 1
AND F3=> 100
AND F3=< 200
ORDER BY F1, F3, F5

Index IN1 will be used for the range on F1 and F3. The order will be achieved
automatically by using the index.
Reference Guide 1444

eDeveloper issues the next statement when using the first key and ranging on
F1 with the same expression for FROM and TO, and on field F2 with two
different expressions.

Example:

SELECT F1, F2, F3, F4, F5
FROM TBL1
WHERE F1= 1
AND F2<= ’x’
AND F2>= ’c’
ORDER BY F1, F3, F5

Index IN1 will be used for the range on F1. The RDBMS searches all records
with F1= 1. Only those with F2 between c and x will be in the result table. The
order will be achieved automatically by using the index.

eDeveloper issues this next statement when using the first key and ranging on
F1 with a different expression for FROM and TO, and on field F3 with two
different expressions.

Example:

SELECT F1, F2, F3, F4, F5
FROM tbl1
WHERE F1>= 1
AND F1 <= 10
AND F3>= 100
AND F3<= 200
ORDER BY F1, F3, F5

Index IN1 will be used for the range on F1. The RDBMS searches all records
with F1 between 1 and 10 and compares them to the range of F3 values. The
range on F3 is not done by using the index because the range of the previous
segment was not on a single value. The order will be achieved automatically by
using the index.

eDeveloper issues this next statement when ranging on F1 with a single
expression and on F3 with two different expressions and using the second key.

Example:
Reference Guide 1445

SELECT F1, F2, F3, F4, F5
FROM TBL1
WHERE F1= 1
AND F3>= 100
AND F3<= 200
ORDER BY F3, F4, F5

Index IN1 will be used for the range on F1 and F3. The RDBMS orders query
results by sorting the result table. The second index cannot be used to supply
the requested order because the first index is used for range. Using sort is

relatively fast, as only the result table will be sorted and in most cases it will
be relatively small.

Note: Indexes take up space in the database and are time-consuming when
inserting, updating, and deleting records from the database. In some extreme
cases indexes can cause poor performance for SELECT statements. For
example, when a table’s data consists of less than a block of disk space, which
can be several thousand records for a normal table, a SELECT statement does
not perform well. When accessing the table through an index the RDBMS
actually executes two I/Os; one for the index and one for the data. Executing a
full table scan on a single block that was read into memory in a single I/O is
faster because memory access is always faster than disk I/O. When all of the
columns selected in the query are in the index, the RDBMS will then access
only the Index and not the data - this is called a cover index query.

However, in most cases, indexes will enhance the speed of your application.
Reference Guide 1446

Range Definition

When browsing large tables in relational databases it is important to use
ranges to reduce the number of records in the view. When a table is accessed
without ranges, such as in the APG, some of the operations can take a long
time, especially operations such as locate and page up. To improve
performance the ranges should be on segments of an index.

eDeveloper lets you specify ranges from four places:

• eDeveloper SELECT statement - All ranges mentioned in the eDeveloper
SELECT statement become part of the SELECT statement. The range will
then be handled by the RDBMS with a WHERE clause, even during a
sequential search. eDeveloper receives only the records that answer the
query.

• Range expression at the task level - When using a range expression at task
level, eDeveloper checks each record returned from the database against
the expression, and decides if the record is part of the view. eDeveloper
receives all the records and performs the filtering on its own.

• DB SQL Range – free text that will be concatenated to the WHERE clause
sent to the database as is. This is done for Physical transaction mode tasks
only. There is a need to know the specific database syntax.

• eDeveloper SQL Range – an eDeveloper expression that eDeveloper
translates to the appropriate syntax per database. This is added to the
WHERE clause sent to the database. There is no need for the specific
database syntax.

These four options perform very differently. It is better to put as much of the
range information as possible in the range that can be sent to the database.
Only enter ranges that cannot be expressed otherwise at the task Range level.
Reference Guide 1447

Supported eDeveloper functions for the SQL Where expression

For more information about ranges, refer to the Range/Locate section in
Chapter 6, Programs.

Sorting

Internal sorting in eDeveloper is very costly. It is always best to ask the
RDBMS to sort the data and to supply the records in the required order to
eDeveloper. This is done by using the Sort Using RDBMS feature. For more
information, refer to the Sort Repository section in Chapter 6, Programs.

Stored Procedures

Stored procedures provide a very powerful way to move parts of the
application logic to the server. They can be called from within the eDeveloper
environment by using the Direct SQL feature.

Character functions Len, Lower, Upper, LTrim, RTrim, Trim, MID,
InStr, &, LIKE, IN

Date functions Date, Time, AddDate, AddTime, Year,
Month, Day, Hour, Minute, Second, Str, Val

Arithmetic operators +, -, *, /

Logical functions OR, AND, NOT

Comparison
operators

=, <, <=, >, >=, <>

Null functions NULL, ISNULL

Arithmetic functions ABS, MOD, LOG, EXP, Round

Trigonometric
functions

SIN, ASIN, COS, ACOS, TAN, ATAN

Convert functions ASC, CHR, DStr, TStr
Reference Guide 1448

The syntax of stored procedures differs by database, so using this feature may
conflict with the application’s portability requirements. For more information
see the Direct SQL Command section in Chapter 6, Programs.

Reducing Network Traffic

Reducing network traffic is the best way to improve performance. Follow these
guidelines to reduce traffic on the network:

• Select only the fields you really need from the record. Only those fields will
be received from the database.

• Use ranges that can be sent to the database instead of a Task Range.

• Use Link Inner Join/Left Outer Join instead of Link Validate/Query.

• Use Database Views instead of links, when possible.

Using RDBMS views instead of simple tables can improve performance when
joining tables. eDeveloper’s link operation is implemented by issuing a
separate SELECT statement to the database for every linked table. Batch tasks
can be performed more efficiently by using a view that joins the main file and
the linked files or by using eDeveloper’s Link Inner Join/Left Outer Join
operation instead of Link Validate/Query. Let the database do the join.

Note the differences in how eDeveloper and RDBMSs use the term view:

• eDeveloper uses the term view to describe the fields selected from the
main file together with fields selected from the linked files and virtual
fields calculated by the real fields.

• SQL databases use the term view to describe a predefinepredefined
SELECT statement saved in the internal Data Dictionary and used as a
table. The view definition can join several tables, use statistical functions,
and use a WHERE clause to select part of the records in the table.

Example:

There is a task with a main file containing 10,000 records and three linked
files. If performed in the usual way (using Link Query/Validate), the number of
SELECT cursors opened by the task would be: 1 + 3* 10,000 = 30,001.
Reference Guide 1449

If you use eDeveloper’s Link Inner Join/Left Outer Join operations instead of
Link Validate/Query, the number of SELECT statements executed by the task
would be: 1.

If you define a DB view in the database, the number of SELECT statements
executed by the task would be: 1.

Note that updates on views is sometimes restricted by database limitations.

Incremental Locate

When you use Incremental Locate, every time you type a character
eDeveloper re-issues all the SELECT statements of the task.

It is advisable to avoid the use of the Incremental Locate operation in your
applications.

For more information see the Update operations in Chapter 7, Operations.

Direct SQL

Direct SQL can provide better performance by using RDBMS features that are
not used in normal eDeveloper programming.

Global update to table rows and global delete of table rows are good
examples. It is especially important to use global statements when working in
a Client/Server environment to avoid excessive network traffic.

Another example is using statistical functions such SUM, MAX, or AVG. If you
want a record count, it is more efficient to use SELECT COUNT(*) in a Direct
SQL task than to read records just to count them.

String Time Attribute Mapping

eDeveloper maps an eDeveloper String Time column to CHAR in the database.
If you want to map eDeveloper’s String Time to a Date data type in the
database (Date in Oracle, DateTIMe in MSSQL, etc.), specify MGTime as the
Type property under the column properties/SQL.
Reference Guide 1450

Properties Supported by Various Gateways

Level Property Type Default Applicable
Gateways

DBMS Log Level None,

Developer,

Support,

Customer

None All

Log Name Alpha 255 N/A All

Log Sync Yes/No No All

Show Plan Yes/No No MSSQL

DB2

Maximum
Connections

Number 3 MSSQL

Isolation
Level

Number MSSQL=
0

DB2 = 1

Informix
= 1

MSSQL

DB2

Informix

Check
Existence

Yes/No No All

Database Check
Existence

Yes/No No All

Hint Alpha 255 N/A Oracle

MSSQL

Array size Number 0 Oracle

MSSQL

DB2
Reference Guide 1451

Connect
string

Alpha 255 N/A Oracle

Table Owner Alpha N/A All

Position Default/
Unique Index/
RowID

Default All

Index Unique Index
Number

None All

Check
Existence

Yes/No/As
Database

As
Database

All

Table Type Table/View Table All

Hint flag Yes/No Yes Oracle

MSSQL

Hint Alpha 255 N/A Oracle

MSSQL

Cursor Default/Yes/No Default MSSQL

Array size Numeric 4 N/A Oracle

MSSQL

DB2

Index Clustered Yes/No No MSSQL

Informix

Hint Alpha 255 N/A Oracle

MSSQL

Informix

Drop during
re-index

Yes/No No All

Owner Alpha 255 N/A Informix

Level Property Type Default Applicable
Gateways
Reference Guide 1452

The eDeveloper Database Gateway for Oracle

eDeveloper Data Types
The following table lists eDeveloper attributes with the supported storage
types and the valid data types in Oracle. Each entry in the table has a default
data type that can be forced by specifying that type in the Type property on
the SQL tab in the Column properties dialog.

Note: n is the specified picture number.

Column Type Alpha 255 N/A All

User Type Alpha 255 N/A MSSQL

DB2

eDevelo
per
Attribute

eDevelope
r Storage
Type

eDevelope
r Picture

eDeveloper
Storage Size

Oracle Data
Type

Alpha String n,1-4000 n,1-4000 VARCHAR2

n, 4001-
32700

n, 4001-32700 LONG

Lstring n, 1-255 n+1, 2-256 VARCHAR2

Zstring n, 1-4000 n+1, 2-4001 VARCHAR2

n, 4001-
32700

n+1, 4002-
32701

LONG

Numeric Signed
Integer

n,1-4 2 NUMBER

n, 5-9 4 NUMBER

Unsigned
Integer

n, 1-2 1 NUMBER

Level Property Type Default Applicable
Gateways
Reference Guide 1453

n, 3-4 2 NUMBER

n, 5-9 4 NUMBER

Float n, 1-7 4 NUMBER

n, 8-16 8 NUMBER

Float MS-
Basic

n, 1-7 4 RAW

n, 8-16 8 RAW

Float
Decimal

n, 1-7 4 RAW

n, 8-16 8 RAW

Packed
Decimal

n, 1-10 2*n-1 RAW

Numeric n ,1-18 n RAW

Character
Number

n, 1-18 n-1 RAW

String
Number

n, 1-19 1 n+1 NUMBER

eDeveloper
Number

n, 1-18 n/2+1 1 RAW

C-Isam
Decimal

n, 1-32 n/2+1 1 RAW

Logical Integer
Logical

5 1 NUMBER

5 2 RAW

String
Logical

5 1 RAW

Date String Date ##/##/
####

8 Date 2

eDevelo
per
Attribute

eDevelope
r Storage
Type

eDevelope
r Picture

eDeveloper
Storage Size

Oracle Data
Type
Reference Guide 1454

1 - Note that eDeveloper’s number support is up to 18 digits.
2 - If you want to map eDeveloper String Date to Oracle character, specify
‘CHAR(8)’ as the Type under the column properties/SQL.
3 - If you want to map eDeveloper’s String Time to Oracle Date data type,
specify ‘MGTime’ as the Type property under the column properties/SQL.

Integer
Date

##/##/
####

4 NUMBER

Integer
Date 1901

##/##/
####

4 NUMBER

YYMMDD
Date

##/##/
####

4 RAW

eDeveloper
Date

##/##/
####

4 RAW

eDeveloper
Date 1901

##/##/
####

4 RAW

Time String Time HH:MM:SS 6 CHAR 3

Integer
Time

HH:MM:SS 4 NUMBER

HMSH Time HH:MM:SS 4 NUMBER

eDeveloper
Time

HH:MM:SS 4 RAW

Memo String
Memo

n, 1-1998 n+2 RAW

eDeveloper
Memo

n, 1999 and
above

n+2 LONG RAW

BLOB Binary
Large
Object

12 (default) LONG RAW

eDevelo
per
Attribute

eDevelope
r Storage
Type

eDevelope
r Picture

eDeveloper
Storage Size

Oracle Data
Type
Reference Guide 1455

Blob Mapping Flag

The LONGRAW data type is the eDeveloper BLOB field default for an Oracle
database. There are restrictions from Oracle when using LONGRAW. For
example, only one LONGRAW field can be specified in a record and retrieval is
limited to only this kind of data type value.

You can overcome these restrictions by activating the Default_Blob_to_Blob
flag to change the BLOB field default value to instruct the gateway to use
different mapping without specifying an SQLTYPE. Default_Blob_to_Blob can
be specified for Oracle database entries in the Database Information field
under the SQL tab.

When the flag is set to Yes, the default mapping in the Oracle gateway for an
eDeveloper BLOB will be an Oracle BLOB data type instead of LONG RAW.
When the flag is set to No, the default mapping will be LONG RAW.

Oracle Data Types

The following table shows the results of an eDeveloper Get Definition operation
from an Oracle Table, and shows eDeveloper equivalents for Oracle database
data types.

Oracle Data
Type

Attribut
e

eDevelo
per
Storage
Type

Storage
Size

Picture

CHAR(n)
VARCHAR2(n)

Alpha Zstring n+1,2-
4001

n,1-4000

LONG1 Alpha Zstring Default (1) Default
(0)

LONG RAW1 BLOB Binary
Large
Object

Default
(12)

RAW (n) Alpha String n, 1-2000 n, 1-
2000
Reference Guide 1456

1 -You must set the Picture for LONG and LONG RAW data types columns to the
appropriate size for your application after getting the table’s definition.
2 - By default, Oracle Date data type is mapped to eDeveloper date storage
type. If you want to be able to see all parts of a Date column in the format
‘YYYY/MM/DD HH:MM:SS.mmm’, you should map the Oracle Date data type to
eDeveloper’s Alpha attribute. This can be done by specifying ‘SQL_
DateTOALPHA= Y’ in the Database Information field in the Database Properties
dialog (see the Database Information section in this chapter for more
information).

Long and Long RAW Data Types

After performing a Get Definition on an Oracle table, the user must enter the
appropriate picture that contains a column of type LONG or LONG RAW. By
default, the field that receives the column will have a picture of 0. This picture
is invalid, and the user must enter a valid picture between 1 and 32000.

Hints

Using a Hint String, the developer can specify a hard-coded string that can be
added to the Select statement as is, without being checked. The syntax of a
Hint is :

NUMBER Numeric Float 8 4.3

NUMBER (p,s) Numeric Float 8 p-s,s

NUMBER (p) Numeric Float 8 p

Date2 Date String
Date

8 DD/MM/
YY
YY

ROWID Alpha Zstring 19 18

Oracle Data
Type

Attribut
e

eDevelo
per
Storage
Type

Storage
Size

Picture
Reference Guide 1457

/*+ Oracle Hint */.

It is recommended that you use the Optimizer Hints in special cases only. A full
list of the Optimizer Hints that can be sent to Oracle can be found in the Oracle
documentation.

Database Information

The Database Information parameter (in the Database properties, Table
properties, Column properties, and Index properties) lets you supply
database-dependent information that eDeveloper can pass to the underlying
DBMS. The use of this parameter is optional. The values that can be sent in the
Database Information parameter are:

Database Properties

• SQL_ DateTOALPHA

The SQL_ DateTOALPHA setting automatically converts the RDBMS date field
to an eDeveloper alpha Zstring field with a length of 19 characters and with
the format YYYY- MM- DD HH: MM: SS.

Note: Neither eDeveloper nor the RDBMS can perform data validation on an
Alpha Date field due to the use of the internal date format in the RDBMS. If
you use the SQL_ DateTOALPHA parameter you should implement your own
validity checks for Insert and Update operations. Otherwise, invalid dates can
be inserted in the database.

• NLSSORT= Y

The NLSSORT setting lets the application match character strings that follow
alphabetic conventions. For more information, refer to the NLSSORT Support
section in this chapter.

Table Properties
• TABLESPACE=...

• INITRANS=...

• MAXTRANS=...
Reference Guide 1458

• PCTFREE=...

• PCTUSED=...

• CLUSTER=...

• STORAGE=...

It is possible to specify any of the above parameters in the Table Properties/
Database Information field when you are creating a table in Oracle.

Table Locking

Table locking is available only within an eDeveloper transaction. eDeveloper
will ignore the request if it is issued outside of a transaction. Therefore, Share
None refers to an Exclusive table lock and Share Read refers to a Share table
lock.

Physical Locking

A physical lock is a method that ensures that no one else can modify a record
that is currently locked. Specifically, from the moment a user locks the record
until that user releases the record, the record cannot be modified by another
user. The physical lock is implemented as follows: When eDeveloper locks a
record according to its locking strategy, eDeveloper issues a Select statement
with a FOR UPDATE clause.

The FOR UPDATE clause prevents other applications from making changes to
the record until the end of the transaction.

Views

A View must have a virtual unique index defined. Insert, Update, and Delete
operations are allowed on Views, but only if that View has a ROWID. A View
that is defined on more than one table does not have a ROWID. Therefore, the
Position parameter on the SQL tab in the Table Properties dialog should be
Unique Index, and not Default or ROWID.
Reference Guide 1459

Note: eDeveloper relates to View as a regular table. It is recommended that
you not use eDeveloper to perform any type of rename or convert operations.
If you do execute one of these operations, eDeveloper will display an error
message and will not convert or rename the View in the database.

Unique Identifier

eDeveloper must have a unique row identifier for each table that it opens.
Whenever possible, eDeveloper will use Oracle’s ROWID as the unique
identifier. If the dataview is built from fields from more than one Oracle
database table, there will be no Oracle ROWID, and a unique index must be
entered. This may be a virtual index.

NLSSORT Support

The NLSSORT Support feature lets the application match character strings that
follow alphabetic conventions. Normally, character strings in a WHERE clause
are compared by using the character’s binary values.

Using the NLSSORT Support feature in the WHERE clause allows users to work
on a foreign-language Oracle client while sorting data alphabetically in their
own language.

To use this feature, add the following flag in the DatabaseProperties\SQL\
Database Information field in the Database repository:

NLSSORT= Y

This flag adds the NLSSORT function to all the WHERE clauses that eDeveloper
sends to the database, as follows:

NLSSORT (value) comparison_ operator NLSSORT(column)

For example:

NLSSORT(’A’)=NLSSORT(FLD1)

Note that use of this flag may cause performance problems. Use of this flag
also causes the eDeveloper Database Gateway for Oracle to be case
insensitive.
Reference Guide 1460

Stored Procedures

Procedures without INOUT or OUT parameters must be called as a PL/ SQL
block:

begin procname (par1 int, par2 int); end;

If the procedure accepts more than one parameter, separate the parameters
with commas. If the Oracle parameters are inout or out, the APG button must
be selected before executing the procedure. Do not enter an out parameter in
a stored procedure. Instead, use a comma as a place-holder. Do not add any
punctuation at the end of the procedure.

MSSQL Server Database Gateway

eDeveloper Data Types

The following table lists eDeveloper attributes with the supported storage
types, and the valid data types in MSSQL. Each entry in the table has a default
data type that can be forced by specifying that type in the Type property on
the SQL tab in the Column properties dialog.

Note: n is the specified picture number.

eDevelop
er
Attribute

eDeveloper
Storage
Type

eDevelope
r Picture

eDeveloper
Storage Size

MSSQL
Data
Type

Alpha String n,1-8000 n,1-8000 CHAR

n, 8001-
32700

n, 8001-
32700

Text

Lstring n, 1-255 n+1, 2-256 BINARY

Zstring n, 1-8000 n+1, 2-8001 CHAR

n, 8001-
32700

n+1, 8002-
32701

Text
Reference Guide 1461

Numeric Signed
Integer

n,1-4 2 SMALLINT

n, 5-9 4 INTEGER

Unsigned
Integer

n, 1-2 1 BINARY

n, 3-4 2 BINARY

n, 5-9 4 BINARY

Float n, 1-7 4 REAL

n, 8-16 8 DOUBLE
PRECISIO
N

Float MS-
Basic

n, 1-7 4 BINARY

n, 8-16 8 BINARY

Float
Decimal

n, 1-7 4 BINARY

n, 8-16 8 BINARY

Packed
Decimal

n, 1-10 2*n-1 BINARY

Numeric n ,1-18 n BINARY

Character
Number

n, 1-18 n-1 BINARY

String
Number

n, 1-19 1 n+1 BINARY

eDeveloper
Number

n, 1-18 n/2+1 1 BINARY

C-Isam
Decimal

n, 1-32 n/2+1 1 BINARY

eDevelop
er
Attribute

eDeveloper
Storage
Type

eDevelope
r Picture

eDeveloper
Storage Size

MSSQL
Data
Type
Reference Guide 1462

Logical Integer
Logical

5 1 BIT

5 2 SMALLINT

String
Logical

5 1 BINARY

Date String Date ##/##/
####

8 DateTime
2

Integer Date ##/##/
####

4 INTEGER

Integer Date
1901

##/##/
####

4 INTEGER

YYMMDD
Date

##/##/
####

4 BINARY

eDeveloper
Date

##/##/
####

4 BINARY

eDeveloper
Date 1901

##/##/
####

4 BINARY

Time String Time HH:MM:SS 6 CHAR 3

Integer
Time

HH:MM:SS 4 INTEGER

HMSH Time HH:MM:SS 4 BINARY

eDeveloper
Time

HH:MM:SS 4 BINARY

Memo String Memo n, 1-7998 n+2 VARBINAR
Y

eDeveloper
Memo

n, 7999 and
above

n+2 IMAGE

BLOB Binary Large
Object

12 (default) IMAGE

eDevelop
er
Attribute

eDeveloper
Storage
Type

eDevelope
r Picture

eDeveloper
Storage Size

MSSQL
Data
Type
Reference Guide 1463

1 - Note that eDeveloper’s number support is up to 18 digits.
2 - If you want to map eDeveloper String Date to MSSQL character, specify
‘CHAR(8)’ as the Type under the column properties/SQL.
3 - If you want to map eDeveloper’s String Time to MSSQL DateTime data type,
specify ‘MGTime’ as the Type property under the column properties/SQL.

MS-SQL Data Types

The following table shows the results of an eDeveloper Get Definition operation
from an MS-SQL Table. eDeveloper equivalents for Microsoft SQL server data
types are shown.

SQL Server
Data Type

Attribut
e

eDeveloper
Storage Type

Storage
Size

Picture

CHAR(n),
VARCHAR(n)

Alpha Zstring n+1, 2-
8001

n, 1-8000

Text 1 Alpha Zstring Default (11) Default (10)
1

INTEGER Numeric Signed Integer 4 10

SMALLINT Numeric Signed Integer 2 5

TINYINT Numeric Unsigned Integer 1 3

NUMERIC(p, s) Numeric Float 8 p-s, s

DECIMAL(p, s) Numeric Float 8 p-s, s

DOUBLE
PRECISION

Numeric Float 8 According to
the Float
property in
the DBMS
Properties
(default –
10.3)

FLOAT,

REAL

Numeric Float 4 5.2
Reference Guide 1464

1 -You must set the Picture for Text data type columns to the appropriate size
for your application after getting the table’s definition.
2 - By default, MSSQL Date data types (DateTime, SMALLDateTime) are
mapped to eDeveloper date storage type. If you want to be able to see all
parts of a DateTime/ SMALLDateTime column in the format ‘YYYY/MM/DD
HH:MM:SS.mmm’ for DateTime, and ‘YYYY/MM/DD HH:MM’ for
SMALLDateTime, you should map the MSSQL DateTime/ SMALLDateTime to
eDeveloper’s Alpha attribute. This can be done by specifying ‘SQL_
DateTOALPHA= Y’ in the Database Information field in the Database Properties
dialog (see the Database Information section in this chapter).

MONEY Numeric Float 8 According to
the Float
property in
the DBMS
Properties
(default –
10.3)

SMALLMONEY Numeric Float 4 5.2

DateTime 2 Date String Date 8 ##/##/
####

SMALLDateTime
2

Date String Date 8 ##/##/
####

BINARY(n),
VARBINARY(n)

Alpha String n, 1- 8000 n, 1-8000

IMAGE BLOB Binary Large
Object

Default (12)

BIT Logical Integer Logical 1 5

TimeSTAMP Alpha String 8 8

SQL Server
Data Type

Attribut
e

eDeveloper
Storage Type

Storage
Size

Picture
Reference Guide 1465

Text Data Type

The user must enter the appropriate picture, after performing a Get Definition
on a MSSQL table, which contains a column of type Text. By default, the field
that receives the column will have a picture of 10, and the user must enter a
valid picture between 1 and 32000.

Physical Locking

A physical lock is a method that ensures that no one else can modify a record
that is currently locked.

Specifically, from the moment a user locks the record until that user releases
the record, the record cannot be modified by another user. The physical lock is
implemented as follows: When eDeveloper locks a record according to its
locking strategy, eDeveloper issues a Select statement with a UPDLOCK hint.

The UPDLOCK hint prevents other applications from making changes to the
record until the end of the transaction.

Logical locking is also available by using the flag SQL_PHYSICAL_LOCKING=N.
For more information, refer to the Database Information section in this
chapter.

Hints

Using a Hint String, the developer can specify a hard-coded string that will be
added to the Select statement as is, without being checked.

Specifying FORCE_ INDEX Hint in the Index Properties dialog applies to this
index only. Specifying FORCE_ INDEX Hint in the Table Properties dialog
applies to all the indexes in that table, and specifying FORCE_ INDEX Hint in
the Database Properties dialog applies to all the indexes in all the tables in the
database.

If you specify a FORCE_ INDEX Hint in the Table or Index Properties dialog,
and you do not want the gateway to force the optimizer to use an index for a
specific index, or for all indexes in a particular table, then you can set the Hint
Reference Guide 1466

to NO in the Table or Index Properties dialog, and the optimizer hint will not be
issued.

FORCE_ INDEX Hint can cause the gateway to force the index in the following
manner:

eDeveloper will add the following to the Select statement generated by the
gateway:

“(INDEX indname)”

where indame will be the name of the index for that particular table in
eDeveloper.

It is recommended that you use the Optimizer Hints in special cases only. A full
list of the optimizer hints that can be sent to MSSQL can be found in the
MSSQL documentation.

Identity Column

Columns that have the IDENTITY property contain system-generated values
that uniquely identify each row within a table. This is used to generate
sequential numbers (for example, employee identification numbers). When
inserting values into a table with an identity column, MSSQL automatically
generates the next identifier based on the last used identity value
(incremented by adding rows) and the increment value specified during
column creation.

By default, data cannot be inserted directly into an identity column.

IDENTITY column is usually defined to be used as position for a table in
eDeveloper; therefore it has to be selected in the eDeveloper task. This means
that the INSERT command that will be issued by the task will contain this
column. Since MSSQL does not allow updating this column’s value manually,
an error message should appear. The solution is to identify to eDeveloper that
a column is an IDENTITY column, and to disregard this column in eDeveloper’s
Insert commands.

This was implemented in the eDeveloper MSSQL gateway, in the following
way:
Reference Guide 1467

A column will be identified as an IDENTITY column by adding the keyword
“IDENTITY” to the Type Property in the SQL Tab of the Column Properties,
following the SQLType of the column. This will either be done by the
eDeveloper Programmer (if the table is created from eDeveloper) or by the
gateway when the programmer issues Get Definition. This will indicate to the
gateway to handle this column as IDENTITY.

Example:

An INT column that has an IDENTITY property should be defined as:
 INT IDENTITY
in the Type field in the Column Properties/SQL section.

An IDENTITY column will be skipped when the gateway issues an INSERT
command.

In Get Definition, the default for IDENTITY columns will be “Non Modifiable”.

Note: If the programmer changes the Modifiability of an IDENTITY column to
Yes and updates it in a task, an error message will result.

Views

A View must have a virtual unique index defined. Insert, Update, and Delete
operations are permitted on Views. MS-SQL allows updates on multiple table
views. If one of the segments of the Position Index is updated, records shown
on the screen may become inconsistent. It is important to note that
eDeveloper considers a View as a regular table. eDeveloper should not be used
to perform any rename or convert operations. If eDeveloper is used to execute
any rename or convert operations, eDeveloper will display an error message
and will not convert/ rename the View in the database.

Temporary Tables

Temporary tables are tables that are dropped automatically by MSSQL when
MSSQL has finished working with them. There are two kinds of temporary
tables: Local and Global.
Reference Guide 1468

Local Temporary Tables

A local temporary table is visible only in the current session and is dropped
automatically at the end of the current session. Its name is prefixed with a
single number sign (#table_name).

Notes:

• Local temporary tables cannot be created in a sub-task. In order to create
a local temporary table on the fly, you must define it in the DB table of the
parent task. Another option is to work with global temporary tables.

• Local temporary tables cannot be viewed using Direct SQL. Use global
temporary tables instead.

• Local temporary tables cannot be created when the MCF file is also stored
in MSSQL. In order to do this, define two separate DB entries in
eDeveloper - one for the MCF file and another for the data. Another option
is to work with global temporary tables.

Global Temporary Tables

A global temporary table is visible to all sessions. Global temporary tables are
automatically dropped when the session that created the table ends and all
other tasks have stopped referencing them.

The association between a session and a table is maintained only for the life of
a single Transact-SQL statement. This means that a global temporary table is
dropped at the completion of the last Transact-SQL statement that was
actively referencing the table when the creating session ended.

Global temporary table names are prefixed with a double number sign
(##table_name).

Global and local temporary tables are automatically created in TempDB by
MSSQL, regardless of from which database the CREATE command was issued.

Temporary tables are automatically dropped when they go out of scope, unless
they have already been explicitly dropped using DROP TABLE.
Reference Guide 1469

The MSSQL gateway supports storing temporary tables in the TempDB
database simply by adding the number sign (‘#’ or ‘##’) as the prefix of the
table name in the Table Repository.

Cursors and DB Commands

There are two ways to work with MSSQL – using Cursors or using DB
Commands.

DB Commands

The gateway uses cursors by default. When processing a large number of
records in an eDeveloper task, such as in a batch task that scans a file, it is
possible to change the default setting by changing the Cursor parameter in the
Table Properties dialog to No. This will cause the gateway to use DB commands
instead of cursors, requiring separate connections for each result set. The
maximum number of connections is user-defined, and the default setting for
the maximum number of connections is 3.

The gateway can send only one DB command in the current connection (in
addition to numerous cursors). If another DB command should be issued, a
new connection will be opened. DB commands are used for commands that
execute a single record or command, such as fetching a linked record, CREATE
TABLE command, or a executing a Direct SQL task. Generally speaking, the
greater the number of connections the gateway uses, the better the client
performance. However, at the same time memory requirements increase while
server performance decreases. If all of the existing connections are already
used by a pending command and a new connection is needed, an existing
connection will be freed for your use according to the LRU algorithm. This can
affect performance adversely, because the released command will eventually
be reissued.

If a Direct SQL batch task is used (Stored Procedure or Select statement), the
gateway is unable to reuse this connection until all the results have been
fetched. If nested direct SQL batch tasks are used, and the maximum number
of connections the gateway can use is not enough, the following error message
will appear:
Reference Guide 1470

MS-SQL Gateway: No more connections available.

If this happens, try increasing Max Connections in the DBMS properties. If this
error message still appears, either increase the value of the parameter noted
in the error message or modify your application, so that it does not use the
nested Direct SQL tasks.

Cursors

The MSSQL gateway uses Dynamic cursors for Online tasks and KeySet
cursors for Batch tasks.

• Relevant Parameters

• Setting the Table Properties/SQL/Cursor parameter to No disables
the use of cursors on the specific table and uses DB command
instead.

• Setting the Max Connections parameter in the DBMS Properties
dialog controls the maximum number of connections the gateway
can use. The default value is 3 (plus 1 extra) connections. The extra
connection is used by the gateway for commands that fetch a single
record, or for a command without fetchable results, such as Update.
This number is for the Server/User-name pairs. If you have defined
several databases in Settings/Databases, and some of them use
different servers or different user names, this number applies to
each database that has a different server or user name.

Database Information

The Database Information parameter in the Database Properties, Table
Properties, Column Properties and Index Properties dialogs lets you supply
database-dependent information that eDeveloper can pass to the underlying
DBMS. The use of this parameter is optional. The values that can be sent in the
Database Information are:

Database Properties

• SQL_ DateTOALPHA
Reference Guide 1471

The SQL_ DateTOALPHA setting automatically converts the RDBMS date
field to an eDeveloper alpha Zstring field with a length of 19 characters
and with the format YYYY- MM- DD HH: MM: SS.

Note: Neither eDeveloper nor the RDBMS can perform data validation on
an Alpha_ Date field due to the use of the internal date format in the
RDBMS. If you use the SQL_ DateTOALPHA parameter you should
implement your own validity checks for Insert and Update operations.
Otherwise, invalid dates can be inserted in the database.

• SQL_PHYSICAL_LOCKING

MSSQL supports physical locking at the row level as a default in
eDeveloper Version 9. In order to use logical locking (as in previous
versions), add the flag:

SQL_PHYSICAL_LOCKING=N

in the Database Information field in the Database properties. When this
flag is set to Y or the flag is not set at all, eDeveloper sends the UPDLOCK
table hint in the FROM clause as described below:

SELECT a,b
FROM tab1 (UPDLOCK NOWAIT)
ORDER BY a

When this flag is set to N, the locking behavior will be logical locking as it
was in previous versions.

• SQLOwner

The MSSQL gateway supports opening an MCF file whose owner is
different from the connection owner and is identified by NT authentication.

A user wanting to use NT authentication instead of SQL user, only needs to
leave the User and Password fields empty in the Database entry of the
Database repository. In this case, the owner is determined according to
the login information specified in the MSSQL server. A problem is that you
cannot use the NT authentication when your MCF belongs to another
owner (other than the one specified in the login information of the MSSQL
server).
Reference Guide 1472

To solve the problem, simply specify the owner of the MCF in the Database
Information field of the Database entry in the format:

SQLOwner="xxxx"

where ‘xxxx’ is the owner name.

Table Properties

• SQLBLOB

The parameter SQLBLOB= n allows you to specify n, the size in bytes of the
largest BLOB in a table. The default value is 65534. The maximum value is
2147483647. The value of SQLBLOB is relevant only in Direct SQL and
Convert in the following two cases:

• when executing a stored procedure with BLOBs from Direct SQL

or

• when using a direct SQL statement with a Result Database in
Btrieve, or when converting a file to Btrieve, Btrieve has a limitation
of 65534 for each BLOB. You can reduce the value of SQLBLOB to
below 65534, but any attempt to increase it above 65534 will have
no effect.

Direct SQL

BLOB variables are not supported as input parameters for Direct SQL
statements used in an MSSQL database.

Informix Database Gateway

eDeveloper Data Types

The following table lists eDeveloper attributes with the supported storage
types and the valid data types in Informix. Each entry in the table has a
default data type that can be forced by specifying that type in the Type
property on the SQL tab in the Column Properties dialog.
Reference Guide 1473

Note: n is the specified picture number.

eDevel
oper
Attribut
e

eDeveloper
Storage Type

eDevelop
er Picture

eDeveloper
Storage
Size

Informix
Data Type

Alpha String n,1-32700 n,1-32700 CHAR

Lstring n, 1-32700 n+1, 2-
32701

CHAR

Zstring n, 1-32700 n+1, 2-
32701

CHAR

Numeric Signed Integer n,1-4 2 SMALLINT

n, 5-9 4 INTEGER

Unsigned
Integer

n, 1-2 2 CHAR

n, 3-4 3 CHAR

n, 5-9 5 CHAR

Float n, 1-7 4 FLOAT

n, 8-16 8 DOUBLE

Float MS-Basic n, 1-7 4 CHAR

n, 8-16 8 CHAR

Float Decimal n, 1-7 4 CHAR

n, 8-16 8 CHAR

Packed Decimal n, 1-10 2*n-1 CHAR

Numeric n ,1-18 n CHAR

Character
Number

n, 1-18 n-1 CHAR

String Number n, 1-19 1 n+1 CHAR

eDeveloper
Number

n, 1-18 n/2+1 1 CHAR

C-Isam Decimal n, 1-32 n/2+1 1 CHAR
Reference Guide 1474

1 - Note that eDeveloper’s number support is up to 18 digits.
2 - If you want to map eDeveloper’s String Time to Informix Date data type,
specify ‘MGTime’ as the Type property under the column properties/SQL.

Logical Integer Logical 5 n,1-2 SMALLINT

String Logical 5 1 CHAR

Date String Date ##/##/
####

8 Date

Integer Date ##/##/
####

4 INTEGER

Integer Date
1901

##/##/
####

4 INTEGER

YYMMDD Date ##/##/
####

4 CHAR

eDeveloper Date ##/##/
####

4 CHAR

eDeveloper Date
1901

##/##/
####

4 CHAR

Time String Time HH:MM:SS 6 CHAR 2

Integer Time HH:MM:SS 4 INTEGER

HMSH Time HH:MM:SS 4 NUMBER

eDeveloper Time HH:MM:SS 4 CHAR

Memo String Memo n, 1-1998 n+2 CHAR

eDeveloper
Memo

n, 1999
and above

n+2 CHAR

BLOB Binary Large
Object

12 (default) BYTE

eDevel
oper
Attribut
e

eDeveloper
Storage Type

eDevelop
er Picture

eDeveloper
Storage
Size

Informix
Data Type
Reference Guide 1475

Informix Data Types

The following table shows the results of an eDeveloper Get Definition operation
from an Informix Table, and shows eDeveloper equivalents for the Informix
database data types.

Informix Data
Type

Attribut
e

eDeveloper
Storage
Type

Storage Size Picture

CHAR(n) Alpha Zstring n+1, 2-
32701

n, 1-32700

VARCHAR(n) Alpha Zstring n+1, 2- 256 n, 1-255

INTEGER Numeric Signed
Integer

4 4

SMALLINT Numeric Signed
Integer

2 2

FLOAT Numeric Float 8 According to
the Float
property in
the DBMS
Properties
(default –
10.3)

SMALLFLOAT Numeric Float 4 4

DOUBLE Numeric Float 8 According to
the Float
property in
the DBMS
Properties
(default –
10.3)

DECIMAL(p,s) Numeric Float 8 8

MONEY(p,s) Numeric Float 8 8

Date Date String Date 8 DD/MM/YYYY
Reference Guide 1476

Views and Fragmented Tables

Tables consisting of Views, or fragmented tables without a ROWID, must have
a unique index that can be either virtual or real. Certain views defined by
Informix as non-modifiable views are Read-Only, and Insert, Update, and
Delete operations are not permitted.

It is important to note that eDeveloper considers Views and fragmented tables
as regular tables. eDeveloper should not be used to perform any rename or
convert operations. An attempt to use these operations will cause eDeveloper
to display an

error message and will not do the Convert or Rename of the View in the
database.

A View that is defined on more than one table does not have a ROWID, and
that is the reason that the Position parameter on the SQL tab in the Table
Properties dialog should be set to Unique Index and not to the default.

Table Locking

Table Locking is available only within an eDeveloper transaction. eDeveloper
will ignore the request if it is issued outside of a transaction. Therefore, Share
None refers to an Exclusive table lock and Share Read refers to a Share table
Lock.

DateTime Alpha Zstring 1-25

INTERVAL Alpha Zstring 1-24

BYTE BLOB Binary large
Object

SERIAL Numeric Signed
Integer

4 4

Informix Data
Type

Attribut
e

eDeveloper
Storage
Type

Storage Size Picture
Reference Guide 1477

Physical Locking

A physical lock is a method that ensures that no one else can modify a record
that is currently locked.

Specifically, from the moment a user locks the record until that user releases
the record, the record cannot be modified by another user. The physical lock is
implemented as follows: When eDeveloper locks a record according to its
locking strategy, eDeveloper issues a Select statement with a FOR UPDATE
clause.

The FOR UPDATE clause prevents other applications from making changes to
the record until the end of the transaction.

Text and Byte Data Types

The user must enter the appropriate picture, after performing a Get Definition
on an Informix table, which contains a column of type Text or BYTE. By
default, the field that receives the column will have a picture of 0. This picture
is invalid, and the user must enter a valid picture between 1 and 32000.

DB2 Database Gateway

eDeveloper Data Types

The following table lists eDeveloper attributes with the supported storage
types and the valid data types in DB2. Each entry in the table has a default
data type that can be forced by specifying that type in the Type property on
the SQL tab in the Column Properties dialog.

Note: n is the specified picture number.
Reference Guide 1478

eDevelo
per
Attribut
e

eDeveloper
Storage Type

eDevelope
r Picture

eDevelop
er
Storage
Size

DB2 Data Type

Alpha String n,1-254 n,1-255 BINARY

n, 255-
32700

n, 256-
32700

LONGVARBINARY

Lstring n, 1-254 n+1, 2-
255

BINARY

Zstring n, 1-254 n+1, 2-
255

CHAR

n, 255-
32700

n+1, 256-
32701

LONGVARCHAR

Numeric Signed Integer n,1-4 2 SMALLINT

n, 5-9 4 INTEGER

Unsigned
Integer

n, 1-2 1 SMALLINT

n, 3-4 2 SMALLINT

n, 5-9 4 INTEGER

Float n, 1-7 4 FLOAT

n, 8-16 8 DOUBLE

Float MS-Basic n, 1-7 4 BINARY

n, 8-16 8 BINARY

Float Decimal n, 1-7 4 BINARY

n, 8-16 8 BINARY

Packed
Decimal

n, 1-10 2*n-1 BINARY

Numeric n ,1-18 n BINARY

Character
Number

n, 1-18 n-1 BINARY
Reference Guide 1479

String Number n, 1-19 1 n+1 BINARY

eDeveloper
Number

n, 1-18 n/2+1 1 BINARY

C-Isam
Decimal

n, 1-32 n/2+1 1 BINARY

Logical Integer Logical 5 n,1-2 BINARY

String Logical 5 1 BINARY

Date String Date ##/##/
####

8 Date 2

Integer Date ##/##/
####

4 BINARY

Integer Date
1901

##/##/
####

4 BINARY

YYMMDD Date ##/##/
####

4 BINARY

eDeveloper
Date

##/##/
####

4 BINARY

eDeveloper
Date 1901

##/##/
####

4 BINARY

Time String Time HH:MM:SS 6 Time 3

Integer Time HH:MM:SS 4 BINARY

HMSH Time HH:MM:SS 4 BINARY

eDeveloper
Time

HH:MM:SS 4 BINARY

Memo String Memo n, 1-255 n+2 BINARY

eDeveloper
Memo

n, 255 and
above

n+2 LONGVARBINARY

eDevelo
per
Attribut
e

eDeveloper
Storage Type

eDevelope
r Picture

eDevelop
er
Storage
Size

DB2 Data Type
Reference Guide 1480

1 - Note that eDeveloper’s number support is up to 18 digits.
2 - If you want to map eDeveloper String Date to DB2 character, specify
‘CHAR(8)’ as the Type under the column properties/SQL.
3 - If you want to map eDeveloper’s String Time to DB2 Time data type, you
can also specify ‘MGTime’ as the Type property under the column properties/
SQL.

DB2 Data Types

The following table shows the results of an eDeveloper Get Definition operation
from a DB2 Table, with eDeveloper equivalents for DB2 data types.

BLOB Binary Large
Object

12
(default)

BLOB

DB2 Data Type Attribut
e

eDeveloper
Storage
Type

Storage
Size

Picture

CHAR(n) Alpha Zstring n+1, 2- 255 n, 1-254

VARCHAR(n) Alpha Zstring n+1, 2-
4001

n, 1-4000

LONGVARCHAR(n) Alpha Zstring n+1, 2-
32701

n, 1-32700

INTEGER Numeric Signed
Integer

4 10

SMALLINT Numeric Signed
Integer

2 5

DECIMAL(p, s) Numeric Float 8 p-s, s

eDevelo
per
Attribut
e

eDeveloper
Storage Type

eDevelope
r Picture

eDevelop
er
Storage
Size

DB2 Data Type
Reference Guide 1481

Views

A View must have a virtual unique index defined. Insert, Update, and Delete
operations are permitted.

It is important to note that eDeveloper considers a View as a regular table.
eDeveloper should not be used to perform any rename or convert operations.
If eDeveloper is used to execute any rename or convert operations,
eDeveloper will display an error message and will not convert or rename the
View in the database.

Physical Locking

A physical lock is a method that ensures that no one else can modify a record
that is currently locked. Specifically, from the moment a user locks the record
until that user releases the record, the record cannot be modified by another
user. The physical lock is implemented as follows: When eDeveloper locks a
record according to its locking strategy, eDeveloper issues a Select statement
with a FOR UPDATE clause.

DOUBLE Numeric Float 8 According to the
Float property in
the DBMS
Properties
(default – 10.3)

FLOAT Numeric Float 4 5.2

Date Date String Date 8 ##/##/####

Time Time String Time 6 ##:##:##

BLOB BLOB Binary Large
Object

Default
(12)

TimeSTAMP Date String Date 8 8

DB2 Data Type Attribut
e

eDeveloper
Storage
Type

Storage
Size

Picture
Reference Guide 1482

The FOR UPDATE clause prevents other applications from making changes to
the record until the end of the transaction.

Using DB2 Handles

The DB2 Gateway is written in CLI, which requires the use of handles.

Handles are data objects that contain information about a single SQL
statement. The handles are allocated at the beginning and released when the
SQL statement is no longer used. Each eDeveloper cursor is a SQL statement
that correlates to a DB2 handle. The statement handle is allocated the first
time the cursor is opened; specifically the first time eDeveloper tries to fetch
records from the table or file.

The statement handle is released only when the cursor is released or dropped.
This is done because the cursor can be opened more than once. Link cursors
are reopened for each record fetched, while main cursors are not reopened
every time you go to the next page. Reallocating the statement each time will
degrade performance.

As a result, for non-resident tasks, the handle is released when the task is
closed, or for resident tasks, the handle is released when you exit eDeveloper
runtime.

In DB2, the open handles limit is based on the isolation level: for each
isolation level there is a limit of open handles. In eDeveloper, the isolation
level can be set in the database level, and tables can be mapped to a different
database in eDeveloper. This will result in different handles remaining open in
different isolation levels, and the number of open handles remaining higher.
Reference Guide 1483

ODBC Database Gateway
This section describes the options available for the eDeveloper Database
Gateway for ODBC.

eDeveloper Data Types

The following table lists eDeveloper attributes with the supported storage
types and the valid data types in ODBC. Each entry in the table has a default
data type that can be forced by specifying that type in the Type property on
the SQL tab in the Column properties dialog.

Note: n is the specified picture number.

eDevelo
per
Attribut
e

eDevelope
r Storage
Type

eDeveloper
Picture

eDeveloper
Storage Size

ODBC Data
Type

Alpha String n,1-8000 n,1-8000 CHAR

n, 8001-32700 n, 8001-32700 Text

Lstring n, 1-255 n+1, 2-256 BINARY

Zstring n, 1-8000 n+1, 2-8001 CHAR

n, 8001-32700 n+1, 8002-
32701

Text

Numeric Signed
Integer

n,1-4 2 SMALLINT

n, 5-9 4 INTEGER

Unsigned
Integer

n, 1-2 1 BINARY

n, 3-4 2 BINARY

n, 5-9 4 BINARY

Float n, 1-7 4 REAL
Reference Guide 1484

n, 8-16 8 DOUBLE
PRECISION

Float MS-
Basic

n, 1-7 4 BINARY

n, 8-16 8 BINARY

Float
Decimal

n, 1-7 4 BINARY

n, 8-16 8 BINARY

Packed
Decimal

n, 1-10 2*n-1 BINARY

Numeric n ,1-18 n BINARY

Character
Number

n, 1-18 n-1 BINARY

String
Number

n, 1-19 1 n+1 BINARY

eDeveloper
Number

n, 1-18 n/2+1 1 BINARY

C-Isam
Decimal

n, 1-32 n/2+1 1 BINARY

Logical Integer
Logical

5 1 BIT

5 2 SMALLINT

String
Logical

5 1 BINARY

Date String Date ##/##/#### 8 DateTime 2

Integer
Date

##/##/#### 4 INTEGER

eDevelo
per
Attribut
e

eDevelope
r Storage
Type

eDeveloper
Picture

eDeveloper
Storage Size

ODBC Data
Type
Reference Guide 1485

1 - Note that eDeveloper’s number support is up to 18 digits.
2 - If you want to map eDeveloper String Date to ODBC character, specify
‘SQL_CHAR(8)’ as the Type under the column properties/SQL.
3 - If you want to map eDeveloper’s String Time to ODBC DateTime data type,
you can also specify ‘MGTime’ as the Type property under the column
properties/SQL.

Integer
Date 1901

##/##/#### 4 INTEGER

YYMMDD
Date

##/##/#### 4 BINARY

eDeveloper
Date

##/##/#### 4 BINARY

eDeveloper
Date 1901

##/##/#### 4 BINARY

Time String Time HH:MM:SS 6 CHAR 3

Integer
Time

HH:MM:SS 4 INTEGER

HMSH Time HH:MM:SS 4 BINARY

eDeveloper
Time

HH:MM:SS 4 BINARY

Memo String
Memo

n, 1-7998 n+2 VARBINARY

eDeveloper
Memo

n, 7999 and
above

n+2 IMAGE

BLOB Binary
Large
Object

12 (default) IMAGE

eDevelo
per
Attribut
e

eDevelope
r Storage
Type

eDeveloper
Picture

eDeveloper
Storage Size

ODBC Data
Type
Reference Guide 1486

ODBC Data Types

The following table shows the results of an eDeveloper Get Definition operation
from an ODBC table, and shows eDeveloper equivalents for Microsoft ODBC
data types.

ODBC Data Type Attribut
e

eDeveloper
Storage
Type

Storage
Size

Picture

SQL_CHAR Alpha Zstring n+1, 2- 256 n, 1-255

SQL_VARCHAR Alpha Zstring n+1, 2- 256 n, 1-255

SQL_LONGVARCH

AR 1
Alpha Zstring Default (0) Default (0)

1

SQL_BIGINT Numeric Signed
Integer

4 10

SQL_INTEGER Numeric Signed
Integer

4 10

SQL_SMALLINT Numeric Signed
Integer

2 5

SQL_TINYINT Numeric Unsigned
Integer

1 3

SQL_DOUBLE Numeric Float 8 According
to the Float
property in
the DBMS
Properties
(default –
10.3)

SQL_FLOAT Numeric Float 4 5.2

SQL_REAL Numeric Float 4 5.2
Reference Guide 1487

1 -You must set the Picture for SQL_LONGVARCHAR data type columns to the
appropriate size for your application after getting the table’s definition.

SQL_NUMERIC Numeric Float 8 According
to the Float
property in
the DBMS
Properties
(default –
10.3)

SQL_DECIMAL Numeric Float 8 According
to the Float
property in
the DBMS
Properties
(default –
10.3)

SQL_Date Date String Date 8 ##/##/
####

SQL_Time Time String Time 6 ##:##:##

SQL_BINARY Alpha Zstring N+1, 2- 256 n, 1-255

SQL_VARBINARY Alpha Zstring N+1, 2- 256 n, 1-255

SQL_LONGVARBIN
ARY

BLOB Binary Large
Object

Default (12)

SQL_BIT Logical Integer
Logical

1 5

TimeSTAMP Date String Date 8 ##/##/
####

ODBC Data Type Attribut
e

eDeveloper
Storage
Type

Storage
Size

Picture
Reference Guide 1488

Locking

No explicit table locks exist in ODBC. Therefore, Share-None and Share-Read
have no effect. The underlying database engine itself executes the locking.

Troubleshooting

Use the following layered approach to solve problems you may encounter
when using the eDeveloper Database Gateway for ODBC. Test the ODBC
driver. If you can access the data successfully but the gateway is still not
functioning correctly, test the ODBC driver itself using a tool such as Microsoft
Query or ODBC Test. If the data can be accessed through those tools, then the
ODBC driver is correctly installed. You can also use the ODBC Check Driver
utility provided by eDeveloper. For more information, refer to the ODBC Check
Driver Utility section in this chapter.

Views
A View must have a virtual unique index defined. Insert, Update, and Delete
operations are permitted on Views. It is important to note that eDeveloper
considers a View as a regular table. eDeveloper should not be used to perform
any rename or convert operations. If eDeveloper is used to execute any
rename or convert operations, eDeveloper will display an error message and
will not convert or rename the View in the database.

Database Default Values

ODBC does not support default values.

Sort/Temporary Database

ODBC cannot be the database for Sort or Temporary tables.
Reference Guide 1489

Direct SQL

ODBC cannot be the Result Database in Direct SQL tasks.

ODBC Check Driver Utility
The ODBC Check Driver utility is included with the ODBC driver. Running this
program tests the ODBC data source and prints a list of functions that are
produced by the driver. The test will tell you whether or not the driver can be
used with the eDeveloperGate Database Gateway for ODBC.

The MGCHKDRV utility was built to check any driver of ODBC for information.

The log file used in this example was produced by running the utility
against an MS Access data source, but the structure of the log is the same
for all data sources and differences appear only in the retrieved text. Text
appearing in courier 10 font comes from the log file.

Follow these steps to execute an SQL statement using the ODBC utility. The
first part of each step, shown in italics, indicates the option that you can
activate from the ODBC Test utility menu.

1. Connect\Full Connect – connect to the database

2. Statement\AllocStmt – allocate a statement handle

3. Statement\SQLExecDirect - execute the SQL statement you want

4. Results\SQLGetData All – get all the retrieved data

5. Statement\FreeStmt – free the statement

6. Connect\Full Disconnect – disconnect from the database

The Check Driver utility retrieves information about the data source in eight
sections:

Section No. Information in Section

1 Driver and DBMS Product
Information

2 Data Source Information
Reference Guide 1490

ODBC Gateway - Data Source Information

The following information appears in the mgchckdrv.log file, or in any other log
file you specify.

Section 1: Driver and DBMS Product Information

The utility connects to the data source selected and sends the SQLGetInfo
function, which returns general information about the driver associated with
the connection’s allocated handle.

 In order to retrieve the same information, simply connect to the data source
using Connect\Full Connect, and select Connect\SQLGetInfo with the specific
fInfoType you want. The result is in the rgbInfoValue field in the result window.

SQL_DBMS_NAME = ACCESS

A character string with the name of the DBMS product accessed by the driver.

SQL_ODBC_VER = 03.51

A character string with the version of ODBC to which the Driver Manager
conforms. The version is of the form ##.##, where the first two digits are the
major version and the next two digits are the minor version. This is
implemented solely in the Driver Manager.

SQL_DRIVER_NAME = odbcjt32.dll

3 SQL statements supported by the
datasource

4 SQL Limits

5 DBMS Type support

6 SQL_KEYWORDS

7 Functions

8 Example for the syntax of DML
commands

Section No. Information in Section
Reference Guide 1491

A character string with the filename of the driver used to access the data
source.

SQL_DRIVER_ODBC_VER = 03.51, major = 3, minor = 51

A character string with the version of ODBC that the driver supports. The
version is of the form ##.##, where the first two digits are the major version
and the next two digits are the minor version. SQL_SPEC_MAJOR and
SQL_SPEC_MINOR define the major and minor version numbers. For the
version of ODBC described in this manual, these are 2 and 0, and the driver
should return “02.00". If a driver supports SQLGetInfo but does not support
this value of the fInfoType argument, the Driver Manager returns ”01.00".

SQL_DRIVER_VER = 04.00.3513

A character string with the version of the driver and, optionally a description of
the driver. At a minimum, the version is of the form ##.##.####, where the
first two digits are the major version, the next two digits are the minor
version, and the last four digits are the release version.

SQL_DBMS_VER = 01.00.0000

A character string indicating the version of the DBMS product accessed by the
driver. The version is of the form ##.##.####, where the first two digits are
the major version, the next two digits are the minor version, and the last four
digits are the release version. The driver must render the DBMS product
version in this form, but can also append the DBMS product-specific version as
well. For example, “04.01.0000 Rdb 4.1".

SQL_DATABASE_NAME = C:\gateways\ODBCSDK\SMPLDATA\ACCESS\SAMPLE

A character string with the name of the current database in use, if the data
source defines a named object called “database.”

Note: In ODBC 2.0, this value of fInfoType has been replaced by the
SQL_CURRENT_QUALIFIER connection option. ODBC 2.0 drivers should
continue to support the SQL_DATABASE_NAME information type, and ODBC
2.0 applications should only use it with ODBC 1.0 drivers.

SQL_ACTIVE_CONNECTIONS = 64

A 16-bit integer value specifying the maximum number of active connection
handles that the driver can support. This value can reflect a limitation imposed
Reference Guide 1492

by either the driver or the data source. If there is no specified limit or the limit
is unknown, this value is set to zero.

SQL_ACTIVE_StatEMENTS = 0

A 16-bit integer value specifying the maximum number of active statement
handles that the driver can support for a connection handle. This value can
reflect a limitation imposed by either the driver or the data source. If there is
no specified limit or the limit is unknown, this value is set to zero.

SQL_ODBC_API_CONFORMANCE = Level 1 Supported

A 16-bit integer value indicating the level of ODBC conformance:

SQL_OAC_NONE = None

SQL_OAC_Level1 = Level 1 supported

SQL_OAC_Level2 = Level 2 supported

SQL_SEARCH_PATTERN_ESCAPE = \

A character string specifying what the driver supports as an escape character
that permits the use of the pattern match meta-characters underscore (_) and
percent (%) as valid characters in search patterns. This escape character
applies only for those catalog function arguments that support search strings.
If this string is empty, the driver does not support a search-pattern escape
character. This fInfoType is limited to catalog functions.

SQL_SERVER_NAME = ACCESS

A character string with the actual data source-specific server name; useful
when a data source name is used during SQLConnect, SQLDriverConnect, and
SQLBrowseConnect.

Section 2: Data Source Information
The utility uses the existing connection to the data source selected and sends
the function SQLGetInfo, which returns general information about the data
source associated with the connection’s allocated handle.

In order to retrieve the same information, simply connect to the data source
using Connect\Full Connect, and select Connect\SQLGetInfo with the specific
fInfoType you want. The result is in the rgbInfoValue field in the result window.
Reference Guide 1493

SQL_DATA_SOURCE_NAME = try-access

A character string with the data source name used during connection. If the
application called SQLConnect, this is the value of the szDSN argument. If the
application called SQLDriverConnect or SQLBrowseConnect, this is the value of
the DSN keyword in the connection string passed to the driver. If the
connection string did not contain the DSN keyword (such as when it contains
the DRIVER keyword), this is an empty string.

SQL_ACCESSIBLE_TABLES = Y

A character string:

"Y" if the user is guaranteed SELECT privileges to all tables returned by SQLTables,
"N" if there may be tables returned that the user couldn’t access.

SQL_CONCAT_NULL_BEHAVIOR =

Concatenation of a NULL value with no NULL value result is concatenation of
non NULL valued

A 16-bit integer value indicating how the data source handles the
concatenation of NULL valued character data type columns with non-NULL
valued character data type columns:

SQL_CB_NULL = Result is NULL valued.
SQL_CB_NON_NULL = Result is concatenation of non-NULL valued column or col-
umns.

SQL_DATA_SOURCE_READ_ONLY = N

A character string:

"Y" if the data source is set to READ ONLY mode.
"N" if the data source is not set to READ ONLY mode.
This characteristic pertains only to the data source itself; it is not a
characteristic of the driver that enables access to the data source.

SQL_CURSOR_COMMIT_BEHAVIOR = Close cursors

A 16-bit integer value indicating how a COMMIT operation affects cursors and
prepared statements in the data source:
Reference Guide 1494

SQL_CB_DELETE = Close cursors and delete prepared statements. To use the
cursor again, the application must re-prepare and re-execute the statement
handle.

SQL_CB_CLOSE = Close cursors. For prepared statements, the application can
call SQLExecute on the statement handle without calling SQLPrepare again.

SQL_CB_PRESERVE = Preserve cursors in the same position as before the
COMMIT operation. The application can continue to fetch data or it can close
the cursor and re-execute the statement handle without re-preparing it.

SQL_CURSOR_Rollback_BEHAVIOR = Close cursors

A 16-bit integer value indicating how a Rollback operation affects cursors and
prepared statements in the data source:

SQL_CB_DELETE = Close cursors and delete prepared statements. To use the
cursor again, the application must again prepare and reexecute the statement
handle.

SQL_CB_CLOSE = Close cursors. For prepared statements, the application can
call SQLExecute on the statement handle without calling SQLPrepare again.

SQL_CB_PRESERVE = Preserve cursors in the same position as before the
Rollback operation. The application can continue to fetch data or it can close
the cursor and re-execute the statement handle without re-preparing it.

SQL_DEFAULT_TXN_ISOLATION = SQL_TXN_READ_COMMITTED

A 32-bit integer that indicates the default transaction isolation level supported
by the driver or data source, or zero if the data source does not support
transactions. The following terms are used to define transaction isolation
levels:

• Dirty Read - Transaction 1 changes a row. Transaction 2 reads the
changed row before transaction 1 commits the change. If transaction 1
rolls back the change, transaction 2 will have read a row that is considered
to have never existed.

• Non-repeatable Read - Transaction 1 reads a row. Transaction 2 updates
or deletes that row and commits this change. If transaction 1 attempts to
Reference Guide 1495

reread the row, it will receive different row values or discover that the row
has been deleted.

• Phantom - Transaction 1 reads a set of rows that satisfy some search
criteria. Transaction 2 inserts a row that matches the search criteria. If
transaction 1 re-executes the statement that read the rows, it receives a
different set of rows.

If the data source supports transactions, the driver returns one of the
following bit-masks:

• SQL_TXN_READ_UNCOMMITTED = Dirty reads, non-repeatable reads, and
phantoms are possible.

• SQL_TXN_READ_COMMITTED = Dirty reads are not possible. Non-
repeatable reads and phantoms are possible.

• SQL_TXN_RepEATABLE_READ = Dirty reads and non-repeatable reads are
not possible. Phantoms are possible.

• SQL_TXN_SERIALIZABLE = Transactions are serializable. Dirty reads, non-
repeatable reads, and phantoms are not possible.

• SQL_TXN_VERSIONING = Transactions are serializable, but higher
concurrency is possible than with SQL_TXN_SERIALIZABLE. Dirty reads
are not possible. Typically, SQL_TXN_SERIALIZABLE is implemented by
using locking protocols that reduce concurrency and
SQL_TXN_VERSIONING is implemented by using a non-locking protocol
such as record versioning. Oracle’s Read Consistency isolation level is an
example of SQL_TXN_VERSIONING.

SQL_MULT_RESULT_SETS = N

A character string:

"Y" if the data source supports multiple result sets.

"N" if it does not.

SQL_MULTIPLE_ACTIVE_TXN = Y

A character string:

"Y" if active transactions on multiple connections are allowed.
Reference Guide 1496

"N" if only one connection at a time can have an active transaction.

SQL_NEED_LONG_DATA_Len = N

A character string:

"Y" if the data source needs the length of a long data value (the data type is
SQL_LONGVARCHAR, SQL_LONGVARBINARY, or a long, data source-specific
data type) before that value is sent to the data source.

"N" if it does not.

For more information, see SQLBindParameter and SQLSetPos.

SQL_Owner_Term = NULL StrING

A character string with the data source vendor’s name for an owner. For
example, owner, Authorization ID, or Schema.

SQL_NULL_COLLATION = NULLs are sorted at the low end of the list

A 16-bit integer value specifying where NULLs are sorted in a list:

• SQL_NC_END = NULLs are sorted at the end of the list, regardless of the
sort order.

• SQL_NC_HIGH = NULLs are sorted at the high end of the list.

• SQL_NC_LOW = NULLs are sorted at the low end of the list.

• SQL_NC_START = NULLs are sorted at the start of the list, regardless of
the sort order.

For retrieving the value of SQL_AUTOCOMMIT, described immediately below,
the utility uses the existing connection to the data source selected and sends
the function SQLGetConnectOption, which returns the current settings of a
connection option.

In order to retrieve the same information, simply use Connect\Full Connect to
connect to the data source, and select Connect\SQLGetConnectOption with the
specific fOption you want (SQL_AUTOCOMMIT in this case). The result is in the
pvParam field in the result window.

SQL_AUTOCOMMIT on connection = SQL_AUTOCOMMIT_ON
Reference Guide 1497

A 32-bit integer value that specifies whether to use auto-commit or manual-
commit mode:

• SQL_AUTOCOMMIT_OFF = The driver uses manual-commit mode, and the
application must explicitly commit or roll back transactions with
SQLTransact.

• SQL_AUTOCOMMIT_ON = The driver uses auto-commit mode. Each
statement is committed immediately after it is executed. This is the
default. Note that changing from manual-commit mode to auto-commit
mode commits any open transactions on the connection.

• Important: Some data sources delete the access plans and close the
cursors for all statement handles on a connection handle each time a
statement is committed. Autocommit mode can cause this to happen after
each statement is executed. For more information, see the
SQL_CURSOR_COMMIT_BEHAVIOR and
SQL_CURSOR_Rollback_BEHAVIOR information types in SQLGetInfo.

• SQL_USER_NAME = admin

• A character string with the name used in a particular database, which can
be different than login name.

Section 3: SQL Statements Supported by the Datasource

The utility uses the existing connection to the data source selected and sends
the function SQLGetInfo, which returns information about the attributes of
SQL statements supported by the data source associated with the connection’s
handle allocated.

In order to retrieve the same information, simply use Connect\Full Connect to
connect to the data source, and select Connect\SQLGetInfo with the specific
fInfoType you want. The result is in the rgbInfoValue field in the result window.

SQL_CORRELATION_NAME = Correlation names are supported and can be any valid
name.

A 16-bit integer indicating if table correlation names are supported:

• SQL_CN_NONE = Correlation names are not supported.
Reference Guide 1498

• SQL_CN_DIFFERENT = Correlation names are supported, but must differ
from the names of the tables they represent.

• SQL_CN_ANY = Correlation names are supported and can be any valid
user-defined name.

• SQL_IDENTIFIER_CASE = Case sensitive, stored in mixed case

A 16-bit integer value as follows:

• SQL_IC_UPPER = Identifiers in SQL are case insensitive and are stored in
upper case in system catalog.

• SQL_IC_Lower = Identifiers in SQL are case insensitive and are stored in
lower case in system catalog.

• SQL_IC_SENSITIVE = Identifiers in SQL are case sensitive and are stored
in mixed case in system catalog.

• SQL_IC_MIXED = Identifiers in SQL are case insensitive and are stored in
mixed case in system catalog.

• SQL_NON_NULLABLE_COLUMNS = All columns must be nullable

A 16-bit integer specifying whether the data source supports non-nullable
columns:

• SQL_NNC_NULL = All columns must be nullable.

• SQL_NNC_NON_NULL = Columns may be non-nullable (the data source
supports the NOT NULL column constraint in CREATE TABLE statements).

• SQL_ODBC_SQL_CONFORMANCE = Minimum grammar supported

A 16-bit integer value indicating SQL grammar supported by the driver:

• SQL_OSC_MINIMUM = Minimum grammar supported

• SQL_OSC_CORE = Core grammar supported

• SQL_OSC_EXTENDED = Extended grammar supported

• SQL_QUOTED_IDENTIFIER_CASE = Case insensitive, stored in mixed case

A 16-bit integer value as follows:
Reference Guide 1499

• SQL_IC_UPPER = Quoted identifiers in SQL are case insensitive and are
stored in upper case in system catalog.

• SQL_IC_Lower = Quoted identifiers in SQL are case insensitive and are
stored in lower case in system catalog.

• SQL_IC_SENSITIVE = Quoted identifiers in SQL are case sensitive and are
stored in mixed case in system catalog.

• SQL_IC_MIXED = Quoted identifiers in SQL are case insensitive and are
stored in mixed case in system catalog.

Section 4: SQL Limits

The utility uses the existing connection to the data source selected and sends
the function SQLGetInfo, which returns information about the limits applied to
identifiers and clauses in SQL statements, such as the maximum lengths of
identifiers and the maximum number of columns in a select list.

Important note: Either the driver or the data source may impose limitations.

In order to retrieve the same information, simply connect to the data source
with Connect\Full Connect, and select Connect\SQLGetInfo with the specific
fInfoType you want. The result is in the rgbInfoValue field in the result window.

SQL_MAX_COLUMN_NAME_Len = 64

A 16-bit integer value specifying the maximum length of a column name in the
data source. If there is no maximum length or the length is unknown, this
value is set to zero.

SQL_MAX_QUALIFIER_NAME_Len = 260

A 16-bit integer value specifying the maximum length of a qualifier name in
the data source. If there is no maximum length or the length is unknown, this
value is set to zero.

SQL_MAX_TABLE_NAME_Len = 64

A 16-bit integer value specifying the maximum length of a table name in the
data source. If there is no maximum length or the length is unknown, this
value is set to zero.
Reference Guide 1500

SQL_MAX_INDEX_SIZE = 255

A 32-bit integer value specifying the maximum number of bytes allowed in the
combined fields of an index. If there is no specified limit or the limit is
unknown, this value is set to zero.

SQL_MAX_COLUMNS_IN_INDEX = 10

A 16-bit integer value specifying the maximum number of columns allowed in
an index. If there is no specified limit or the limit is unknown, this value is set
to zero.

SQL_MAX_COLUMNS_IN_ORDER_BY = 10

A 16-bit integer value specifying the maximum number of columns allowed in
an ORDER BY clause. If there is no specified limit or the limit is unknown, this
value is set to zero.

SQL_MAX_COLUMNS_IN_SELECT = 255

A 16-bit integer value specifying the maximum number of columns allowed in
a select list. If there is no specified limit or the limit is unknown, this value is
set to zero.

SQL_MAX_COLUMNS_IN_TABLE = 255

A 16-bit integer value specifying the maximum number of columns allowed in
a table. If there is no specified limit or the limit is unknown, this value is set to
zero.

Section 5: DBMS Type Support

The utility uses the existing connection to the data source selected and sends
the function SQLGetInfo with the fInfoType as SQL_ALL_TYPES, which returns
information about all the data types supported. After receiving this
information, the utility sends the function SQLGetTypeInfo for every data type
in order to see if the data type is searchable (in other words, if the data type
can be used in a WHERE clause).

In order to retrieve the same information, simply connect to the data source
with Connect\Full Connect, and select Catalogue\SQLGetTypeInfo with
fSQLType = ‘SQL_ALL_TYPES’. After that, select Results\GetData All. You will
see the list of data types in the result window. To retrieve the SEARCHABLE
Reference Guide 1501

parameter for each data type, select Catalogue\SQLGetTypeInfo with
fSQLOption of the data type you want. Than select Results\SQLBindCol when
icol = 9 (the SEARCHABLE parameter is the ninth parameter in this function).
After that, select Results\SQLFetch. The last parameter in the result window
(rgbValue) is the SEARCHABLE parameter value. The values are:

0 – SQL_UNSEARCHABLE if the data type cannot be used in a WHERE clause.

1 – SQL_LIKE_ONLY if the data type can be used in a WHERE clause only with
the LIKE predicate.

2 – SQL_ALL_EXCEPT_LIKE if the data type can be used in a WHERE clause
with all comparison operators except LIKE.

3 – SQL_SEARCHABLE if the data type can be used in a WHERE clause with
any comparison operator

The information in the utility log file is listed in 3 columns:

1. DBMS Type Name – The name of the data type in the DBMS.

2. SQL Data Type – the equivalent core SQL data type defined by ODBC

3. Searchable – a True\False value that indicates if the data type can appear in
a WHERE clause.

DBMS TYPE
NAME

SQL DATA TYPE SEARCHABLE

GUID INVALID SQLTYPE FALSE

BIT SQL_BIT TRUE

BYTE SQL_TINYINT TRUE

LONGBINARY SQL_LONGVARBINARY FALSE

VARBINARY SQL_VARBINARY FALSE

BINARY SQL_BINARY FALSE

LONGCHAR SQL_LONGVARCHAR FALSE

CHAR SQL_CHAR TRUE

CURRENCY SQL_NUMERIC TRUE

INTEGER SQL_INTEGER TRUE
Reference Guide 1502

Section 6: SQL Keywords
The utility uses the existing connection to the data source selected and sends
the function SQLGetInfo, with ‘SQL_KEYWORDS” in the fInfoType field.

This will return a character string containing a comma-separated list of all data
source-specific keywords. This list does not contain keywords specific to ODBC
or keywords used by both the data source and ODBC. Keywords are reserved
words – you can use them only in specific places according to the syntax.

In order to retrieve the same information, simply connect to the data source
with Connect\Full Connect, and select Connect\SQLGetInfo with
SQL_KEYWORDS in the fInfoType field. The result is in the rgbInfoValue field in
the result window.

SQL_KEYWORDS = ALPHANUMERIC,AUTOINCRE-
MENT,BINARY,BYTE,Counter,CURRENCY,DATABASE,DATABASENAME,DateTime,D
ISALLOW,DISTINCTROW,DOUBLEFLOAT,FLOAT4,FLOAT8,GENERAL,IEEEDOUBL
E,IEEESINGLE,IGNORE,INT,INTEGER1,INTEGER2,INTEGER4,Level,Logical,Logical1,
LONG,LONGBINARY,LONGCHAR,LONGText,MEMO,MONEY,NOTE,NUMBER,OLEO
BJECT,OPTION,OwnerACCESS,PARAMETERS,PERCENT,PIVOT,SHORT,SINGLE,SIN
GLEFLOAT,SMALLINT,STDEV,STDEVP,StrING,TABLEID,Text,TOP,TRANS-
FORM,UNSIGNEDBYTE,VALUES,VAR,VARBINARY,VARP,YESNO

Section 7: Functions

The utility uses the existing connection to the data source selected and sends
the function SQLGetFunction, with SQL_API_ALL_FUNCTIONS in the fFunction
field.

Counter SQL_INTEGER TRUE

SMALLINT SQL_SMALLINT TRUE

REAL SQL_REAL TRUE

DOUBLE SQL_DOUBLE TRUE

DateTime SQL_TimeSTAMP TRUE

VARCHAR SQL_VARCHAR TRUE

DBMS TYPE
NAME

SQL DATA TYPE SEARCHABLE
Reference Guide 1503

This will return information about whether a driver supports the list of ODBC
functions. Those functions are implemented in the Driver Manager. They can
also be implemented in drivers. If a driver implements SQLGetFunctions, the
Driver Manager calls the function in the driver. Otherwise, it executes the
function itself.

In order to retrieve the same information, simply connect to the data source
with Connect\Full Connect, and select Misc\SQLGetFunctions All. The result in
the result window will show a list of ODBC function names with a True\False
value that identifies if they exist in the data source.

The information in the utility log file is listed in 3 columns:

1. Function – The name of the ODBC function.

2. Supported by driver – Supported\Not Supported according to the True\False
value returned from the SQLGetFunction results.

3. Used By eDeveloper – Required\Not Required by eDeveloper.

Important note: Functions that are required by eDeveloper but are not
supported by the data source may cause further problems when working with
eDeveloper and ODBC with this data source.

Function Supported by Driver Used by
eDeveloper

SQLAllocConnect Supported Required

Allocates memory for a connection handle within the environment
identified by the handle.

SQLAllocEnv Supported Required

Allocates memory for an environment handle and initializes the ODBC call
level interface for use by an application. An application must call
SQLAllocEnv prior to calling any other ODBC function.

SQLAllocStmt Supported Required

Allocates memory for a statement handle and associates the statement
handle with the connection specified by a connection handle. An
application must call SQLAllocStmt prior to submitting SQL statements.

SQLBindCol Supported Required
Reference Guide 1504

Assigns the storage and data type for a column in a result set, including:
A storage buffer that will receive the contents of a column of data
The length of the storage buffer
A storage location that will receive the actual length of the column of data
returned by the
 fetch operation
Data type conversion

SQLCancel Supported Required

Cancels the processing of a statement’s handle.

SQLColAttributes Supported Not Required

Returns descriptor information for a column in a result set. It cannot be
used to return information about the bookmark column (column 0).
Descriptor information is returned as a character string, a 32-bit
descriptor-dependent value, or an integer value.

SQLConnect Supported Required

Loads a driver and establishes a connection to a data source. The
connection handle references storage of all information about the
connection, including status, transaction state, and error information.

SQLDescribeCol Supported Required

Returns the result descriptor column name, type, precision, scale, and
nullability for one column in the result set. It cannot be used to return
information about the bookmark column (column 0).

SQLDisconnect Supported Required

Closes the connection associated with a specific connection handle.

SQLError Supported Required

Returns error or status information.

SQLExecDirect Supported Required

Function Supported by Driver Used by
eDeveloper
Reference Guide 1505

Executes a preparable statement, using the current values of the
parameter marker variables if any parameters exist in the statement.
SQLExecDirect is the fastest way to submit an SQL statement for one-
time execution.

SQLExecute Supported Required

Executes a prepared statement, using the current values of the
parameter marker variables if any parameter markers exist in the
statement.

SQLFetch Supported Required

Fetches a row of data from a result set. The driver returns data for all
columns that were bound to storage locations with SQLBindCol.

SQLFreeConnect Supported Required

Releases a connection handle and frees all memory associated with the
handle.

SQLFreeEnv Supported Required

Frees the environment handle and releases all memory associated with
the environment handle.

SQLFreeStmt Supported Required

Stops processing associated with a specific statement handle, closes any
open cursors associated with the statement handle, discards pending
results, and, optionally, frees all resources associated with the statement
handle.

SQLGetCursorName Supported Not Required

Returns the cursor name associated with a specified statement handle.

SQLNumResultCols Supported Required

Returns the number of columns in a result set.

SQLPrepare Supported Required

Prepares an SQL string for execution

Function Supported by Driver Used by
eDeveloper
Reference Guide 1506

SQLRowCount Supported Required

Returns the number of rows affected by an UPDATE, INSERT, or DELETE
statement or by a SQL_UPDATE, SQL_ADD, or SQL_DELETE operation in
SQLSetPos.

SQLSetCursorName Supported Not Required

Associates a cursor name with an active statement handle. If an
application does not call SQLSetCursorName, the driver generates cursor
names as needed for SQL statement processing.

SQLSetParam Supported Not Required

In ODBC 2.0, the ODBC 1.0 function SQLSetParam has been replaced by
SQLBindParameter. For more information, see SQLBindParameter.

SQLTransact Supported Required

Requests a commit or rollback operation for all active operations on all
handle statements associated with a connection. SQLTransact can also
request that a commit or rollback operation be performed for all
connections associated with the environment handle.

SQLColumns Supported Required

Returns the list of column names in specified tables. The driver returns
this information as a result set on the specified statement’s handle.

SQLDriverConnect Supported Required

Function Supported by Driver Used by
eDeveloper
Reference Guide 1507

SQLDriverConnect is an alternative to SQLConnect. It supports data
sources that require more connection information than the three
arguments in SQLConnect, dialog boxes to prompt the user for all
connection information and data sources that are not defined in the
ODBC.INI file or registry.
SQLDriverConnect provides the following connection options:
Establish a connection using a connection string that contains the data
source name, one or more user IDs, one or more passwords, and other
information required by the data source.
Establish a connection using a partial connection string or no additional
information; in this case, the driver Manager and the driver can each
prompt the user for connection information.
Establish a connection to a data source that is not defined in the
ODBC.INI file or registry. If the application supplies a partial connection
string, the driver can prompt the user for connection information.
Once a connection is established, SQLDriverConnect returns the
completed connection string. The application can use this string for
subsequent connection requests.

SQLGetConnectOption Supported Required

Returns the current setting of a connection option.

SQLGetData Supported Required

Returns result data for a single unbound column in the current row. The
application must call SQLFetch, or SQLExtendedFetch and (optionally)
SQLSetPos to position the cursor on a row of data before it calls
SQLGetData. It is possible to use SQLBindCol for some columns and use
SQLGetData for others within the same row. This function can be used to
retrieve character or binary data values in parts from a column with a
character, binary, or data source-specific data type (for example, data
from SQL_LONGVARBINARY or SQL_LONGVARCHAR columns).

SQLGetFunctions Supported Required

Function Supported by Driver Used by
eDeveloper
Reference Guide 1508

Returns information about whether a driver supports a specific ODBC
function. This function is implemented in the Driver Manager; it can also
be implemented in drivers. If a driver implements SQLGetFunctions, the
Driver Manager calls the function in the driver. Otherwise, it executes the
function itself.

SQLGetInfo Supported Required

Returns general information about the driver and data source associated
with a connection handle.

SQLGetStmtOption Supported Required

Returns the current setting of a statement option.

SQLGetTypeInfo Supported Required

Returns information about data types supported by the data source. The
driver returns the information in the form of an SQL result set.
Important: Applications must use the type names returned in the
TYPE_NAME column in ALTER TABLE and CREATE TABLE statements.
SQLGetTypeInfo may return more than one row with the same value in
the DATA_TYPE column.

SQLParamData Supported Not Required

Is used in conjunction with SQLPutData to supply parameter data at
statement execution time.

SQLPutData Supported Not Required

Allows an application to send data for a parameter or column to the driver
at statement execution time. This function can be used to send character
or binary data values in parts to a column with a character, binary, or data
source-specific data type (for example, parameters of the
SQL_LONGVARBINARY or SQL_LONGVARCHAR types).

SQLSetConnectOption Supported Required

Sets options that govern aspects of connections.

SQLSetStmtOption Supported Required

Function Supported by Driver Used by
eDeveloper
Reference Guide 1509

Sets options related to a statement handle. To set an option for all
statements associated with a specific connection handle, an application
can call SQLSetConnectOption.

SQLSpecialColumns Supported Required

Retrieves the following information about columns within a specified
table:
The optimal set of columns that uniquely identifies a row in the table.
Columns that are automatically updated when any value in the row is
updated by a transaction.

SQLStatistics Supported Required

Retrieves a list of statistics about a single table and the indexes
associated with the table. The driver returns the information as a result
set.

SQLTables Supported Required

Returns the list of table names stored in a specific data source. The driver
returns the information as a result set.

SQLBrowseConnect Not Supported Not Required

Supports an iterative method of discovering and enumerating the
attributes and attribute values required to connect to a data source. Each
call to SQLBrowseConnect returns successive levels of attributes and
attribute values.

When all levels have been enumerated, a connection to the data source is
completed and a complete connection string is returned by
SQLBrowseConnect. A return code of SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO indicates that all connection information has
been specified and the application is now connected to the data source.

SQLColumnPrivileges Not Supported Not Required

Returns a list of columns and associated privileges for the specified table.
The driver returns the information as a result set on the specified
statement’s handle.

Function Supported by Driver Used by
eDeveloper
Reference Guide 1510

SQLDataSources Supported Not Required

Lists data source names. This function is implemented solely by the
Driver Manager.

SQLDescribeParam Not Supported Not Required

Returns the description of a parameter marker associated with a prepared
SQL statement.

SQLExtendedFetch Supported Required

Extends the functionality of SQLFetch in the following ways:
It returns rowset data (one or more rows), in the form of an array, for
each bound column.
It scrolls through the result set according to the setting of a scroll-type
argument.

SQLExtendedFetch works in conjunction with SQLSetStmtOption. To fetch
one row of data at a time in a forward direction, an application should call
SQLFetch.

SQLForeignKeys Not Supported Not Required

SQLForeignKeys can return:
A list of foreign keys in the specified table (columns in the specified table
that refer to primary keys in other tables).
A list of foreign keys in other tables that refer to the primary key in the
specified table.
The driver returns each list as a result set on the specified statement
handle.

 SQLMoreResults Supported Not Required

Determines whether there are more results available on a statement
handle containing SELECT, UPDATE, INSERT, or DELETE statements and,
if so, initializes processing for those results.

 SQLNativeSql Supported Not Required

Returns the SQL string as translated by the driver.

Function Supported by Driver Used by
eDeveloper
Reference Guide 1511

SQLNumParams Supported Not Required

Returns the number of parameters in an SQL statement.

SQLParamOptions Supported Not Required

Allows an application to specify multiple values for the set of parameters
assigned by SQLBindParameter. The ability to specify multiple values for a
set of parameters is useful for bulk inserts and other work that requires
the data source to process the same SQL statement multiple times with
various parameter values. An application can, for example, specify three
sets of values for the set of parameters associated with an INSERT
statement, and then execute the INSERT statement once to perform the
three insert operations.

SQLPrimaryKeys Not Supported Not Required

Returns the column names that comprise the primary key for a table. The
driver returns the information as a result set. This function does not
support returning primary keys from multiple tables in a single call.

SQLProcedureColumns Supported Not Required

Returns the list of input and output parameters, as well as the columns
that make up the result set for the specified procedures. The driver
returns the information as a result set on the specified statement handle.

SQLProcedures Supported Not Required

Returns the list of procedure names stored in a specific data source.
Procedure is a generic term used to describe an executable object, or a
named entity that can be invoked using input and output parameters, and
which can return result sets similar to the results returned by SQL
SELECT expressions.

SQLSetpos Supported Not Required

Sets the cursor position in a rowset and allows an application to refresh,
update, delete, or add data to the rowset.

SQLSetScrollOptions Supported Not Required

Function Supported by Driver Used by
eDeveloper
Reference Guide 1512

Section 8: Syntax of DML Commands Example

The utility uses the existing connection to the data source selected and sends
the function SQLExecDirect with a SQL command in the szSqlStr field.

After each command, the log lists if the command was successful or not.

Note that the table and index are actually created and dropped from the
database that the data source points to.

CREATE TABLE T11025 (FLD1 CHAR(1), FLD2 CHAR(1))

Sets options that control the behavior of cursors associated with a
statement handle. SQLSetScrollOptions allows the application to specify
the type of cursor behavior desired in three areas: concurrency control,
sensitivity to changes made by other transactions, and rowset size.
Note: In ODBC 2.0, SQLSetScrollOptions has been superceded by the
SQL_CURSOR_TYPE, SQL_CONCURRENCY, SQL_KEYSET_SIZE, and
SQL_ROWSET_SIZE statement options. ODBC 2.0 drivers must support
this function for backwards compatibility; ODBC 2.0 applications should
only call this function in ODBC 1.0 drivers.
If an application calls SQLSetScrollOptions, a driver must be able to
return the values of the aforementioned statement options with
SQLGetStmtOption. For more information, see SQLSetStmtOption.

SQLTablePrivileges Not Supported Not Required

Returns a list of tables and the privileges associated with each table. The
driver returns the information as a result set on the specified statement
handle.

SQLDrivers Supported Not Required

Lists driver descriptions and driver attribute keywords. This function is
implemented solely by the Driver Manager.

SQLBindParameter Supported Required

Binds a buffer to a parameter marker in an SQL statement.
Note: This function replaces the ODBC 1.0 function SQLSetParam.

Function Supported by Driver Used by
eDeveloper
Reference Guide 1513

**** Succeeded ****

CREATE UNIQUE INDEX I11025 ON T11025 (FLD1)

**** Succeeded ****

 DROP INDEX I11025 ON T11025

**** Succeeded ****

 DROP TABLE T11025

**** Succeeded ****

The utility disconnects from the data source using the SQLDisconnect function.

In order to do the same, simply select Connect\Full Disconnect.

******* Disconnected Successfully ... ******

**
Reference Guide 1514

Index

Entries

A
A LIKE A function 553
Abort error strategy 998
Abort task 1001
ABS function 554
Access I/O files 387
Access key 1055

applications 61, 1048
Force MVCS 1049
public rights 1048
super rights 1049
tables 251

Access key for a component 1062
Access mode 1410
Access to application tables

data security 1054
Access to multi-user environment 381
ACOS function 554
ACT literal 511
Action functions 518
Actions 134

display list of actions 367
example 136
key 138
name 137
state conditions 138
state qualifications 135

Activating team development 1418
ActiveX control 939
ActiveX data field 207
ActiveX default 228
AddDate function 554
AddTime function 555
Allow abort 338
Allow access to

applications 77
Checker messages 82
Color repository 78
Communication repository 79
Database repository 79
DBMS repository 79
Environment dialog 78
Font repository 78
HTML styles repository 80
Keyboard mapping repository 78
Language repository 80
Logical Names repository 80
Logon dialog 81
Print attribute 81
Printer repository 80
Server repository 78
Service repository 79
toolkit 81
Visual connection display 79

Allow create in modify mode 76
Allow create mode 358
Allow delete mode 358
Allow index change 358
Allow index optimization 359
Allow input and output files 358
Allow locate in query mode 359
Reference Guide 1515

Allow locate option 358
Allow modify mode 358
Allow options 357
Allow query mode 358
Allow range option 358
Allow sorting 358
Allow testing environment 81
Allow update in query mode 77
Alpha attribute 205
Alpha String functions 547
Alpha string manipulation functions
523
Alpha/Numeric conversion functions
523
Alternate collating sequence 155
Alternate collating sequence file 110
Alternate text 938
AND operator 515
ANSI to OEM conversion 1270
Ansi to Unicode 109
ANSI2OEM function 555
API implementation 1432

DB2 1433
Informix 1433
MS-SQL 1433
ODBC 1433
Oracle 1432

Application access and share modes
1427
Application access key 67, 1048
Application database 1062
Application Event keywords 1333
Application file 1061
Application launch from the command

line 190
Application partitioning

benefits 1203
functions 1220

Application properties dialog rights as-
signment 1047
Application property keywords 1330
Application repository 56
Application startup mode 74
Application wizard 1223
Applications

access key 61
compression 60
database 59
Magic Flat File (MFF) deployment 60
MCF file 59
multiple developer environment 60
prefix 58

AppServer priority 119
Area 793
Argument list 460
Arguments 462
Array size 170, 256
As strategy, error 1001
ASC function 555
ASIN function 556
Astr function 556
ATAN function 557
Attach context menu structure 341
Attribute

alpha 205
blob 206
date 205
logical 205
Reference Guide 1516

memo 206
numeric 205
time 205

Authorization environment 1035
Authorization for an application 1035
Authorization for menus 1021
Auto-exiting 91
Automatic documentation 1247
Automatic program generator 1223,
1229
Automatic program generator rights
1043
Automatic retry 1002

B
Background colors 127
Background engine 123
Background window 360
Base currency 64
Base64ToBlob function 558
Batch task 1198
Batch task event handling 285
Batch task type 334
Batch tasks

deleting records 310
record/row loop 316
valid Magic operations 421

Before Task Prefix
physical transactions at the task

level 979
Binding variables 355
Blank keyword parameter 1314
BLB2FILE function 743
Blb2File function 557

Blob attribute 206
Blob support 1188
Blob2Req function 558
BlobFromBase64 function 558
BlobSize function 558
Block loop 457
Block operation 456
Block Operation keywords 1363
BOM function 559
Bookmarks 50, 98
Border style 795, 1029
Border width 940, 943
BOY function 559
Break variables 312
Broker error messages 1169
Browse operation 500

keywords 1367
Browser client cached alias 122
Browser client cached path 122
Browser client network error recovery
timeout 122
Browser client technology 121
Browser client technology error url 122
Browser control properties 772
Browser forms 765
Browser IFRAME control 771, 790
Browser Opaque control 771, 790
Browser subform 766
Browser Table control 788
Browser task type 334
Browser-based help screens 1033
Browser-based program

program generator 1225
Buffer management 518
Reference Guide 1517

BufGetAlpha function 559
BufGetBit function 561
BufGetBlob function 562
BufGetDate function 563
BufGetLog function 563
BufGetNum function 564
BufGetTime function 565
BufGetVariant function 565
BufGetVector function 566
BufSetAlpha function 567
BufSetBit function 568
BufSetBlob function 568
BufSetDate function 569
BufSetLog function 570
BufSetTime function 571
BufSetVariant function 572
BufSetVector function 572
Button format 772, 776, 779
Button type 939

C
Cache

activating the cache size 994
changes to program behavior 995
client/server 996
internal implementation 996
linked tables 382
resident tasks 995
rollback 996
tables 252
task size 76
what can be cached 993
when is the cache used 994

Call a public program 471

Call COM operation 477
Call expressions 470
Call operation

keywords 1363
synchronize data before call 993

Call program 469
Call Remote 477
Call task 465
Call to a 3rd Generation Language
1152
Call to a DLL 1151
Call UDP 475
Call UDP operation 1153
Call Web Service 478
CallDLL function 573
CallDLLF function 574
CallDLLS function 574
Calling a batch task from the Browser
Client 1198
CallJS function 575
CallOBJ function 575
CallProg function 576
CallProgURL function 576
CallURL function 577
CASE function 577
Case sensitivity 225
CDOW function 578
Center screen in online 95
Century Start setting 75
Check box control 781, 804, 811
Check definition 166
Check existence 157, 170
Check image change time 102
Check in object 1420
Reference Guide 1518

Check index 167
Check out object 1419
Check syntax utility 1231
Checked Out Object list 1420
Checker message groups 102
Checker minimal level 102
Checker result 39
CHeight function 578
Child forms 797
Child window 374, 793
Chk_std.dat file path 111
ChkDgt function 579
Choice controls

combo box control 808
list box control 808
radio button 807
tab control 808

CHR function 579
Chunk size 341
Cipher function 580
Class numbers 371
CLASSPATH 125
CLeft function 582
CLeftMDI function 583
ClickCX function 583
ClickCY function 583
ClickWX function 584
ClickWY function 584
ClientCertificateAdd function 585
ClientCertificateDiscard function 586
Client-side identification 345
ClipAdd 586
ClipAdd function 586
ClipRead function 587

ClipWrite function 587
ClrCache function 587
Clustering indexes 272
CMonth function 588
CndRange function 588
CodePage function 589
Color 795, 923, 940, 943
Color assignment palette 128
Color definition file 66, 106
Color palette 804
Color print attribute 972
Color repository 126
Color setting sample 129
Column repository 258
Column repository keywords 1317
Columns

adding a Null value 262
ANSI and OEM character sets 263
defining the Null default 263
displaying Null strings 263
field attributes 258
field models 258
Null as a valid value 262
setting a Null default value 263
size and definition 264
SQL properties 265
update style 264
visual display of a field 259

COM objects 1089
Combo box control 785, 805
COMError function 589
COMHandleGet function 590
COMHandleSet function 590
Command line 190
Reference Guide 1519

examples 189
options and Magic.ini values 187,

190
syntax 187
values for environment properties

192
Command Line Requester 1214
Command palette 375
Command processor 112
Commands file 178
Comment text box for objects in an ap-
plication 47
Common Data Dictionary 169
Communication manager 143
Communication repository 148
Communications driver 148

identification 149
internal code 149
parameters 149

COMObjCreate function 591
COMObjRelease function 591
Component access key 1062
Component event keywords 1323
Component help keywords 1323
Component Interface Builder

properties 1067
Component model keywords 1322
Component program keywords 1322
Component properties keywords 1324
Component repository keywords 1321
Component rights keywords 1323
Component tables keywords 1322
Components 1058, 1065

repository 1059

Composite functions 547
Compound storage functions 523
Compressed applications 60
Concatenation of alpha strings 516
Concurrency 1423
Condition indicators 1307
Confirm cancel 362
Confirm task update 362
Confirm when auto-exiting 91
Const (constant) file 105
Context menu keywords 1327
Context menus 1015
Context variables 923, 947

cookies 927, 928
domain restriction 929
expiration date 929
expiration time 929
hidden fields 927

Control attributes for form models 231
Control change event 282
Control operation level 284, 288, 310
Control Prefix 281
Control properties 231
Control Suffix 281
Control verification event 281
Conversion functions 526
Cookies 927
Copyright message 93
Copyright messages 92
COS function 592
Count value 226
Counter function 592
CRC function 592
Create link 444
Reference Guide 1520

Create rights 1041, 1042, 1043, 1044,
1045
Cross Reference utility 1237
Cross references 51, 99
CTop function 593
CTopMDI function 594
CtrlGoto function 594
CtrlHWND function 595
CtrlName function 595
CtxClose function 595
CtxGetAllNames function 596
CtxGetId function 596
CtxKill function 597
CtxLstUse function 597
CtxNum function 598
CtxProg function 598
CtxSetName function 598
CtxSize function 599
CtxStat function 599
CurROW function 600
CurrPosition function 600
Cursors 1471
CWidth function 601
Cycle record main 361

D
Data definition rules 1434
Data item qualifiers 204
Data manipulation statements 977
Data security 1054
Database functions 527
Databases

change tables in toolkit mode 166
check definition 166

check index 167
Common Data Dictionary 169
DBMS types 162
default 88
for sort or temporary tables 89
information to MS-SQL 1471
information to Oracle 1458
location 163
lock path 168
Oracle connect string 166
password 165
properties 164
properties for MS-SQL 1471
properties for Oracle 1458
record locking 168
repository 159
server 165
SQL 169
user name 165

Data-bound choice controls 808
Dataview

preparing the dataview 300
record instance 301
tuning 300

Date at logon 73
Date attribute 205
Date function 601
Date functions 529
DATE literal 512
Date mode 103
Date pictures 214, 220
Date Separator setting 104
DAY function 601
Day function 601
Reference Guide 1521

DB commands 1470
DB SQL Where 402
DB Table keywords 1343
DB Table repository 380, 381
DB tables 249

expressions 382
identifier 380
multi-user access 381
open mode 381
sharing tasks 381

DB2
data types 1481
database gateway 1478
using handles 1483

DbCache function 602
DbCopy function 602
DbDel function 603
DbDiscnt function 604
DbERR function 605
DbExist function 605
DBMS

customization information 152
errors 1007
float picture 152
internal codes 153
nulls 152
properties 153
repository 149
type 162
variable MCF record length 158

DbName function 606
DbRecs function 606
DbReload function 607
DbRound function 608

DbSize function 609
DDEBEGIN function 1137
DDEBegin function 610
DDEEnd function 610
DDEGET function 1138
DDEGet function 610
DDEPoke function 612
DDERR function 613, 1140
DDEXEC function 1141
DDExec function 614
Deadlock prevention for ISAM data-
bases 86
Deadlocks and transaction processing
991
Debugger 1250
Debugging 434
Decimal separator 104
DeCipher function 616
Default application 74
Default Button 794
Default color 97
Default database 88
Default font setting 98
Default image file 938
Default menus 1017
Deferred transactions 982

locking strategy 983
transaction mode 977, 982

Del function 617
Delay function 618
Delete records 309
Delete rights 1041, 1042, 1043, 1044,
1045
Deployment custom copyright 93
Reference Guide 1522

Destination context name 508
Detail line number for table length 789
Direct SQL 983, 1450
Direct SQL Command 346
Dirty reads 156
DiscSrvr function 618
Display copyright messages 92
Display full messages 94
Display toolbar 94
Dockable palettes 100
Documentation 35

report sections 1309
template facility 1303
template facility keywords 1313

Documentation template file 107
comment lines 1309
condition indicators 1307
control lines 1305
data lines 1309
footers 1308
headers 1308
report section delimiters 1305
syntax 1305

DOW function 619
DragSetCrsr function 619
DragSetData function 619
Drop data user formats 111
DROPFORMAT function 623
DropFormat function 620
DROPGETDATA function 623
DropGetData function 621
DropMouseX function 622
DropMouseY function 622
DStr function 623

DVal function 624
Dynamic calls 469
Dynamic Data Exchange 517, 1136

E
Edit control 772, 804, 809
EditGet function 624
EditSet function 625
EJB interface builder 1074
EJBCreate function 625
EJBExplore function 626
Ellipse control 805
Encrypt file 1055
Encrypt table 252
EncryptionError function 626
End Block operation 458
End Link operation 454
End task condition 337
End-user access to menu entries 1022
End-user menu 1018
End-user screen interaction 304
End-user terminal identifier 84
Engine directive 1001
Engine execution rules 305
Engine levels 278
Enterprise server 116, 117
Enterprise Server functions 530
Environment authorization 1050
Environment dialog 69
Environment functions 532
Environment settings 53
EOF function 626
EOM function 627
EOP function 627
Reference Guide 1523

EOY function 628
ERRDATABASENAME function 628,
1008
ErrDatabaseName function 628
ERRDBMSCODE function 1009
ErrDbmsCode function 628
ERRDBMSMESSAGE function 1009
ErrDbmsMessage function 628
ERRMAGICNAME function 1009
ErrMagicName function 629
Error events 409
Error handler 1000

abort task 1001
as strategy 1001
automatic retry 1002
DBMS errors 1007
enabled 1008
error type 1001
ignore 1007
level 1000
rollback and restart 1001
scope 1007
user retry 1004

Error messages 433, 444
conflicting control parameters 357

Error strategy
abort 998
importing applications from previ-

ous versions 1011
recover 998

ERRPOSITION function 1009
ErrPosition function 629
ERRTABLENAME function 1008
ErrTableName function 629

Escape character 225
EuroCnv function 630
EuroDel function 630
EuroGet function 630
European currency conversion file 67,
111
EuroSet function 631
EuroUpd function 631
EvalStr Function 631
EvalStrInfo function 632
Evaluate condition 337
Evaluate Expression Operation key-
words 1365
Evaluate operation 483
Event handler 815
Event menu 1018
Event types 283
Execute APG rights 1042
Execute mode

program generator 1224
Execution level 408
Execution levels 408

event 409
name 408

Exit operation 503
keywords 1368

Exit URL 341
EXP function 634
EXP literal 512
Expand form 794
ExpCalc function 634
Export an application 1245
Export data

program generator 1225
Reference Guide 1524

Export-import utility 1245
application component types 1247
export application components

1247
export repository entry with folder

1249
export with models 1248
file name for exported components

1250
import folder structure 1250
range of export 1249
self-documenting report 1247

Expression evaluated events 283
Expression events 409
Expression Rules repository 366

keywords 1347
Expressions 367
External event 1197

F
Feature license 1271
Field attribute 772, 777
Field delimiting method 498
Field Location Repository keywords
1354
Field model 203
Field model properties 226
File handles 82
FILE literal 512
File2Blb function 634
FILE2OLE function 635
File2OLE function 635
FILE2REQ function 635
File2Req function 635

FileDLG function 635
FileListGet function 636
Fill function 636
Filter 146
Fit to MDI 796
Fix function 636
Flat MCF 1062
Flip function 637
Float picture 152
Floating palettes 100
Floating window 792
Flow function 637
Flow monitor 83, 1250
Flow monitor commands 1251
Flow monitor filters 1253
Flow monitor properties 1254
Flow monitor utility for the browser cli-
ent 1257
Flow monitor utilty for the server 1255
Flow Monitor, Remote 1257
FlwMtr function 638
FlwMtrVars function 638
Folders 1249
Font

assignment window 133
definition file 66, 106
HTML controls 937
name 132
orientation 132
property 795, 1029
repository 131
saving changes 133
size 132
style 132
Reference Guide 1525

style window 132
Force MVCS Disabled 60
Force MVCS key 68, 1049
Force record delete 362
Force record suffix 362
Foreground colors 127
Foreground generator 123
Foreground window 360
Foreign key definition 274
Foreign key for the generated program
1226
Foreign key repository 273

keywords 1320
Foreign key segment repository

keywords 1321
Foreign key segments 275
Foreign key, definition 248
Form

area 372
class numbers 371
display block keywords 1354
footer 372
header 372
interface type 372
keyboard shortcuts 376
model 201
name 371
repository 369
repository keywords 1348
templates 376
units 375

Form area 793
FORM literal 513
Form model

properties 237
Form records 361
Forms

batch tasks 370
browser 765
display form 791
frame set form 945
HTML form 921
HTML merge form 950
online tasks 370

Frame height 798
Frame keyword parameter 1369
Frame set command palette 947
Frame set forms 945
Frame width 797
Full Where clause 404
Functional directives 210, 217
Functions 517

G
Generate mode

program generator 1224
Generator context management 123
Get Definition utility 1235
GetLang function 638
GETPARAM function 1220
GetParam function 639
Global keywords 1315, 1369
Global parameters 1296
Global temporary tables 1469
Graphic image control 806, 811
Graphic line control 805, 811
Group check messages 102
Group control 805
Reference Guide 1526

Group handler level 287, 312
Group Prefix 280
Group Suffix 282
GroupAdd function 640
GUI display color palette 804
GUI display commands 798
GUI display controls 804
GUI display forms 791
GUI display variables palette 824
GUI printing of a table control 966
GUI table controls

set table size 966
title on every page 966

H
Handler operation level 285, 288
Handler repository 408
Handlers 287
Header file name 922
HEB literal 513
Help action support 1190
Help display block keywords 1326
Help file 105, 1062
Help key 1063
Help model 201
Help model properties 241
Help prompt 228, 776
Help screen 769, 774, 776
Help screen repository 1026

keywords 1324
Help Screens repository rights assign-
ment 1044
Help types

browser-based help screens 1027

internal help screens 1027
prompt help screens 1027
Tooltip helps 1027
Windows help 1027

Help/About dialog 93
Hidden fields 927
Hidden variable 939
Hide a menu entry or toolbar button
1025
Hint string 1457, 1466
Hinting the optimizer 170, 272
HitZOrdr function 641
Horizontal slider control 805, 809
Hour function 641
HStr function 641
HTML command palette 929
HTML control palette 935
HTML control placement 921
HTML control repository 770
HTML forms 921
HTML frame set forms 945
HTML Help 1032
HTML internal attribute 941
HTML merge command table 955
HTML merge forms 950
HTML merge syntax rules 961
HTML merge tags 959
HTML static table command palette
932
HTML style repository 179, 924
HTML styles file 66, 107
HTML template file 112, 951, 958
HTTP Authentication 1056
HTTP proxy 112
Reference Guide 1527

HTTP requester 118
HTTP timeout 112
HTTPGet Function 642
HTTPLASTHEADER function 643
HTTPLastHeader function 643
HTTPPost function 644
HVal function 645
Hyperlink 938

property 922, 939, 950, 956
to a Magic program 925
to a URL 926

I
I/O file identification number 497
I/O File repository 383, 385
I/O Filer repository

keywords 1343
I/O files

access 387
character sets 390
expressions 388
flip line 391
formatting 387
media 384
name 384
open I/O from another program

390
page footer form 389
page header form 389
page orientation 390
page size by row 388
page size for a graphic printer 389
Print dialog 388
print preview 390

printer 385
properties 389
visual to logical 391

I/O functions 542
Icon file name 342
Identity column 1467
Idle function 645
IF function 645
Ignore error handler 1007
Image cache size 101
Image control 787, 806
Image push button 810
Images for a menu entry or toolbar
1024
Images for a toolbar button 1024
Import and export rights 1050
Import data

program generator 1225
Importing application 1245
IN function 646
Incremental locate 1450
Indent character 97
Index 248, 339, 451

ascending order 269
definition and usage 1444
descending order 269
non-unique 268
properties 270
repository 266
repository keywords 1319
segment repository 268
segments repository keywords

1320
unique type 268
Reference Guide 1528

Informix database gateway 1473
Informix data types 1476
Magic data types 1473
text and byte data types 1478

Inheriting property values 199, 201
INIGet function 646
INIGetLn function 647
INIPUT function 1064
INIPut function 648
Init 425
Inner Join link operation 445
Input fields 951
Input form 923
Input Form operation 497
Input Form Operation keywords 1367
INS function 649
Insertion point park 305
Installation 35
Instantiation 227
INSTR function 649
Integration functions 534
Interface functions 541
Internal codes for DBMS 153
Internal events 409
Internal help screens 1028
Internal Magic events 283
Internal transactions 990
Internet client forms 765
Internet data entry program

program generator 1225
Internet development file root 67
InTrans function 650
IO Device Open Timing 99
IOCopy function 650

IOCurr function 650
IODel function 651
IOExist function 651
IORen function 651
IOSize function 652
ISAM

databases 991
Force locking within transaction 87
transactions 85

IsComponent function 652
IsDefault function 652
IsFirstRecordCycle function 653
ISNULL function 653
Isolation level 156

J
J2EE

Connection Difficulties 1396
Creating the JAR file 1389
Defining the EJB 1383
EJB Component Builder 1385
Generic Messaging Layer 1393
Magic Installation 1396
Terminology 1382
The Component Builder 1383

J2EE enterprise servers 1076, 1388
Java 939
JAVA_HOME 125
JCall function 654
JCallStatic function 654
JCreate function 654
JEXCEPTION function 655
JException function 655
JExceptionOccurred function 655
Reference Guide 1529

JExceptionText function 655
JExplore function 655
JGET function 655
JGetStatic function 656
JInstanceOf function 656
JSET function 656
JSet function 656
JSetStatic function 656

K
KBD literal 513
KbGet function 657
KbPut function 657
Keep new context 344
Key assigned to action 138
Key combinations 37
KEY literal 513
Key to identify a right 1037
Keyboard idle seconds 90
Keyboard mapping file 66, 106
Keyboard mapping for forms 376
Keywords 1313

L
Language at startup 111
Languages

deployment 176
multi-lingual support (MLS) 174
name 175
repository 174
translation file 175

LastPark function 658
LDAP connection string 114
LDAP domain contexts 115

LDAP timeout 115
LDAPError function 658
LDAPGet function 658
LEFT function 659
Len function 659
Level Definition repository 407

keywords 1360
Level function 660
Level repository 280, 288
License environment setting 82
License file location 83
LIKE function 661
Line control 805
Line function 662
Line mode display 1227
ling 1198
List box control 783
Literals 511
LMChkIn function 662
LMChkOut function 662
LMUVStr function 663
LMVStr function 663
Load components 1062
Load flow monitor 83
Load resident tables 94
Load tables 1235
Local COM runtime behavior 1095
Local keywords 1315
Local temporary tables 1469
Local Variable Repository keywords
1341
Local variables

properties 365
repository 364
Reference Guide 1530

Lock 451
Lock file 87, 1416, 1424
Lock files path 1418
Lock function 664
Lock path 168
Locking 1436, 1489

enforcing locks 1437
escalating a lock to a table lock

1437
locking duration 1438
locking levels 1436
physical and logical locks 1440
table access and share mode 1439
transaction processing 1438

LOG function 664
Log level 154
LOG literal 513
Logic pictures 220
Logical attribute 205
Logical function 664
Logical Name repository 172
Logical names

syntax 173
translation 173
usage 173

Logical operators 515
Logo file 105
Logon 71, 181

date 183
password 182
Setting 183

Logon function 665
LONG and LONG RAW 1457
LoopCounter function 666

Lower function 666
LTrim function 666

M
Magic actions 134
Magic Flat File (MFF) 60, 1273
Magic gateway name structure 1431
Magic gateways 1431
Magic monitor application 1219
Magic path string 250
Magic profiler utility 1266

output files 1267
UNIX variable 1266
VMS variable 1266
Windows variable 1266

Magic Request Broker
automatic reload 1169
automatic termination of enterprise

server 1169
installation 1162
load balancing 1169
queue 1168

Magic SQL Where 405
MAGIC.INI file 93, 183, 185, 190
MAGIC_JAVA section 125
Mail connection timeout 113
Mail operation timeout 113
MailBoxSet function 666
MailConnect Function 667
MailDisconnect Function 668
MailError Function 668
MailFileSave Function 668
MailLastRC function 669
MailMsgBCC function 669
Reference Guide 1531

MailMsgCC Function 669
MailMsgDate function 669
MailMsgDel Function 670
MailMsgFile Function 670
MailMsgFiles Function 670
MailMsgFrom Function 670
MailMsgHeader function 671
MailMsgId Function 671
MailMsgReplyTo function 671
MailMsgSubj function 671
MailMsgText function 672
MailMsgTo function 672
MailSend function 672
Main display form 341
Main program 411, 1065
Main table 339, 1229
MakeKey utility 1271
Mapping transactions 990
Mask characters 224
Mathematical functions 542
Mathematical operators 515
MAX function 673
Maximize button 793
Maximum connections 155
Maximum file handles 82
MAXMagic function 674
MDate function 674
MDI client edge 38
Media 384
Memo attribute 206
Memo pictures 217
Menu access key 1020
Menu access rights for the end-user
1045

Menu authorization options 1021
Menu check marks 1025
Menu Definition repository 1017
Menu definition rights assignment
1045
Menu entry enable 1025
Menu entry hide 1025
Menu formats 1014
Menu function 674
Menu help 1023
Menu image 1024
Menu name 1017
Menu prompt 1023
Menu properties 1021
Menu repository 1016
Menu rights 1022
Menu structures 1016
Menu type 1017, 1018
Messaging server 117
MG_CANCEL 1192
MG_EDIT 1191
MG_EXIT 1192
MG_VCR 1191
MGExternalEvent function 1198
MGPROFM.LOG file 1270
MGPROFT.LOG file 1269
MGRB.INI file 1162
MGRQGNRC.DLL 1162
MGRQMRB.EXE 1162
Microsoft SNMP agent 1380
MID function 675
MIN function 675
Minimize button 793
MINMagic function 675
Reference Guide 1532

Minute function 676
MlsTrans function 676
MMClear function 676
MMCount function 677
MMCurr function 677
MMStop function 677
MnuCheck function 678
MnuEnabl function 678
MnuName function 678
MnuShow function 679
Modal window 769, 792
MODE literal 514
Mode of operation 334

creating new records 301
deleting records 302
modifying records 301
querying records 302

Model repository 200
keywords 1315

Model repository rights assignments
1040
Models

break inheritance 201, 203, 226
breaking model properties 243
control 231
creating 242
deleting 243
expressions 244
field 203
form 201
help 201
properties 201
removing a model from an object

243

rights 244
selecting a different model 243
set inheritance 199, 203, 226

Modifying rights 1041, 1042, 1043,
1044, 1045, 1047
Monitor Output file 83
Monitor utility 1300
Month function 679
MStr function 679
MtblGet function 680
MtblSet function 680
mTime function 682
mTStr function 682
mTVal function 683
Multi-lingual Support 174
Multi-marking 814
Multi-page printing of an edit control
967
Multi-threading 1216

calling external programs 1218
environment settings 1216
runtime expressions 1218

Multi-user access 85, 381, 1415
MVal function 683
MVCS disabled 60
MVCS key 68
MVCS lock files path 65
MVCS snapshot level 65

N
Namespace support 1134
NDOW function 683
Nested deferred

Transaction mode 978
Reference Guide 1533

Nested transaction 985
Net-SNMP agent 1380
Network traffic 1449
New application 55
NMonth function 684
Non-abortable update 486
Non-procedural operations 298
Non-repeatable reads 156
NOT operator 516
NULL arithmetic 64
NULL function 684
Null value 1443
NULL Value Default keywords 1332
Nulls 152, 229
Numeric attribute 205
Numeric field updates 983
Numeric functions 545
Numeric pictures 211, 219
NumSetBuf function 570

O
Object name 227
ODBC Check Driver utility 1271, 1490
ODBC database gateway 1484

database default values 1489
Direct SQL 1490
Magic data types 1484
ODBC data types 1487
Sort temporary database 1489
troubleshooting 1489

OEM_ANSI 109
OEM_ANSI utility 1270
OEM2ANSI function 684
OLE automation 1143

OLE control 806, 811
OLE data field 207
One-to-many relation 430
Online task type 334
Online Tasks

deleting records 309
record/row loop 314

Open files trace file 1269
Operation Repository keywords 1361
Operation time interval 99
Operators

logical 515
mathematical 515
string 516

OR operator 516
Oracle database gateway 1453

connect string 166
Magic data types 1453
Oracle data types 1456

OS Command menu 1018
OSEnvGet function 685
OSEnvSet function 685
Output Form operation 492

keywords 1366
Output title for HTML form 1228
Owner function 685
Owner name 71

P
Page footer form 389
Page function 686
Page header form 389
Page orientation 390
Page size 389
Reference Guide 1534

Palette 794, 923
Palettes 100
Parameter List keywords 1365
Parameter type string 1144
Parameter variables 204
ParamsPack function 686
ParamsUnpack function 686
Parent and child links 802
Password 73, 145, 165, 182, 1051
Phantom task 468
Phantoms 156
Physical locking 1466, 1478, 1482
Physical transaction mode 978
Physical transactions for group level
980
Physical transactions for record level

Before Record Prefix 980
Before Record Suffix 981
Before Record Update 981
On Record Lock 980

Pick list 340
Pick list windows 465
Pictures 208

components 209
date 214, 220
functional directives 210, 217
logical 220
mask characters 224
memo 217
numeric 211, 219
positional directive 218
positional directives 222
special characters 222
syntax rules 225

time 221
usage 208

Placement property 797
Popup windows 500
Port an application 1245
Positional directives 218, 222
PPD function 687
Pref function 687
Preset tool images 1191
Primary keys 273, 274
Print Attribute repository 180, 970
Print attributes file 66, 107
Print attributes for runtime resolution
974
Print color attribute 972
Print data 1274
Print dialog 388
Print multi-page edit control 967
Print preview 390
Print styles 970
Printer 385
Printer attribute support 968
Printer commands 970
Printer settings 969
Printers

commands file 178
name 178
page size 179
queue 178
repository 177
translation file 178

Printing a data file
program generator 1225

Printing data 359
Reference Guide 1535

Printing of a table control 966
Prog function 687
PROG literal 514
ProgIdx function 688
Program execution trace file 1267
Program generator 1223
Program menus 1018
Program repository 331
Program Repository keywords 1334
Program repository rights assignment
1042
Program rights assignment

execute the Automatic Program
Generator 1043

Programmable Protection Device
(PPD) 68
Prompt help screens 1029
Property sheet automatic handling 101
Public name 332
Public rights 1037
Public rights access key 67, 1048
Pulldown menu close timeout 90
Pulldown menu keywords 1328
Pulldown menus 1015
Push button control 778, 804, 810

Q
Query mode 304
Query mode locate warning 77
Query rights 1040, 1042, 1043, 1044,
1045, 1047
Query title for internet form 1228

R
Radio control 775, 805
Raise Event operation 505
Raise Event operationkeywords 1368
RAND function 688
Range and locate 398
Range and Locate keywords 1338
Range definition 1447
Range function 688
Range of record 1009
Range/Locate box popup seconds 89
Read - Transaction 990
Real columns 204
Record initialization level 308
Record locking 168
Record Main 281
Record Prefix 281
Record Suffix 282
Record termination level 308
Record update fail before call 985
Record/row loop 308
Recover error strategy 998
Rectangle control 805
Referenced table 274
Remote COM runtime behavior 1097
Remote flow monitor 1257
Remote flow monitor activation 84
Remote flow monitor port 84
Remote flow monitor rights 68
Remote host 228
Rep function 689
Report forms 966
Reposition after modify 96
Repositories, working with 42
Reference Guide 1536

command options 43
entering text 42
moving the insertion point 43

RepStr function 689
REQQUELST function 1220
Requester timeout 118
Requirements for team development
1422
Resident MAGIC.INI 93
Resident tables 94, 252, 256
Resident task 341
ResMagic function 690
Return value 339
Rich edit control 806, 812
Rich text control 806
Rich text format control 811
Right function 690
Right keys allocated by user 1052
RIGHT literal 514
RightAdd function 690
Rights assignment

accessing 1039
application properties 1047
authorization 1039
help screens 1044
menu definitions 1045
models 1040
programs 1042
tables 1041

Rights for menus 1021
Rights function 691
Rights keys allocated by group 1053
Rights limited by user 1036
Rights repository 1036

keywords 1326
Rollback 992, 1001
ROLLBACK function 691
Rollback function 691
Round function 692
Row highlighting 788
RqCtxInf function 693
RqCtxTrm function 693
RQEXE function 1220
RqExe function 694
RqHTTPHeader function 694
RQLOAD function 1220
RqLoad function 695
RQQUEDEL function 1220
RqQueDel function 696
RqQueLst function 696
RQQUEPRI function 1220
RqQuePri function 697
RQREQINF function 1220
RqReqInf function 697
RqReqLst function 698
RQREQLSTfunction 1221
RQRTAPP function 1221
RqRtApp function 699
RQRTAPPS function 1221
RqRtApps function 699
RqRtCtx function 703
RqRtCtxs function 701
RQRTINF function 1221
RqRtInf function 702
RQRTS function 1221
RqRts function 703
RqRtTrm func tion 704
RQRTTRM function 1221
Reference Guide 1537

RqRtTrm function 703
RqRtTrmex 704
RQSTAT function 1221
RqStat function 705
RqTrmTimeout function 704
RTrim function 705
RunMode function 705
Runtime menu access rights 1045

S
Screen mode display 1227
Screen mode prompt 74
Second function 706
Secret Name repository 180, 1054
Security file 108
Security functions 546
Segment repository 392
Segments

size 392
sort direction 393
sort type 393
sort using RDBMS 393
variable name 392
variable type 392

Select Operation keywords 1361
Selection control 804
Server

address 142
communication interval 86
name 141
properties 142
repository 140

Service context management for batch
tasks 344

Services
properties 145
repository 144

SetBufCnvParam function 706
SetCrsr function 707
SetLang function 708
SETPARAM function 1221
SetParam function 708
Share mode 1411
SharedValGet function 709
SharedValPack function 709
SharedValSet function 709
SharedValUnpack function 710
Sharing in a multi-user environment
381
Sharing tasks 381
Short/Long keyword parameter 1314
Shortcut keys 1020
Show grid 792, 922
Show plan 155
Simulating key entries 657
SIN function 710
Single common context 123
Single expand palettes 100
Sizing forms 797
Slider control 805
Snapshot file 1418, 1423
SNMPNotify function 710, 1374
SOAP header 1074
Sort direction 393
Sort repository 391

keywords 1345
Sort using RDBMS 393
Sort/Temp box popup seconds 90
Reference Guide 1538

Sorting 1448
SoundX function 711
Split window child 793
SplitterOffset function 711
SQL

array size 170
command keywords 1336, 1337,

1338
database information 169
databases 991
gateways 1451
hinting the optimizer 170
Where clause keywords 1339
XA transactions 171

SQL table properties
array size 256
check the existence of a table 254
cursor value 255
default position 254
default position index 254
hinting the optimizer 255
owner of the table 254
physical locking 1466
pre-defined DB table or view 255
selecting a unique index 254
supplying database-dependent in-

formation 253
text data type 1466

SQL Where 401
SSL CA certificates 115
SSL client certificate file 116
SSL client certificate password 116
Startup language 111
Startup mode 64

Startup position 796
Startup security file 108
Stat function 711
Static controls

group control 807
static ellipse control 807
static rectangle control 807
static text control 807

Static text control 804
Station lock file 1428
Storage field models 208
Stored procedures 1448
Str function 712
String functions 547
String operators 516
String time attribute mapping 1450
StrToken function 712
StrTokenCnt function 713
StrTokenIdx function 713
Subforms 766
Sub-Object name 227
Super right key 68, 1049
Supervisor entry 1036
Supervisor group 1054
Synchronization process for team de-
velopment 1426
Syntax rules for constructing pictures
225
Sys function 714
System events 283, 409
System logon 71
System menu 793
System model 202
Reference Guide 1539

T
Tab control 805
Table control 806, 813, 966
Table Conversion utility 257, 1271
Table locking 1459, 1477
Table modes 1410
Table properties 251
Table repository 246

keywords 1315
Table repository rights assignment
1041
Table rights assignment

using the Automatic Program Gen-
erator 1042

Table sharing interaction 1413
Tables

changing table structure 257
Tag table 951
TAN function 714
Task

cache buffer size 76
cycle levels 307
flow modification 92

Task control keywords 1339
Task control properties 357
Task dataview 299
Task Event Parameter Repository key-
words 1346
Task Event Repository keywords 1345
Task Execution repository 280, 406
Task flow 301
Task functions 549
Task levels 408
Task Prefix 280

Task Property keywords 1335
Task Suffix 282
Task window 359, 360
Tasks 277, 332

properties 333
TDepth function 714
Team development 65, 1422
Temporary tables 1468
Temporary tables path 82
Term function 715
Terminal identifier 84, 1416
Text control 776
Text function 715
THIS function 715
Thousands separator 104
Time attribute 206
Time function 716
Time functions 529
TIME literal 514
Time pictures 221
Time separator 104
Timeout 149
Timer events 283, 409
Title on every page 966
Token prefix 951
Token suffix 951
Toolbar button enable 1025
Toolbar button groups 1025
Toolbar button hide 1025
Toolbar button image 1024
Toolkit checker minimal level 102
Tools infrastructure 1284
Tooltip 98, 774, 776, 780, 1025, 1032
Top keyword parameter 1369
Reference Guide 1540

Transaction begin 978
Transaction mechanism 1435
Transaction mode 977

deferred 977
nested deferred 978
physical 978
within active transaction 978

Transaction processing 977
Transaction trees 987
Transactions 1435
Translation 173
Translation file 175, 178
TransMode function 717
Tree control 806, 815
TreeLevel function 717
TreeNodeGoto function 717
TreeValue function 717
Trim function 718
TStr function 718
TVal function 718
Type library 227
Typographical conventions 36

U
UDF function 719
UDFF function 719
UDFS function 720
Uncheck object 1421
Units of measurement 375, 792
UNIX operating systems 1430
UNIX web server 964
Unlock function 720
Update operation 486

keywords 1365

Update/Delete statements 984
Upload 965
Upper function 721
URL help screens 1033
User Event repository 292
User events 409
User function 721
User Group repository 181
User groups 1052, 1053
User ID repository 181, 1051
User identification 73, 182
User name 145, 165
User retry 1004
UserAdd function 722
User-defined events 292, 394
User-defined menus 1017
UserDel function 722
UTF8FromAnsi function 722
UTF8ToAnsi function 723

V
Val function 723
Validate link operation 443
VAR literal 514
VarAttr function 724
VarCurr function 724
VarCurrN function 724
VarDbName function 725
Variable functions 552
Variable MCF record length 158
Variables 516
Variables palette 824
VariantAttr function 725
VariantCreate function 726
Reference Guide 1541

VariantGet function 728
VariantType function 729
VarIndex function 732
VarInp function 732
VarMod function 733
VarName function 733
VarPic function 734
VarPrev function 734
VarSet function 735
VecCellAttr function 736
VecGet function 736
VecSet function 736
VecSize function 737
Vector data 518
Verify operation

keywords 1362
Vertical slider control 805, 809
ViewMod function 737
Views 1468, 1482, 1489
Views and fragmented tables 1477
Virtual variables 204
Visual Connection screen 146
Visual function 737

W
Wallpaper 769, 795, 923, 944, 1228
Web authoring tool 119
Web document alias 118
Web document path 118
Web online event handlers 952
Web online page 964
Web online response 964
Web service interface builder 1070
WebRef function 738

WINBox function 738
Windows help key 1031
Windows help screens 1030
Windows operating sytems 1430
Windows submenu 1025
WinHelp function 739
WINHWND function 740
Within active transaction 978
Workgroup development (MVCS) 1421
Wrap keyword parameter 1313
Write - Transaction 990
Write link operation 444
WSAttachmentAdd function 740
WSAttachmentGet function 741
WSDL file 1070
WSDL file path 1073
WSDL files path 113
WSDL name space 1073
WSDL service end point 1073

X
XA transactions 171
XCG

Component structure 1130
Generation 1132
Using 1121

XML Component Generator 1121
XML schema 1124
XML template file 113
XMLBlobGet function 742
XMLCnt function 743
XMLDelete function 745
XMLExist function 747
XMLFind function 749
Reference Guide 1542

XMLGet function 751
XMLGetAlias function 753
XMLGetEncoding function 754
XMLInsert function 754
XMLModify function 759
XMLSetEncoding function 761
XMLSetNS function 762
XMLStr function 763

XMLVal function 763
XSD 1125

Y
Year function 763

Z
Z-order of controls 801
Reference Guide 1543

	eDeveloper V9.4 Reference
	Contents
	1 Introduction
	Documentation
	Online Resources
	Installation
	Typographical Conventions
	Key Combinations
	eDeveloper Workspace
	Navigator and Workspace Panes
	Multiple Document Interface (MDI) Client Edge
	Property Sheets
	Comments
	Checker Results
	Switch Panes
	Combined Panes
	Repositories
	Moving the Insertion Point
	Command Options
	Column and Key Internal Sequence Numbers (ISNs)
	Folders
	Bookmarks
	Cross-References
	Find and Replace

	2 Settings
	The Settings Menu
	New Applications
	Application Settings
	Application Repository
	#
	Name
	Prefix
	Application (MCF) file
	Database

	Application Properties - Outside the Application
	Flat MFF Deployment
	Compressed
	Force MVCS Disable
	Access Key
	Browser Client Task Cache
	Browser Client Cache Path and Alias

	Application Properties - Within the Application
	StartUp Tab
	Workgroup Tab
	External Files Tab
	Security Tab

	Environment Settings
	System
	Owner Name: (Magic Software Enterprises Ltd)
	System Logon
	Magic Date: (System Date)
	User’s ID: (None)
	Input Password: (No)
	Input Date: (No)
	Default Application: (0)
	Application Startup Mode: (Toolkit)
	Screen Mode Prompt
	Century Start: (1920)
	Batch Event Interval: (1000)
	Task Cache Size: (0)
	Allow Create in Modify Mode: (Yes)
	Allow Update in Query Mode: (No)
	Query Mode Locate Warning: (Yes)
	Allow Access to Application: (Yes)
	Allow Access to Environment: (Yes)
	Allow Access to Colors: (Yes)
	Allow Access to Fonts: (Yes)
	Allow Access to Keyboard Mapping: (Yes)
	Allow Access to Servers: (Yes)
	Allow Access to Services: (Yes)
	Allow Access to Visual Connection: (Yes)
	Allow Access to Communications: (Yes)
	Allow Access to DBMS: (Yes)
	Allow Access to Databases: (Yes)
	Allow Access to Logical Names: (Yes)
	Allow Access to Languages: (Yes)
	Allow Access to Printers: (Yes)
	Allow Access to HTML Styles: (Yes)
	Allow Access to Print Attribute: (Yes)
	Allow Access to Logon: (Yes)
	Allow Access to Toolkit: (Yes)
	Allow Testing Environment: (No)
	Allow Access to Checker Messages: (Yes)
	Temporary Tables Path
	Maximum File Handles: (0)
	License
	License file
	Load Monitor
	Flow Monitor Output File
	Remote Flow Monitor
	Remote Flow Monitor Port

	Multi-User
	Terminal: (0)
	Multi-User Access: (Yes)
	ISAM Transactions: (No)
	Deadlock Prevention: (No)
	Server Communication Interval: (0)
	Lock File: (mglock.dat)
	ISAM - Force Locking Within Transaction: (Yes)
	Resource Lock File: (mgres.loc)

	Preferences
	Default Database
	Database for Sort/Temporary
	Range/Locate Box Popup Seconds: (10)
	Sort /Temp Box Popup Seconds: (10)
	Keyboard Idle Seconds: (1)
	Pulldown Menu Close Timeout: (0)
	Confirm When Auto-Exiting: (No)
	Task Flow Modification: (Free)
	Display Copyright Messages: (Yes)
	Deployment Custom Copyright: (none)
	Resident Magic.ini: (No)
	Display Toolbar: (Yes)
	Load Resident Tables: (No)
	Display Full Messages: (Yes)
	Center Screen in Online: (No)
	Reposition After Modify: (No)
	Indent Character: (0)
	Default Color
	Default Font: (0)
	Tooltip Timeout: (5)
	Maximum Number of Bookmarks: (10)
	Maximum Number of X-refs: (5)
	Retry Operation Time Interval: (600 seconds)
	IO Device Open Timing
	Floating Palettes Always On Top: (Yes)
	Dockable Palettes: (Yes)
	Single Expand Palettes: (No)
	Property Sheet Automatic Handling: (Close)
	Image Cache Size: (0)
	Check Image Change Time: (No)
	Toolkit Checker Minimal Level
	Group Checker Messages By
	Jump Automatically to First Item in Checker List

	International
	Date Mode
	Thousands Separator (,)
	Decimal Separator (.)
	Date Separator (/)
	Time Separator (:)

	External
	Logo File: (None)
	Const File: (mgconstw.eng)
	Help File: (mghelpw.hlp)
	Color Definition File: (clr_std.eng)
	Font Definition File: (fnt_std.eng)
	Keyboard Mapping File: (act_std.eng)
	Documentation Template File: (doc_std.eng)
	HTML styles file: (html_stl.eng)
	Print Attributes File: (prn_std.eng)
	Security File: (usr_std.eng)
	Startup Security File
	The OEM2ANSI Translation File
	ANSI to Unicode
	Alternate Collating Seq File
	Starting Language
	Checker Messages Table File
	European Currency Conversion File
	Drop Data Supported User Formats
	Command Processor: (command.com)
	HTTP Proxy (address:port)
	HTTP Timeout
	Print Data HTML Template
	Print Data XML Template
	WSDL Files Path (Program Files/Common Files/Magic/WSDL file.wsdl)
	Mail Connection Timeout (default: 0)
	Mail Operation Timeout (default: 0)
	SNMP Database Connections Utilization Threshold (default: 0)
	LDAP Address:Port
	LDAP Connection String
	LDAP Domain Contexts
	LDAP Timeout
	SSL CA Certificate Files
	SSL Client Certificate Files
	SSL Client Certificate Password

	Server
	Activate Enterprise Server: (No)
	Messaging Server (Default Broker)
	Enterprise Server Can Change Application: (Yes)
	HTTP Requester
	Web Document Alias
	Web Document Path
	Requester Timeout: (0)
	Maximum Number of Concurrent Requests
	Load Balancing Priority
	Web Authoring Tool
	Context Inactivity Timeout: (600)
	Post Context Unload Timeout: (1200)
	Persistent Browser Client Module
	Browser Client Sub-Version
	Browser Client Technology
	Missing Browser Client Technology Error URL
	Browser Client Network Error Recovery Timeout
	Browser Client Cached Path
	Browser Client Cached Alias
	Foreground Generator Context Management

	eDeveloper Defaults

	Advanced Toolkit Settings
	JAVA Settings
	The MAGIC_JAVA Section

	Color Settings
	The Color Repository Settings
	#
	Name
	FG and BG
	Sample

	Saving Changes to the Color Repository

	Font Settings
	The Font Repository Settings
	#
	Name
	Font
	Style
	Size
	Orientation
	The Font Style Window

	Font Assignment Window
	Saving Changes to the Font Repository

	Keyboard Mapping Settings
	eDeveloper Actions
	State Qualifications to eDeveloper Actions
	eDeveloper Action Example
	The Keyboard Mapping Repository
	The Keyboard Mapping Repository Settings
	#
	Action
	Key
	States

	Servers Settings
	The Server Repository Settings
	Name
	Server Type
	Server Address
	Properties
	Communication Manager

	Services Settings
	The Service Repository Settings
	#
	Name
	Server
	Remote Application

	The Services Properties Dialog
	User Name
	Password
	Filter

	Visual Connection Settings
	Communication Settings
	The Communication Repository Settings
	#
	Name
	Timeout
	Parameters
	ID

	DBMS Settings
	The DBMS Repository Settings
	#
	Name
	2 Phase
	Nulls
	Excl Trans
	Parameters
	Float (Default Float Picture)
	ID

	DBMS Properties
	Log Level
	Log Name
	Log Synch
	Show Plan
	Alternate Collating Sequence
	Maximum Connections
	Isolation Level
	Check Existence

	Variable MCF Record Length
	Why Change the MCF Record Length?
	Defining the MCF Record Length
	Effects of Changing the MCF Record Length

	Database Settings
	The Database Repository Settings
	#
	Name
	DBMS
	Database Name
	Magic Server
	Location

	The Database Properties Dialog
	Login
	Options
	SQL

	Logical Names Settings
	The Logical Name Repository Settings
	#
	Name
	Translation

	Logical Names Usage
	Logical Names Syntax (in use from Version 5 and higher)

	Language Settings
	Multi-lingual Support (MLS)
	The Language Repository Properties
	#
	Language
	Translation File
	Creating a Language Translation File
	Using MLS at Runtime

	Printer Settings
	The Printer Repository Properties
	#
	Name
	Queue
	Commands File
	Translation File
	Lines

	HTML Style Settings
	The HTML Style Properties
	Name
	HTML Tag

	Print Attribute Settings
	Secret Name Settings
	Connecting to an LDAP Server

	User Groups Settings
	User ID Settings
	Logon Settings
	The Logon Properties
	User ID
	Password
	Date

	System Logon Setting

	The Magic.ini File
	The Magic.ini File Format
	Saving Server Information to the Magic.ini File

	Command Line Options
	Specifying Command Line Options
	Command Line Options Examples
	Application Launch via the OS Command Line
	Command Line Options and Magic.ini Values
	Environment Properties and Command Line Values

	3 Models
	Model Repository
	Columns
	Classes
	Fields
	Controls
	Forms
	Help Screens

	Properties

	Data Items
	Data Item Qualifiers
	Attributes
	Storage Field Models

	Pictures
	Functional Directives
	Functional and Positional Directive Defaults
	Functional Directives for Numeric Pictures
	Functional Directives for Date Pictures
	Functional Directives for Time Pictures

	Positional Directives
	Positional Directives for Alpha Pictures
	Positional Directives for Numeric Pictures
	Positional Directives for Logical Pictures
	Positional Directives for Date Pictures
	Positional Directives for Time Pictures
	Summary of Picture Directives
	Positional Directive List

	Mask Characters
	Syntax Rules for Constructing Pictures

	Field Class Properties
	Model
	Details
	ActiveX and OLE
	Input
	Appearance
	Style
	Def/Null
	Storage
	SQL

	Control Properties
	Details
	Input
	Appearance
	Navigation
	OLE

	Form Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Help Properties
	Model: (default)
	Details
	Input
	Appearance
	Navigation

	Working with Models
	Creating a Model
	Deleting a Model
	Breaking Model Properties
	Selecting a Different Model for an Object
	Removing a Model from an Object
	Expressions
	Rights

	4 Tables
	Table Repository
	Table Repository Columns
	# (for Table identifier)
	Name
	Columns
	Indexes
	Foreign Keys
	DB Table
	Database
	Folder
	Public Name

	Table Properties
	Table Properties - Advanced
	Access Key
	Encrypt Table: No (default)
	Cache Strategy: Position and Data (default)
	Resident: No (default)
	Identify Modified Row
	Size

	Table Properties - SQL
	Information for SQL Database
	Owner
	Position
	Index
	Default Position
	Check Existence
	Table Type
	Hint
	Cursor
	Array Size

	Resident Tables
	Table Conversion Utility

	Column Repository
	Column Repository Fields
	# (for Column identifier)
	Name
	Model
	Attribute
	Picture

	Column Properties
	Model
	Details
	Input
	Appearance
	General
	Style
	Def/NULL
	Storage
	SQL

	Index Repository
	Index Repository Columns
	# (or Index identifier)
	Name
	Type

	Index Segment List Columns
	# (for Segment identifier)
	Column (for Column number)
	Name
	Size
	Order

	Index Properties
	Index Properties - Advanced
	Direction: Two Way (default)
	Range Mode: Quick (default)

	Index Properties - SQL
	Information for SQL Database
	DB Index Name
	Index Type
	Hint
	Clustered
	Drop During Reindex
	Primary Key

	Foreign Key Repository
	Foreign Key Definition Columns
	Foreign Key Segment Columns

	5 Application Engine
	Tasks
	Engine Levels
	Operation Repositories
	Task Prefix
	Group <break variable> Prefix
	Record Prefix
	Record Main
	Control Prefix
	Control Suffix
	Control Verification
	Control Change
	Record Suffix
	Group <break variable> Suffix
	Task Suffix
	Handler Level

	Event Handling
	Event Types
	Interactive Task Event Handling
	The Control Operation Level
	The Handler Operation Level

	Batch Task Event Handling
	Handlers
	Group Level
	Control Level
	Handler Level
	Level Repository Fields
	Event Handler Behavior
	Importing From Previous Versions

	User-Defined Events
	#
	Description
	Trigger Type
	Trigger
	Force Exit
	Public Name
	Expose

	Information about the Engine
	The 14 eDeveloper Operations
	Non-Procedural Operations

	The Task Dataview
	How eDeveloper Prepares the Dataview
	Dataview Tuning
	The Record Dataview Instance

	The Effect of Modes of Operation on Task Flow
	Automatic Switch from Modify to Create Mode
	User-Initiated Temporary Switch from Modify Mode to Create Mode
	The Meaning of Query Mode

	End-User Screen Interaction
	Insertion Point Park

	Engine Execution Rules
	Task Cycle Levels
	Task Cycle
	Task Prefix Level
	Task Suffix Level

	The Record/Row Loop
	Record Initialization Level
	Record Termination Level

	The Control Level
	Creating a Control Handler

	Group Levels
	How the Engine Executes Group Levels
	Group Levels Example

	Record/Row Loop Flowcharts
	Record/Row Loop in Online Tasks
	Record/Row Loop in Batch Tasks
	Engine by Record Level
	Step Mode
	Fast Mode

	Controlling the Execution of an Operation
	Cnd Expression
	Flow Column
	Zoom Interaction Modes

	End-User Screen Interaction
	Insertion Point Park

	6 Programs
	Program Repository
	Properties of the Program Repository
	# (for Program identifier)
	Name
	Public Name
	Last Update

	Tasks
	Menu Options for Tasks
	Task Properties Dialog
	Properties Tab
	Allow Event: Yes (default)
	Return Value
	Main Table
	Index
	Index Expression
	Advanced Tab
	Enhanced Tab

	Direct SQL Command
	Using Direct SQL Command
	Direct SQL Task Elements
	Create a Direct SQL Task
	SQL Command
	Executing Stored Procedure
	Input Arguments
	Output Arguments
	Assist Utility

	SQL Command Automatic Program Generator
	Behavior of Direct SQL SELECT Statements
	Browser Client and Online
	Batch
	Result Database as Input Database
	Result Database Different from Input Database
	Recommendations

	Restrictions on Using Direct SQL
	Binding Variables
	Binding Restrictions

	Allow DSQL in a Deferred Transaction

	Task Control
	Task Control Properties as Conditions
	Task Control Properties Dialog
	Modes Tab
	Behavior Tab

	Local Variable Repository
	Properties of the Variable Repository
	# (for Variable identifier)
	Name
	Model
	Attribute
	Picture

	Local Variable Properties Sheet

	Expression Rules Repository
	Expressions

	Form Repository
	Form Repository Columns
	# (for Form identifier)
	Name
	Class
	Area
	Interface Type
	Child

	Working with Forms
	Resizing a Form
	Form Units
	Palettes
	Form Templates
	Form and Control Properties
	Keyboard Shortcuts
	Mouse Action Mapping

	DB Table Repository
	Properties of the DB Table Repository
	#
	Table
	Access
	Share
	Open
	Exp
	Cache
	Identify Modified Row

	I/O File Repository
	Properties of the I/O File Repository
	#
	Name
	Media
	Printer
	Access
	Format
	Exp/Var
	PDlg (for Print dialog)
	Rows

	I/O Properties Dialog
	Page Size
	Page Header Form
	Page Footer Form
	Copies
	Expression (Exp)
	Orientation: Portrait, Landscape
	Print Preview
	I/O Name to Use
	Character Set to Use
	Visual to Logical Translation
	Flip Line

	Sort Repository
	Properties of the Segment Area
	# (for Segment identifier)
	Var (for Variable #)
	Variable Name
	Size
	Direction
	Sort Type
	Sort Using RDBMS

	Event Repository
	Properties of the Event Repository
	#
	Description
	Trigger Type
	Trigger
	Force Exit
	Public Name
	Expose

	Range and Locate Properties
	Range/Locate Tab
	Range Expression: 0 (default)
	Range Order: Ascending (default)
	Locate Expression: 0 (default)
	Locate Order: Ascending (default)
	Position: 0 (default)
	Usage

	SQL Where Tab
	SQL Where Range Expression: 0 (default)
	DB SQL Where
	Full Where Clause
	Magic SQL Where and DB SQL Where Behavior

	Task Execution Repository
	The Structure of the Handler Repository
	Handler Repository Properties
	Level
	Event
	Details
	Scope
	Propagate
	Enable
	Operation

	Main Program
	Main Program Access and Usage
	Main Program Characteristics
	Runtime Characteristics and Behavior

	Toolkit Characteristics and Behavior
	Program Repository
	Program Properties Dialog
	Task Control Dialog
	Program’s Form Repository
	DB Table Repository
	I/O File Repository
	Task Execution Window
	Main Program Variable Availability
	MVCS
	Call Operation
	Select Program
	User Events
	Other Main Program Characteristics
	Main Program Task Prefix
	Main Program Task Suffix

	7 Operations
	Alphabetical Index to Operations
	Introduction
	Remark
	Purpose
	Usage
	Remark Operation Property

	Select
	Purpose
	Usage
	Placement
	Select Operation Properties
	Select
	Name
	Init > 0 (optional)
	Range (optional)
	Locate (optional)
	Flow
	Cnd (for Condition)

	Verify
	Purpose
	Usage
	Verify Operation Properties
	Exp > 0
	Name
	Mod (for Mode) = Warning (default)
	Display Mode
	Flow
	Cnd (for Condition)
	Usage Considerations

	Link
	General Information about eDeveloper’s Link
	Link Categories
	Link Order
	Link Criteria
	Establishing the Initial Link
	Recomputing Link Expressions

	Link Usage
	Placement
	Link Operation Properties
	Link Types
	Query
	Write
	Create
	InnerJoin
	Left Outer Join

	Link Properties
	Table Identification Number Property
	Indexing
	Locking
	Direction: Ascending (default)
	Flow
	Cnd (for condition)
	Link Property Dialog

	End Link
	Purpose
	Usage
	Placement
	End Link Operation Properties
	Usage Considerations

	Block
	Purpose
	Usage
	Block Operation Types
	If
	Else
	Block Loop
	Flow
	Cnd (for Condition)
	Usage Considerations

	End Block
	Purpose
	Usage
	End Block Operation Properties
	Usage Considerations

	Call Operations
	Purpose
	Passing Arguments
	The Argument List
	#
	Var (for Variable)
	Exp
	Skip
	Description
	Prm Desc
	Attribute
	Picture

	How eDeveloper Passes Arguments
	Call Operation Qualifiers
	Call, Call Category, Identification Number of Called Entity
	Name
	Arg: 0 (default)
	Frm (for Form)
	Flow
	Cnd (for Condition)

	Call Task
	Purpose
	Usage
	Call Task Operation Properties
	Usage Considerations
	Call Phantom Tasks

	Call Program and Call Exp
	Purpose
	Usage
	Call Program Properties
	Call Exp properties

	Call a Public Program
	Runtime Behavior
	Loading the Application
	Closing the Host Application
	Handling Exceptions

	Call UDP
	Purpose
	Usage
	Call UDP Operation Properties

	Call COM
	Call Remote
	Call Remote Operation Properties

	Call Web Service
	Purpose
	Call Category
	Web Service Parameters
	WSDL Assist
	WSDL Arguments
	WSDL Assist Usage Considerations

	Evaluate
	Purpose
	Usage
	Evaluation Operation Properties
	Identification Number of the Expression
	Name
	Range
	Ret (for Return Code)
	Flow
	Cnd (for Condition)
	Usage Considerations

	Update
	Usage
	Update Operation Properties
	Variable Identifier Letter
	Name
	Identification Number of the Expression
	How: Normal (default)
	Undo: Yes (default)
	Flow
	Cnd (for Condition)
	Usage Considerations
	Comparison of Update Assignment with Init Assignment

	Output Form
	Purpose
	Usage
	Output Form Operation Properties
	Form Identification Number
	Name
	I/O Number
	Pag (for Page)
	Flow
	Cnd (for Condition)
	Usage Considerations

	Input Form
	Purpose
	Usage
	Input Form Operation Properties
	Identification Number
	Name
	I/O File Identification Number: (default)
	Field Delimiting Method > Column
	Chr
	Flow
	Cnd (for Condition)
	Usage Considerations

	Browse
	Purpose
	Usage
	Browse Operation Properties
	Identification Number of the Browse File Expression
	Name
	Edt: (for Browse File Edit) > Scn
	Browse File Form Identification Number
	Locate
	Flow
	Cnd (for Condition)
	Usage Considerations

	Exit
	Purpose
	Usage
	Exit Operation Properties
	Identification Number of the Exit Destination Expression
	Name
	Wait > No
	Shw (for Show) > Normal
	Ret > (for Return Code)
	Flow
	Cnd (for Condition)

	Raise Event
	Raise Event Properties
	Event Name
	Wait
	Arguments
	Flow
	Cnd (for Condition)
	Destination Context Name Property

	Raise Public Event Runtime Behavior

	8 Expression Rules
	Literals
	Operators
	Mathematical Operators
	Logical Operators
	String Operator

	Variables
	Functions
	Dynamic Data Exchange
	Buffer Management
	Vector Data
	XML Namespaces
	XML Namespace Examples
	Summary of XML Functions
	XML General Error Codes

	Function Summary
	Alphabetical Directory of Functions
	Table 1 - Basic Types
	Table 2 - Arrays and References

	9 Display Forms
	Browser Forms
	Browser Subforms
	Keyboard Access to Subforms

	Browser Form Properties
	Model
	Details
	Input
	Appearance
	Navigation

	HTML Control Repository
	Browser Control Properties
	Browser Edit Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Browser Radio Button Control Properties
	Model
	Input
	Appearance

	Browser Hyper-Text Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Browser Push Button Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Browser Check Box Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Browser List Box Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Browser Combo Box Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Browser Image Control Properties
	Model
	Details
	Appearance
	Navigation

	Browser Table Control Properties
	Model
	Details
	Appearance
	Navigation

	Browser IFRAME Control Properties
	Model
	Appearance
	Navigation

	Browser Opaque Control Properties
	Model
	Appearance
	Navigation

	GUI Display Forms
	GUI Display Form Properties
	Model
	Details
	Input
	Appearance
	Split
	Navigation

	GUI Display Commands
	Z-Order of Controls
	Parent-Child Linking of Controls
	Parent-Child Links Using Choice Controls

	GUI Display Color Palette

	GUI Display Controls
	Static Controls
	Choice Controls
	Data Bound Choice Controls

	Slider Controls
	Editing, Action, and Image Controls
	Edit Controls
	Push Button Controls
	Check Boxes
	Image Controls
	Line Controls
	OLE Controls
	RTF Controls

	Table Controls
	Resizing in Development Mode
	Resizing in Deployment Mode
	The Drag Operation for a Table Control
	Multi-Marking in a Table

	Tree Control
	Generating a Data Tree
	Tree Control Events
	Adding or Deleting Nodes
	Navigating in the Data Tree
	Parking on a Node
	Editing the Node Text
	Refreshing the Data Tree
	Selecting Multiple Nodes
	Tree Control Functions

	Drag and Drop
	Drag Begin Event
	Drop Event
	Drag and Drop Limitations and Environment Settings

	GUI Display Control Properties
	Radio Button Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Rectangle Control Properties
	Model
	Detail
	Input
	Appearance
	Navigation

	Table Control Properties
	Model
	Details
	Appearance
	Navigation

	Edit Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Column Control Properties
	Model
	Details
	Appearance
	Navigation

	Tab Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Ellipse Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Image Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Text Control Properties
	Details
	Input
	Appearance
	Navigation

	List Box Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Line Control Properties
	Model
	Details
	Appearance
	Navigation

	OLE Control Properties
	Model
	Details
	Input
	Appearance
	Navigation
	OLE

	Push Button Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Combo Box Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Slider Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Rich Text Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Check Box Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Group Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Rich Edit Detail Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	Tree Control Properties
	Model
	Details
	Input
	Appearance
	Navigation

	10 Output Forms
	HTML Forms
	HTML Form Display
	HTML Control Placement
	HTML Form Properties
	Details
	Input
	Appearance
	Navigation

	HTML Style Repository
	Hyperlink Settings
	eDeveloper Program
	URL
	Control Name

	Context Variables
	Cookies
	Hidden Fields
	Context Variable Settings

	The HTML Command Palette
	HTML Static Table Command Palette
	HTML Control Palette
	Fonts and the HTML Controls
	Font Conversion for HTML Output
	Font Formatting Commands

	HTML Control Properties
	Model
	Details
	Input
	Appearance
	Navigation
	ActiveX

	Static Table Control Properties

	Frame Set Forms
	Frame Set Form Properties
	Model
	Details
	Input
	Appearance
	Navigation

	The Frame Set Command Palette
	Frame Set Control Properties
	Model
	Details
	Input
	Appearance

	HTML Merge Forms
	HTML Merge Form Properties
	Model
	Details
	Navigation

	Web Online Event Handlers
	The Merge Command Table
	The Merge Command List
	HTML Template File Tags
	HTML Merge Tags
	HTML Merge Syntax Rules
	HTML Merge Runtime Behavior
	HTML File Merge Example
	Web Online Page
	Web Online Supports the UNIX Web Server

	Web Online Response
	Web Online Response Form Properties

	Upload Capability of the Requester

	Report Forms
	GUI Table Control Functionality
	Multi-Line Edit Printing
	Printer Attribute Support
	Printer Settings
	The Print Attributes File
	The Printer Commands File

	Print Styles
	Color Print Attribute
	Print Attribute Components
	Runtime Resolution of Print Attributes

	11 Data Management
	Transaction Processing
	Transactions and Execution Levels
	Transaction Mode
	Transaction Begin
	Physical Transactions at Task Level
	Before Task Prefix

	Physical Transactions for the Group Level
	Physical Transactions for the Record Level
	On Record Lock
	Before Record Prefix
	Before Record Suffix
	Before Record Update
	None

	Deferred Transactions
	Transaction Begin
	Locking Strategy Property
	SQL Range Statement
	Direct SQL
	Numeric Field Updates
	Update/Delete Statements
	Record Update Fail Before Call
	Nested Transactions

	Transaction Tree
	Open Transaction
	Close Transaction
	Runtime Tree Sample

	Transaction Processing Recovery
	eDeveloper’s Internal Transactions
	Mapping Transactions to Databases
	ISAM Databases
	SQL Databases

	Deadlocks and Transaction Processing
	Rollback
	Rollback Behavior for Browser-Based Programs

	eDeveloper Cache
	What Can Be Cached
	When is the Cache Used
	Activating the Cache Size
	Changes to Program Behavior
	Cache and Resident Tasks
	Cache and The Rollback Operation
	Cache and Client/Server
	eDeveloper Cache Internal Implementation

	Error Handling
	Error Handling Mechanism
	Error Behavior Strategies
	Abort Strategy
	Recover Strategy
	Error Strategy Behavior

	Error Handlers
	Level
	Event
	Engine Directive
	DBMS Errors
	Scope
	Propagate
	Enable
	Operations

	Error Information
	Runtime Error Handling
	Task Range According to a Record’s Position
	Range/Locate Properties

	Applications from Previous Versions
	Error Property Values for Online and Batch Tasks

	12 End-User Menus & Help
	Menu Formats
	Pulldown Menus
	Context Menus

	Menu Repository
	Menu Name
	Menu Type

	Menu Definition Repository
	Entry Types
	Entry Text
	Entry Name
	Menu Parameters
	Menu Access Key

	Menu Authorization Options
	The Menu Properties Dialog
	Properties Tab
	Rights
	Help
	Arguments

	Toolbox Tab
	Image For
	Tool Image
	Tool Number
	Tool Group
	Tooltip

	States Tab
	Checked
	Visible
	Enabled

	Help Screen Repository
	Help Types
	Internal Helps
	Input
	Appearance
	Navigation

	Prompts
	Windows WinHelp Connections
	HTML Help

	Tooltips
	URLs

	13 Authorization System
	Magic Security and People’s Roles
	Getting Started as Supervisor
	Rights Repository
	Description of the Rights Repository
	Name
	Key
	Public
	Folder
	Public Name

	Rights Assignment Dialogs
	Model Repository Rights Assignment
	Query
	Modify
	Delete
	Create

	Table Repository Rights Assignment
	Program Repository Rights Assignment
	Help Screens Repository Rights Assignment
	Menu Definition Rights Assignment
	Runtime Menu Access Rights

	Component Repository Rights Assignment

	Application Properties Dialog Rights Assignment
	Application Access Key
	Public Rights Access Key
	The Super Right Key
	Force MVCS Key
	Restricting Import and Export
	Import and Export of Magic Application Elements
	Importing and Exporting Rights

	User ID Repository
	Description of the User ID Repository
	User ID
	Name
	Password
	Rights
	Groups

	User Group Repository
	Description of the User Group Repository
	Name
	Rights

	The Secret Name Repository
	Data Security
	Restricting Access to Application Data Tables
	Access Key
	Encrypt File

	Restricting Access to the Application File Itself

	HTTP Authentication

	14 Components
	Component Frameworks
	Component Repository
	Loading a New Component
	Deleting a Component
	Magic Component Properties
	Objects Connected to the Magic Component Interface

	Component Runtime Behavior
	INIPut Function Behavior

	Component Interface Builder Repository
	Magic Component Builder Properties
	Item Type Repository
	Environment Repository
	Adding an Item
	Generating the Magic Component Interface File
	Sample MCI File

	Web Service Interface Builder
	Web Service Programs Repository
	WSDL File Settings
	Generating a WSDL File
	The Created WSDL File

	Enterprise JavaBean Interface Builder
	EJB Programs Repository
	EJB Settings
	EJB Environment Variable Path Settings
	Generating an EJB Component File
	Additional Generated Jar Files

	Java Generator
	XML Generator

	15 COM Object Support
	OLE and ActiveX
	Defining COM Object Fields
	Attribute
	Object Name and Type Library Settings

	Calling a COM Object
	Handling ActiveX Events
	Runtime Behavior
	Passing Objects as Arguments
	Manual Object Instantiation
	Referring to an Already Created Object
	Retrieving COM Related Error

	Placing an ActiveX Control on a Form
	OLE Variable and BLOB Variable of OLE Content
	COM Interface Builder
	COM Interface Builder Repository
	Methods Repository
	Predefined Local Methods
	Properties Repository
	Local and Remote Engine Properties

	Object Settings
	General Settings
	Help Settings
	Class ID
	Information

	Generating a COM Object
	Registering the Object
	Local COM Object Runtime Behavior
	MyObject.MagicEngineLoad Method
	Activating Methods for Public Programs
	Properties

	Remote COM Object Runtime Behavior
	Messaging layer
	Activating Methods of Public Programs
	Properties

	COM Object Errors and Troubleshooting
	Local Magic Engine
	Remote Magic Engine

	16 Java Integration
	Java Terminology
	Java and EJB Functions
	Code Pages
	Type Signatures
	Runtime Engine Behavior
	Life Cycle
	Multi-Threading
	Browser-Based Programs
	Conversion Tables
	Returning Pseudo-Reference Values
	Errors and Exception Handling
	External Errors for a Method
	Internal Errors for a Java Class

	Garbage Collection Mechanism
	Environment

	Java Component Generator
	The Java Class or Enterprise JavaBeans Type
	The Java Object Browser
	Java Class Structure
	The Generated Java Component
	Created Files

	17 XML Component Generator
	XCG Wizard
	XCG Main Options
	Modifying a Component
	XML Schema Details
	View XSD
	XML Schema Interface Details
	Data Types
	Component Details

	XCG Programs
	Count Program
	DbDel Program
	Get Program
	Put Program
	Read Program
	Search Program
	Write Program

	Generating the Component
	Output Files
	Changing the XCG Directory

	Namespace Support

	18 Connecting Magic to External Applications
	Dynamic Data Exchange
	Functions

	Magic & OLE Automation
	Implementing OLE Automation
	Parameter Type String
	OLE Automation Functions

	Call to a DLL
	Call to a 3rd Generation Language
	Call UDP Operation Parameters
	Call Category
	Identification Number of the UDP Expression
	Name

	UDP Functions

	19 Distributed Application Architecture
	The Enterprise Server General Scheme
	Uses of Distributed Application Architecture
	Application Partitioning
	Internet/Intranet Applications

	Enterprise Server Setup
	Runtime Engine Behavior
	Loading a Middleware Gateway

	Supported Middleware
	Magic Request Broker - MRB
	Prerequisites
	Installation and Configuration

	Magic Request Broker Behavior
	The Magic Request Broker Queue
	Automatic Reload
	Automatic Termination of the Enterprise Server
	Load Balancing Enhancements
	Broker Error Messages

	eDeveloper Requesters
	Requester Settings

	Internet Requester
	How You Can Use eDeveloper on the Internet
	Application Development Concepts
	Major Components
	Software Requirements

	Setting Up an Internet Requester
	Microsoft Web Server

	Other Web Servers
	Internet Application Paradigms

	SOAP Server Requests
	Browser Client Applications
	Creating a Browser Task
	Creating a Browser Client Program with the Automatic Program Generator (APG)
	Writing the Logic for the Browser Task
	Browser Operations
	Browser Functions

	BLOB Support
	Explicit Handling for a Browser Task
	Help Action Support
	Creating the Browser Task Interface
	Enhanced Preset Tool Images and Buttons
	Managing the Interface
	Optimized Server/Client Handling
	Client Side
	Server Side
	Client/Server Communication
	Browser/Client Events
	Calling An External Event
	Calling a Batch Task

	Recompute
	Field Level Validation

	Creating a Batch-Based HTML Program
	Conventional Internet Application Flow
	The eDeveloper HTML Form Editor
	The eDeveloper Enterprise Server and Other HTML Editors
	The eDeveloper Frame Set Editor

	The Benefits of Application Partitioning
	The Call Remote Command
	Synchronous Execution vs. Asynchronous Execution
	Processing Synchronous Requests
	Processing Asynchronous Requests

	Dynamic Assignment of Partitions
	Setting Up an eDeveloper Partitioned Application

	Command Line Requester
	The Command Line Interface

	Multi-Threading
	Shared Resident Tables
	Environment Settings
	Shared Resources
	Runtime Functions
	Calling External Programs

	eDeveloper Monitor Application
	Request-Related Functions

	20 Utilities
	Application Wizard
	Automatic Program Generator
	Program Generator Properties for Database Tables
	APG Tab
	Style Tab
	Internet Tab

	Program Generator Properties for a Program Entry
	Option
	Main Table
	Generate Forms
	Internet Tab

	Check Syntax Utility
	Checker Message Categories
	Checker Results
	The Check Syntax Process
	Unused Objects

	Checker Messages Table

	Get Definition Utility
	Loading Tables
	Get Definition of a View

	Cross Reference Utility
	The Location From Where to Cross Reference an Object
	Deleting a Cross Reference
	Searching for a Cross Reference
	Saving Cross References
	Printing Cross References
	Changing the Maximum Number of Cross-Referenced Results

	Export-Import Utility
	The Export/Import Dialog Box
	Operation
	Type
	Export with Models
	From...To...
	Folders
	File Name

	Flow Monitor/Debugger
	Flow Monitor Toolbar
	Flow Monitor Message Group Filters
	Flow Monitor Properties
	Flow Monitor Utility for a Server
	Flow Monitor Support for the Browser Client
	The Remote Flow Monitor
	Defining the Remote Application to Monitor
	Starting the Remote Flow Monitor
	Restricting Access
	Saving the Monitor Data
	Performance Statistics
	Activity Filter
	Color Management
	Context Manager
	Setting the Cache Size
	Stop the Monitoring

	The Profiler
	Profiler Operation
	Profiler Output
	Program Execution Trace File
	Opened Files Trace File

	The OEM2ANSI Utility
	The ODBC Check Driver Utility
	The MakeKey Utility
	The Table Conversion Utility

	Magic Flat File
	Print Data Wizard
	Runtime Operations
	Output Type
	Column Order

	Delimiters and String Identifiers
	Runtime Behavior
	XML Template Structure
	XSD Data Type
	XSD Header
	Elements
	XML Example

	HTML Template Structure

	Tools Infrastructure
	Building the Menu
	Menu Type
	Menu Caption
	Parent Menu Name
	MFF Path and Command
	Access Key
	Pre-Operation Command File
	Post Operation Command File

	Tools Menu Example
	Operation Commands
	Export Operation
	Export Document Operation
	Import Operation
	Save as MFF Operation
	Open Application Operation
	Get Table Definition Operation
	OS Command Operation
	Simulate Operation

	Global Parameters Information
	Automatic Processing
	Automatic Processing Sequence Example

	Monitor Utility
	Enterprise Servers
	Contexts
	Requests
	Statistics
	Applications
	Window Displays
	Monitoring Servers

	The Documentation Template Facility
	Producing Template Documentation
	Syntax - Documentation Template File
	Control Lines
	Report Section Delimiters
	Headers
	Footers
	Data Lines
	Comments

	Documentation Report Sections
	Report Section Hierarchy

	Keywords
	Optional Parameters
	Special Parameters
	Keyword Types
	Section Delimiters and Keywords
	Form Display Block
	Field Location Repository
	Level Definition Repository
	Operation Repository

	21 Simple Network Management Protocol
	SNMP Implementation
	eDeveloper Requester Settings
	EnableAgent = Y, N
	EnableTraps = Y, N
	NMSAddress
	Version = 1,2
	Community
	ReportStatusCode

	Magic Request Broker Settings
	AverageWaitTime = N seconds
	AverageProcessTime = N seconds
	DelayThresholdTraps = N in minutes

	Environment Settings
	SNMPNotify Function
	Other Traps

	Network Management Station Query from eDeveloper
	Enterprise Servers (QUE=RT)
	Requested Query (QUE=QUE)
	Loaded Query (QUE=LOAD)

	NMS Management Options
	Installation and Configuration
	Supported SNMP Agents

	22 J2EE Integration
	Terminology
	The Component Builder
	Defining the EJB
	Naming
	Returned values

	EJB Component Builder Screen
	Comparing eDeveloper and Java types

	EJB Settings
	Creating the JAR file

	EJB Configuration
	EJB Environment Definitions
	Magicenterprise servers
	MagicApplication
	Communication Timeout

	Resources

	eDeveloper Configuration and Deployment
	Environment
	Runtime
	Generic Messaging Layer (mgrqgnrc.dll)
	Environment (Mgreq.ini)
	Enterprise Server Layer

	Broker Configuration and Deployment
	Query-Only Enterprise Servers
	Termination
	Loading enterprise servers

	Command Line Requester
	Termination
	Queries
	Remote calls from other requesters (not EJBs)

	J2EE and eDeveloper Installation
	Connection Difficulties
	Error Types

	23 Multi-User Considerations
	Definitions
	Isolation Level
	Locks
	Process
	Transactions

	Concurrency
	Locking
	Identify Modified Row
	Transactions
	Task Level Transaction Usage Considerations
	Before Record Prefix Transaction Usage Considerations
	Before Record Update Transaction Usage Considerations

	Locking Strategy
	Task Nesting and Locking
	Isolation Level
	Differential Update

	Table Modes
	Access Mode
	Share Mode
	Multi-User Considerations When Defining Table Modes
	How to Define Table Modes
	Table Sharing Interaction

	Setting the Multi-User Environment
	Multi-User Access
	Terminal
	Lock File

	24 Workgroup Development
	Workgroup Options
	Activate Team Development
	MVCS Snapshot File
	MVCS Lock File Path
	Check Out Object
	Check In Object
	Check Out Object List
	UnCheck Object

	The Workgroup (MVCS) Menu

	Team Development
	Requirements for Team Development
	Activation of Team Development
	Snapshot File
	Concurrence
	Modifications to the Program Repository
	Check Out and Check In of the Program Repository
	Importing Programs

	Lock File
	The Synchronization Process
	Detection of Modifications
	Synchronizing Modifications
	Synchronization Timing

	Application Access and Share Modes
	Station Lock File

	SQL Considerations 25
	Configure and Define the eDeveloper Environment
	Windows Operation Systems
	Unix Operating Systems

	Naming Conventions - eDeveloper Gateways
	Gateway Name Structure
	eDeveloper’s API Implementation and Versions
	Oracle
	MS-SQL
	ODBC
	Informix
	DB2
	Pervasive SQL.2000

	Data Definition Rules

	Configuration and Performance
	Transactions
	The Transaction Mechanism

	Locking
	Locking Levels
	Escalating a Lock to a Table Lock
	Enforcing Locks
	Lock Duration
	Locking and Transaction Processing
	The Multi-User Access Setting
	Table Access and Share Mode
	Physical and Logical Locks
	Physical Locks
	Logical Locks

	Null Value
	Index Definition and Usage
	Range Definition
	Sorting
	Stored Procedures
	Reducing Network Traffic
	Incremental Locate
	Direct SQL
	String Time Attribute Mapping
	Properties Supported by Various Gateways

	The eDeveloper Database Gateway for Oracle
	eDeveloper Data Types
	Blob Mapping Flag
	Oracle Data Types
	Long and Long RAW Data Types
	Hints
	Database Information
	Database Properties

	Table Locking
	Physical Locking
	Views
	Unique Identifier
	NLSSORT Support
	Stored Procedures

	MSSQL Server Database Gateway
	eDeveloper Data Types
	MS-SQL Data Types
	Text Data Type
	Physical Locking
	Hints
	Identity Column
	Views
	Temporary Tables
	Local Temporary Tables
	Global Temporary Tables

	Cursors and DB Commands
	DB Commands
	Cursors

	Database Information
	Database Properties
	Table Properties
	Direct SQL

	Informix Database Gateway
	eDeveloper Data Types
	Informix Data Types
	Views and Fragmented Tables
	Table Locking
	Physical Locking
	Text and Byte Data Types

	DB2 Database Gateway
	eDeveloper Data Types
	DB2 Data Types
	Views
	Physical Locking
	Using DB2 Handles

	ODBC Database Gateway
	eDeveloper Data Types
	ODBC Data Types
	Locking
	Troubleshooting
	Database Default Values
	Sort/Temporary Database
	Direct SQL

	ODBC Check Driver Utility
	ODBC Gateway - Data Source Information
	Section 1: Driver and DBMS Product Information
	Section 3: SQL Statements Supported by the Datasource
	Section 4: SQL Limits
	Section 5: DBMS Type Support
	Section 7: Functions
	Section 8: Syntax of DML Commands Example

	Index
	Entries

